1
|
Shen X, Wu P, Lin W. A new model for bubble cluster dynamics in a viscoelastic media. ULTRASONICS SONOCHEMISTRY 2024; 107:106890. [PMID: 38693010 PMCID: PMC11176833 DOI: 10.1016/j.ultsonch.2024.106890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Bubble cluster dynamics in viscoelastic media is instructive for ultrasound diagnosis and therapy. In this paper, we propose a statistical model for bubble cluster dynamics in viscoelastic media considering the radius distribution of bubble nuclei. By investigating and comparing the response for a bubble in three conditions: single bubble; multi-bubble with the same radius; multi-bubble with different radius, the following rules are found: The promotion or suppression of the bubble cluster on the bubble vibration is not monotonous with the increase of the number of bubbles. The promotion or suppression of the bubble cluster on the bubble vibration varies alternately with the frequency. The effect of bubble cluster on bubble vibration is mostly suppressed when the driving acoustic pressure amplitude pa is high (5000 kPa). Usually, the bubble cluster promotes the vibration of the large bubbles (R0 = 10 μm) more, or suppresses it less.
Collapse
Affiliation(s)
- Xiaozhuo Shen
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Wu
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weijun Lin
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Haghi H, Kolios MC. Numerical investigation of the effect of bubble properties on the linear resonance frequency shift due to inter-bubble interactions in ultrasonically excited lipid coated microbubbles. ULTRASONICS SONOCHEMISTRY 2024; 104:106831. [PMID: 38428306 PMCID: PMC10912878 DOI: 10.1016/j.ultsonch.2024.106831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Ultrasonically excited microbubbles (MBs) have numerous applications in various fields, such as drug delivery, and imaging. Ultrasonically excited MBs are known to be nonlinear oscillators that generate secondary acoustic emissions in the media when excited by a primary ultrasound wave. The propagation of acoustic waves in the liquid is limited to the speed of sound, resulting in each MB receiving the primary and secondary waves at different times depending on their distance from the ultrasound source and the distance between MBs. These delays are referred to as primary and secondary delays, respectively. A previous study demonstrated that the inclusion of secondary delays in a model describing the interactions between MBs exposed to ultrasound results in an increase in the linear resonance frequency of MBs as they approach each other. This work investigates the impact of various MB properties on the change in linear resonance frequency resulting from changes in inter-bubble distances. The effects of shell properties, including the initial surface tension, surface dilatational viscosity of the shell monolayer, elastic compression modulus of the shell, and the initial radius of the MBs, are examined. MB size is a significant factor influencing the rate of linear resonance frequency increase with increasing concentration. Moreover, it is found that the shell properties of MBs play a negligible role in the rate of change in linear resonance frequency of MBs as the inter-bubble distances change.The findings of this study have implications for various applications of MBs in the biomedical field. By understanding the impact of inter-bubble distances and shell properties on the linear resonance frequency of MBs, the utilization of MBs in applications reliant on their resonant behavior can be optimized.
Collapse
Affiliation(s)
- Hossein Haghi
- Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital and Toronto Metropolitan University, 209 Victoria St, Toronto, Ontario, Canada.
| | - Michael C Kolios
- Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital and Toronto Metropolitan University, 209 Victoria St, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Qin D, Lei S, Zhang B, Liu Y, Tian J, Ji X, Yang H. Influence of interactions between bubbles on physico-chemical effects of acoustic cavitation. ULTRASONICS SONOCHEMISTRY 2024; 104:106808. [PMID: 38377805 DOI: 10.1016/j.ultsonch.2024.106808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Ultrasound technology has been extensively used as one of the efficient and economic methodology to achieve the desired outcomes in many applications by harnessing the physico-chemical effects of acoustic cavitation. However, the cavitation-associated effects, primarily determined by the oscillatory dynamics of cavitation bubbles, are considerably complex and still remain poorly understood. The main objective of this study was to perform a numerical analysis of the acoustic cavitation (i.e., the cavitation dynamics, the resultant temperature, pressure and chemical yields within collapsing bubbles), particularly focusing on the influence of the interactions between bubbles. A comprehensive model was developed to simulate the acoustic cavitation dynamics via combining the influences of mass transfer, heat conduction and chemical reactions as well as the interaction effects between bubbles. The results demonstrated that only the large bubble exerts a greater impact on the small one in a two-bubble system. Specifically, within parameter ranges covered this study, there are noticeable decreases in the expansion ratio of the small bubble, the resultant temperature, pressure and molar yields of free radicals, hence weakening the cavitation intensity and cavitation- associated physico-chemical effects. Moreover, the influences of the interactions between bubbles were further assessed quantitatively under various parameters, such as the ultrasound amplitude PA and frequency f, the distance between bubbles d0, the initial radius of the large bubble R20, as well as the liquid properties (e.g., surface tension σ and viscosity μ). It was found that the suppression effect can be amplified when subjected to ultrasound with an increased PA and/or a decreased f, probably due to a stronger cavitation intensity under this condition. Additionally, the suppression effect is also enhanced with a decrease in d0, σ and μ, but with R20 increasing. This study can contribute to deepening knowledge about acoustic cavitation and the resultant physical and/or chemical effects, potentially further facilitating the ultrasound-assisted various applications involving acoustic cavitation.
Collapse
Affiliation(s)
- Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China; Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China
| | - Shuang Lei
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Bingyu Zhang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Yanping Liu
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Jian Tian
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Xiaojuan Ji
- Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China; Department of Ultrasound, Chongqing General Hospital, Chongqing, People's Republic of China.
| | - Haiyan Yang
- Department of Ultrasound, Chongqing General Hospital, Chongqing, People's Republic of China.
| |
Collapse
|
4
|
Qin D, Yang Q, Lei S, Fu J, Ji X, Wang X. Investigation of interaction effects on dual-frequency driven cavitation dynamics in a two-bubble system. ULTRASONICS SONOCHEMISTRY 2023; 99:106586. [PMID: 37688945 PMCID: PMC10498094 DOI: 10.1016/j.ultsonch.2023.106586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/27/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
The cavitation dynamics of a two-bubble system in viscoelastic media excited by dual-frequency ultrasound is studied numerically with a focus on the effects of inter-bubble interactions. Compared to the isolated bubble cases, the enhancement or suppression effects can be exerted on the amplitude and nonlinearity of the bubble oscillations to different degrees. Moreover, the interaction effects are found to be highly sensitive to multiple paramount parameters related to the two-bubble system, the dual-frequency ultrasound and the medium viscoelasticity. Specifically, the larger bubble of a two-bubble system shows a stronger effect on the smaller one, and this effect becomes more pronounced when the larger bubble undergoes harmonic and/or subharmonic resonances as well as the two bubbles get closer (e.g., d0 < 100 μm). For the influences of the dual-frequency excitation, the results show that the bubbles can achieve enhanced harmonic and/or subharmonic oscillations as the frequency combinations with small frequency differences (e.g., Δf < 0.2 MHz) close to the corresponding resonance frequencies of bubbles, and the interaction effects are consequently intensified. Similarly, the bubble oscillations and the interaction effects can also be enhanced as the acoustic pressure amplitude of each frequency component is equal and the pressure amplitude pA increases. Above a pressure threshold (pA = 215 kPa), a larger bubble undergoes period 2 (P2) oscillations, which can force a smaller bubble to change its oscillation pattern from period 1 (P1) into P2 oscillations. In addition, it is found that the medium viscosity dampens the bubble oscillations while the medium elasticity affects the bubble resonances, accordingly exhibiting stronger interaction effects at smaller viscosities (e.g., μ < 4 mPa·s) or certain elasticities (approximately G = 70-120 kPa, G = 160-200 kPa and G = 640-780 kPa) at which the bubble resonances occur. The study can contribute to a better understanding of the complex dynamic behaviors of interacting cavitation bubbles in viscoelastic tissues for high efficient cavitation-mediated biomedical applications using dual-frequency ultrasound.
Collapse
Affiliation(s)
- Dui Qin
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China; Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China.
| | - Qianru Yang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Shuang Lei
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Jia Fu
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Xiaojuan Ji
- Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China; Department of Ultrasound, Chongqing General Hospital, Chongqing, People's Republic of China.
| | - Xiuxin Wang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China.
| |
Collapse
|
5
|
Kalmár P, Hegedűs F, Nagy D, Sándor L, Klapcsik K. Memory-friendly fixed-point iteration method for nonlinear surface mode oscillations of acoustically driven bubbles: from the perspective of high-performance GPU programming. ULTRASONICS SONOCHEMISTRY 2023; 99:106546. [PMID: 37574642 PMCID: PMC10448217 DOI: 10.1016/j.ultsonch.2023.106546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
A fixed-point iteration technique is presented to handle the implicit nature of the governing equations of nonlinear surface mode oscillations of acoustically excited microbubbles. The model is adopted from the theoretical work of Shaw [1], where the dynamics of the mean bubble radius and the surface modes are bi-directionally coupled via nonlinear terms. The model comprises a set of second-order ordinary differential equations. It extends the classic Keller-Miksis equation and the linearized dynamical equations for each surface mode. Only the implicit parts (containing the second derivatives) are reevaluated during the iteration process. The performance of the technique is tested at various parameter combinations. The majority of the test cases needs only a single reevaluation to achieve 10-9 error. Although the arithmetic operation count is higher than the Gauss elimination, due to its memory-friendly matrix-free nature, it is a viable alternative for high-performance GPU computations of massive parameter studies.
Collapse
Affiliation(s)
- Péter Kalmár
- Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary.
| | - Ferenc Hegedűs
- Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary.
| | - Dániel Nagy
- Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary.
| | - Levente Sándor
- Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary.
| | - Kálmán Klapcsik
- Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary.
| |
Collapse
|
6
|
Li F, Huang C, Zhang X, Wang C, Guo J, Lin S, Shen Z, Tian H. Structure of bubble cluster adjacent to the water surface in the ultrasonic field. ULTRASONICS 2023; 132:106992. [PMID: 37018933 DOI: 10.1016/j.ultras.2023.106992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 05/29/2023]
Abstract
The generation and evolution of bubble clusters in ultrasound fields were studied using high-speed photography. The transition of a spherical bubble cluster to a layer-like bubble cluster was demonstrated in detail. At a distance of half a wavelength to the water surface, the rising spherical cluster oscillated strongly and its equilibrium size grew. The speed was about 0.4 m/s and had a tendency to decrease. A jet caused by the last collapse of the spherical cluster rushed to the water surface, creating a bulge on the surface. Subsequently, due to the primary acoustic field, bubbles accumulated again below the bulge, and a layer-like bubble cluster gradually formed. The effects of acoustic frequency and intensity on the layer-like cluster were considered. It was found that the clusters located at a distance-to-wavelength ratio of about 0.08 to 0.13, very close to the water surface. The flickering bubble clusters were easy to be observed at 28 kHz and 40 kHz, while the accumulation of bubbles and their flicker were relatively weak at 80 kHz. The higher the frequency, the shorter the wavelength, the closer the structure to the water surface. However, at 80 kHz, the cavitation threshold is supposed to be higher and the resonance size of the bubbles is smaller, so the bubble oscillations and their interactions were weaker, and the phenomenon was different from the cases of 28 kHz and 40 kHz. Multiple structures mainly exist at 40 kHz. The formation and evolution of the layer-like cluster are closely dependent on the adequate supply of bubble nuclei from the water surface and the surrounding liquid. A Y-shaped bifurcation was used to model the branch streamers, which provided a path of bubbles accumulate into the clusters. The secondary Bjerknes forces between bubbles were adapted to analyze the interactions, and the results proved that it plays an important role in the appearance and evolution of the substructures.
Collapse
Affiliation(s)
- Fan Li
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Chenyang Huang
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Xianmei Zhang
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Chenghui Wang
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China.
| | - Jianzhong Guo
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Shuyu Lin
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Zhuangzhi Shen
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Hua Tian
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
7
|
Zou Q, Zhong X, Zhang B, Gao A, Wang X, Li Z, Qin D. Bubble pulsation characteristics in multi-bubble systems affected by bubble size polydispersity and spatial structure. ULTRASONICS 2023; 134:107089. [PMID: 37406389 DOI: 10.1016/j.ultras.2023.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
This study seeks to explore the bubble pulsation characteristics in multi-bubble environment with a special focus on the influences of the size polydispersity and the two-dimensional structure of bubbles. Three representative configurations of three interacting bubbles are formed by setting the initial radii of cavitation bubbles and inter-bubble distances appropriately, then the pulsation characteristics of a small bubble are investigated and compared by the bifurcation analysis. The results illustrate that the bubble size polydispersity and two-dimensional structure would greatly affect the bubble pulsations (i.e., the amplitude and nonlinearity of pulsations). Furthermore, the effects of two-dimensional structure are strong at a small inter-bubble distance of the large and small bubbles while the bubble size polydispersity always significantly affects the bubble pulsations for all cases. Moreover, the influences of both bubble size polydispersity and two-dimensional structure can be enhanced as the acoustic pressure increases, which can also become stronger when the large bubble is located at the same side as the small bubble and the initial radius of large bubble increases. Additionally, the effects would also be increased when the tissue viscoelasticity varies within a certain range. The present findings shed new light on the dynamics of multiple polydisperse microbubbles in viscoelastic tissues, potentially contributing to an optimization of their applications with ultrasound excitation.
Collapse
Affiliation(s)
- Qingqin Zou
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Xianhua Zhong
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Bingyu Zhang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Angyu Gao
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Xia Wang
- Department of Respiratory and Critical Care Medicine, Chonggang General Hospital Affiliated to Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Zhangyong Li
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Dui Qin
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China; Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China.
| |
Collapse
|
8
|
Qin D, Zou Q, Zhong X, Zhang B, Li Z. Effects of medium viscoelasticity on bubble collapse strength of interacting polydisperse bubbles. ULTRASONICS SONOCHEMISTRY 2023; 95:106375. [PMID: 36965309 PMCID: PMC10060372 DOI: 10.1016/j.ultsonch.2023.106375] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 06/06/2023]
Abstract
Due to its physical and/or chemical effects, acoustic cavitation plays a crucial role in various emerging applications ranging from advanced materials to biomedicine. The cavitation bubbles usually undergo oscillatory dynamics and violent collapse within a viscoelastic medium, which are closely related to the cavitation-associated effects. However, the role of medium viscoelasticity on the cavitation dynamics has received little attention, especially for the bubble collapse strength during multi-bubble cavitation with the complex interactions between size polydisperse bubbles. In this study, modified Gilmore equations accounting for inter-bubble interactions were coupled with the Zener viscoelastic model to simulate the dynamics of multi-bubble cavitation in viscoelastic media. Results showed that the cavitation dynamics (e.g., acoustic resonant response, nonlinear oscillation behavior and bubble collapse strength) of differently-sized bubbles depend differently on the medium viscoelasticity and each bubble is affected by its neighboring bubbles to a different degree. More specifically, increasing medium viscosity drastically dampens the bubble dynamics and weakens the bubble collapse strength, while medium elasticity mainly affects the bubble resonance at which the bubble collapse strength is maximum. Differently-sized bubbles can achieve resonances and even subharmonic resonances at high driving acoustic pressures as the elasticity changes to certain values, and the resonance frequency of each bubble increases with the elasticity increasing. For the interactions between the size polydisperse bubbles, it indicated that the largest bubble generally has a dominant effect on the dynamics of smaller ones while in turn it is almost unaffected, exhibiting a pattern of destructive and constructive interactions. This study provides a valuable insight into the acoustic cavitation dynamics of multiple interacting polydisperse bubbles in viscoelastic media, which may offer a potential of controlling the medium viscoelasticity to appropriately manipulate the dynamics of multi-bubble cavitation for achieving proper cavitation effects according to the desired application.
Collapse
Affiliation(s)
- Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China; Postdoctoral Workstation of Chongqing People's Hospital, Chongqing, People's Republic of China.
| | - Qingqin Zou
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Xianhua Zhong
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Bingyu Zhang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Zhangyong Li
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China.
| |
Collapse
|
9
|
Sojahrood AJ, Li Q, Haghi H, Karshafian R, Porter TM, Kolios MC. Probing the pressure dependence of sound speed and attenuation in bubbly media: Experimental observations, a theoretical model and numerical calculations. ULTRASONICS SONOCHEMISTRY 2023; 95:106319. [PMID: 36931196 PMCID: PMC11487347 DOI: 10.1016/j.ultsonch.2023.106319] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The problem of attenuation and sound speed of bubbly media has remained partially unsolved. Comprehensive data regarding pressure-dependent changes of the attenuation and sound speed of a bubbly medium are not available. Our theoretical understanding of the problem is limited to linear or semi-linear theoretical models, which are not accurate in the regime of large amplitude bubble oscillations. Here, by controlling the size of the lipid coated bubbles (mean diameter of ≈5.4μm), we report the first time observation and characterization of the simultaneous pressure dependence of sound speed and attenuation in bubbly water below, at and above microbubbles resonance (frequency range between 1-3 MHz). With increasing acoustic pressure (between 12.5-100 kPa), the frequency of the peak attenuation and sound speed decreases while maximum and minimum amplitudes of the sound speed increase. We propose a nonlinear model for the estimation of the pressure dependent sound speed and attenuation with good agreement with the experiments. The model calculations are validated by comparing with the linear and semi-linear models predictions. One of the major challenges of the previously developed models is the significant overestimation of the attenuation at the bubble resonance at higher void fractions (e.g. 0.005). We addressed this problem by incorporating bubble-bubble interactions and comparing the results to experiments. Influence of the bubble-bubble interactions increases with increasing pressure. Within the examined exposure parameters, we numerically show that, even for low void fractions (e.g. 5.1×10-6) with increasing pressure the sound speed may become 4 times higher than the sound speed in the non-bubbly medium.
Collapse
Affiliation(s)
- A J Sojahrood
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Mike's Hospital, Toronto, Ontario, Canada.
| | - Q Li
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - H Haghi
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Mike's Hospital, Toronto, Ontario, Canada
| | - R Karshafian
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Mike's Hospital, Toronto, Ontario, Canada
| | - T M Porter
- Department of Biomedical Engineering, Boston University, Boston, MA, USA; Department of Biomedical Engineering, University of Texas at Austin, Texas, USA
| | - M C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Mike's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Qin D, Lei S, Wang X, Zhong X, Ji X, Li Z. Resonance behaviors of encapsulated microbubbles oscillating nonlinearly with ultrasonic excitation. ULTRASONICS SONOCHEMISTRY 2023; 94:106334. [PMID: 36805411 PMCID: PMC9969295 DOI: 10.1016/j.ultsonch.2023.106334] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 06/06/2023]
Abstract
The resonance behaviors of a few lipid-coated microbubbles acoustically activated in viscoelastic media were comprehensively examined via radius response analysis. The size polydispersity and random spatial distribution of the interacting microbubbles, the rheological properties of the lipid shell and the viscoelasticity of the surrounding medium were considered simultaneously. The obtained radius response curves present a successive occurrence of linear resonances, nonlinear harmonic and sub-harmonic resonances with the acoustic pressure increasing. The microbubble resonance is radius-, pressure- and frequency-dependent. Specifically, the maximum bubble expansion ratio at the main resonance peak increases but the resonant radius decreases as the ultrasound pressure increases, while both of them decrease with the ultrasound frequency increasing. Moreover, compared to an isolated microbubble case, it is found that large microbubbles in close proximity prominently suppress the resonant oscillations while slightly increase the resonant radii for both harmonic and subharmonic resonances, even leading to the disappearance of the subharmonic resonance with the influences increasing to a certain degree. In addition, the results also suggest that both the encapsulating shell and surrounding medium can substantially dampen the harmonic and subharmonic resonances while increase the resonant radii, which seem to be affected by the medium viscoelasticity to a greater degree rather than the shell properties. This work offers valuable insights into the resonance behaviors of microbubbles oscillating in viscoelastic biological media, greatly contributing to further optimizing their biomedical applications.
Collapse
Affiliation(s)
- Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China; Postdoctoral Workstation of Chongqing People's Hospital, Chongqing, People's Republic of China.
| | - Shuang Lei
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Xia Wang
- Department of Respiratory and Critical Care Medicine, Chonggang General Hospital Affiliated to Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Xianhua Zhong
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Xiaojuan Ji
- Postdoctoral Workstation of Chongqing People's Hospital, Chongqing, People's Republic of China; Department of Ultrasound, Chongqing People's Hospital, Chongqing, People's Republic of China
| | - Zhangyong Li
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China.
| |
Collapse
|
11
|
Martinez P, Bottenus N, Borden M. Cavitation Characterization of Size-Isolated Microbubbles in a Vessel Phantom Using Focused Ultrasound. Pharmaceutics 2022; 14:pharmaceutics14091925. [PMID: 36145673 PMCID: PMC9501432 DOI: 10.3390/pharmaceutics14091925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Pharmaceutical delivery can be noninvasively targeted on-demand by microbubble (MB) assisted focused ultrasound (FUS). Passive cavitation detection (PCD) has become a useful method to obtain real-time feedback on MB activity due to a FUS pulse. Previous work has demonstrated the acoustic PCD response of MBs at a variety of acoustic parameters, but few have explored variations in microbubble parameters. The goal of this study was to determine the acoustic response of different MB size populations and concentrations. Four MB size distributions were prepared (2, 3, 5 µm diameter and polydisperse) and pulled through a 2% agar wall-less vessel phantom. FUS was applied by a 1.515 MHz geometrically focused transducer for 1 ms pulses at 1 Hz PRF and seven distinct mechanical indices (MI) ranging from 0.01 to 1.0 (0.0123 to 1.23 MPa PNP). We found that the onset of harmonic (HCD) and broadband cavitation dose (BCD) depends on the mechanical index, MB size and MB concentration. When matched for MI, the HCD and BCD rise, plateau, and decline as microbubble concentration is increased. Importantly, when microbubble size and concentration are combined into gas volume fraction, all four microbubble size distributions align to similar onset and peak; these results may help guide the planning and control of MB + FUS therapeutic procedures.
Collapse
Affiliation(s)
- Payton Martinez
- Biomedical Engineering Program, University of Colorado, Boulder, CO 80309, USA; (P.M.); (N.B.)
- IQ Biology Program, University of Colorado, Boulder, CO 80309, USA
| | - Nick Bottenus
- Biomedical Engineering Program, University of Colorado, Boulder, CO 80309, USA; (P.M.); (N.B.)
- Mechanical Engineering Department, University of Colorado, Boulder, CO 80309, USA
| | - Mark Borden
- Biomedical Engineering Program, University of Colorado, Boulder, CO 80309, USA; (P.M.); (N.B.)
- Mechanical Engineering Department, University of Colorado, Boulder, CO 80309, USA
- Correspondence:
| |
Collapse
|
12
|
Li F, Zhang X, Tian H, Hu J, Chen S, Mo R, Wang C, Guo J. Interactions of bubbles in acoustic Lichtenberg figure. ULTRASONICS SONOCHEMISTRY 2022; 87:106057. [PMID: 35679807 PMCID: PMC9178335 DOI: 10.1016/j.ultsonch.2022.106057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 05/25/2023]
Abstract
The evolution of acoustic Lichtenberg figure (ALF) in ultrasound fields is studied using high-speed photography. It is observed that bubbles travel along the branch to the aggregation region of an ALF, promoting the possibility of large bubble or small cluster formation. Large bubbles move away from the aggregation region while surrounding bubbles are attracted into this structure, and a bubble transportation cycle arises in the cavitation field. A simplified model consisting of a spherical cluster and a chain of bubbles is developed to explain this phenomenon. The interaction of the two units is analyzed using a modified expression for the secondary Bjerknes force in this system. The model reveals that clusters can attract bubbles on the chain within a distance of 2 mm, leading to a bubble transportation process from the chain to the bubble cluster. Many factors can affect this process, including the acoustic pressure, frequency, bubble density, and separation distance. The larger the bubble in the cluster, the broader the attraction region. Therefore, the presence of large bubbles might enhance the process in this system. Local disturbances in bubble density could destroy the ALF structure. The predictions of the model are in good agreement with the experimental phenomena.
Collapse
Affiliation(s)
- Fan Li
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Xianmei Zhang
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Hua Tian
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Hu
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Shi Chen
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Runyang Mo
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Chenghui Wang
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China.
| | - Jianzhong Guo
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
13
|
Haghi H, Kolios MC. The role of primary and secondary delays in the effective resonance frequency of acoustically interacting microbubbles. ULTRASONICS SONOCHEMISTRY 2022; 86:106033. [PMID: 35597129 PMCID: PMC9120953 DOI: 10.1016/j.ultsonch.2022.106033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/17/2022] [Accepted: 05/08/2022] [Indexed: 06/06/2023]
Abstract
Acoustically excited microbubbles (MBs) are known to be nonlinear oscillators with complex dynamics. This has enabled their use in a wide range of applications from medicine to industry and underwater acoustics. To better utilize their potential in applications and possibly invent new ones a comprehensive understanding of their dynamics is required. In this work, we explore the effect of bubble-bubble interactions on the resonance frequency of MB suspensions. MBs oscillate in response to an external acoustic wave and since bubbles in a cluster are at different locations compared to the excitation source, they are excited at different times. In this work we refer to these delays as primary delays. Interactions between the scattered pressure fields from adjacent bubbles have also been shown to alter the dynamics of MBs that exist within clusters. These secondary waves generated by MBs reach MBs in their proximity at different times that depend on their spatial location in the cluster. Here we refer to these delays as secondary delays. Inclusion of the secondary delays modifies the class of the differential equations governing the oscillations of interacting MBs in a cluster from ordinary differential equations to neutral delay differential equations. Previous work has not considered the all the delays associated with the bubble distances when modeling the interactions between bubbles. In this work we investigate the effect of both the primary and secondary delays on the effective resonance frequency of MB clusters. It is shown that primary delays cause spreading the resonance frequency of identical MBs within a range where the closest MB to the acoustic source exhibits the lowest resonance frequency and the furthest MB resonates at the highest frequency. This range has been shown to be up to 0.12 MHz for the examples investigated in this work. The effect of secondary delays is shown to be very significant. In the absence of secondary delays, the ordinary differential equation model predicts a decrease of up to 26% in the resonance frequency of 4 identical interacting MBs as the inter-bubble distances are decreased. However, we show that inclusion of the secondary delays result in the increase of the resonance frequency of MBs if they are situated close to each other. This increase is shown to be significant and for the case of 4 identical interacting MBs we show an increase of 58% in the resonance frequency.
Collapse
Affiliation(s)
- Hossein Haghi
- Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital and Ryerson University, 209 Victoria St, Toronto, Ontario, Canada.
| | - Michael C Kolios
- Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital and Ryerson University, 209 Victoria St, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Kikuchi Y, Kanagawa T, Ayukai T. Physico-mathematical model for multiple ultrasound-contrast-agent microbubbles encapsulated by a visco-elastic shell: Effect of shell compressibility on ultrasound attenuation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Kalmár C, Turányi T, Zsély IG, Papp M, Hegedűs F. The importance of chemical mechanisms in sonochemical modelling. ULTRASONICS SONOCHEMISTRY 2022; 83:105925. [PMID: 35149378 PMCID: PMC8841831 DOI: 10.1016/j.ultsonch.2022.105925] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 05/24/2023]
Abstract
A state-of-the-art chemical mechanism is introduced to properly describe chemical processes inside a harmonically excited spherical bubble placed in water and saturated with oxygen. The model uses up-to-date Arrhenius-constants, collision efficiency factors and takes into account the pressure-dependency of the reactions. Duplicated reactions are also applied, and the backward reactions rates are calculated via suitable thermodynamic equilibrium conditions. Our proposed reaction mechanism is compared to three other chemical models that are widely applied in sonochemistry and lack most of the aforementioned modelling issues. In the governing equations, only the reaction mechanisms are compared, all other parts of the models are identical. The chemical yields obtained by the different modelling techniques are taken at the maximum expansion of the bubble. A brief parameter study is made with different pressure amplitudes and driving frequencies at two equilibrium bubble sizes. The results show that due to the deficiencies of the former reaction mechanisms employed in the sonochemical literature, several orders of magnitude differences of the chemical yields can be observed. In addition, the trends along a control parameter can also have dissimilar characteristics that might lead to false optimal operating conditions. Consequently, an up-to-date and accurate chemical model is crucial to make qualitatively and quantitatively correct conclusions in sonochemistry.
Collapse
Affiliation(s)
- Csanád Kalmár
- Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| | - Tamás Turányi
- Chemical Kinetics Laboratory, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - István Gy Zsély
- Chemical Kinetics Laboratory, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Máté Papp
- Chemical Kinetics Laboratory, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Ferenc Hegedűs
- Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| |
Collapse
|
16
|
Priyadarshi A, Khavari M, Subroto T, Prentice P, Pericleous K, Eskin D, Durodola J, Tzanakis I. Mechanisms of ultrasonic de-agglomeration of oxides through in-situ high-speed observations and acoustic measurements. ULTRASONICS SONOCHEMISTRY 2021; 79:105792. [PMID: 34666238 PMCID: PMC8524947 DOI: 10.1016/j.ultsonch.2021.105792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 05/24/2023]
Abstract
Ultrasonic de-agglomeration and dispersion of oxides is important for a range of applications. In particular, in liquid metal, this is one of the ways to produce metal-matrix composites reinforced with micron and nano sized particles. The associated mechanism through which the de-agglomeration occurs has, however, only been conceptualized theoretically and not yet been validated with experimental observations. In this paper, the influence of ultrasonic cavitation on SiO2 and MgO agglomerates (commonly found in lightweight alloys as reinforcements) with individual particle sizes ranging between 0.5 and 10 μm was observed for the first time in-situ using high-speed imaging. Owing to the opacity of liquid metals, a de-agglomeration imaging experiment was carried out in de-ionised water with sequences captured at frame rates up to 50 kfps. In-situ observations were further accompanied by synchronised acoustic measurements using an advanced calibrated cavitometer, to reveal the effect of pressure amplitude arising from oscillating microbubbles on oxide de-agglomeration. Results showed that ultrasound-induced microbubble clusters pulsating chaotically, were predominantly responsible for the breakage and dispersion of oxide agglomerates. Such oscillating cavitation clusters were seen to capture the floating agglomerates resulting in their immediate disintegration. De-agglomeration of oxides occurred from both the surface and within the bulk of the aggregate. Microbubble clusters oscillating with associated emission frequencies at the subharmonic, 1st harmonic and low order ultra-harmonics of the driving frequency were deemed responsible for the breakage of the agglomerates.
Collapse
Affiliation(s)
- Abhinav Priyadarshi
- Faculty of Technology, Design and Environment, Oxford Brookes University, Oxford OX33 1HX, United Kingdom.
| | - Mohammad Khavari
- Faculty of Technology, Design and Environment, Oxford Brookes University, Oxford OX33 1HX, United Kingdom
| | - Tungky Subroto
- Brunel Centre for Advance Solidification Technology (BCAST), Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Paul Prentice
- Cavitation Laboratory, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Koulis Pericleous
- Computational Science and Engineering Group (CSEG), Department of Mathematics, University of Greenwich, London SE10 9LS, United Kingdom
| | - Dmitry Eskin
- Brunel Centre for Advance Solidification Technology (BCAST), Brunel University London, Uxbridge UB8 3PH, United Kingdom; Tomsk State University, Tomsk 634050, Russia
| | - John Durodola
- Faculty of Technology, Design and Environment, Oxford Brookes University, Oxford OX33 1HX, United Kingdom
| | - Iakovos Tzanakis
- Faculty of Technology, Design and Environment, Oxford Brookes University, Oxford OX33 1HX, United Kingdom; Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| |
Collapse
|
17
|
Ye Y, Liang Y, Dong C, Bu Z, Li G, Zheng Y. Numerical modeling of ultrasonic cavitation by dividing coated microbubbles into groups. ULTRASONICS SONOCHEMISTRY 2021; 78:105736. [PMID: 34500314 PMCID: PMC8430393 DOI: 10.1016/j.ultsonch.2021.105736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Homogeneous cavitation models usually use an average radius to predict the dynamics of all bubbles. However, bubbles with different sizes may have quite different dynamic characteristics. In this study, the bubbles are divided into several groups by size, and the volume-weighted average radius is used to separately calculate the dynamics of each group using a modified bubble dynamics equation. In the validation part, the oscillations of bubbles with two sizes are simulated by dividing them into 2 groups. Comparing with the predictions by the Volume of Fluid (VOF) method, the bubble dynamics of each size are precisely predicted by the proposed model. Then coated microbubbles with numerous sizes are divided into several groups in equal quantity, and the influence of the group number is analyzed. For bubble oscillations at f = 0.1 MHz and 1 MHz without ruptures, the oscillation amplitude is obviously under-estimated by the 1-group model, while they are close to each other after the group number increases to 9. For bubble ruptures triggered by Gaussian pulses, the predictions are close to each other when more than 5 groups are used.
Collapse
Affiliation(s)
- Yanghui Ye
- Department of Energy and Environment System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yangyang Liang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China.
| | - Cong Dong
- Department of Energy and Environment System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zhongming Bu
- Department of Energy and Environment System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Guoneng Li
- Department of Energy and Environment System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Youqu Zheng
- Department of Energy and Environment System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
18
|
Qin D, Zou Q, Lei S, Wang W, Li Z. Nonlinear dynamics and acoustic emissions of interacting cavitation bubbles in viscoelastic tissues. ULTRASONICS SONOCHEMISTRY 2021; 78:105712. [PMID: 34391164 PMCID: PMC8363877 DOI: 10.1016/j.ultsonch.2021.105712] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 05/14/2023]
Abstract
The cavitation-mediated bioeffects are primarily associated with the dynamic behaviors of bubbles in viscoelastic tissues, which involves complex interactions of cavitation bubbles with surrounding bubbles and tissues. The radial and translational motions, as well as the resultant acoustic emissions of two interacting cavitation bubbles in viscoelastic tissues were numerically investigated. Due to the bubble-bubble interactions, a remarkable suppression effect on the small bubble, whereas a slight enhancement effect on the large one were observed within the acoustic exposure parameters and the initial radii of the bubbles examined in this paper. Moreover, as the initial distance between bubbles increases, the strong suppression effect is reduced gradually and it could effectively enhance the nonlinear dynamics of bubbles, exactly as the bifurcation diagrams exhibit a similar mode of successive period doubling to chaos. Correspondingly, the resultant acoustic emissions present a progressive evolution of harmonics, subharmonics, ultraharmonics and broadband components in the frequency spectra. In addition, with the elasticity and/or viscosity of the surrounding medium increasing, both the nonlinear dynamics and translational motions of bubbles were reduced prominently. This study provides a comprehensive insight into the nonlinear behaviors and acoustic emissions of two interacting cavitation bubbles in viscoelastic media, it may contribute to optimizing and monitoring the cavitation-mediated biomedical applications.
Collapse
Affiliation(s)
- Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China.
| | - Qingqin Zou
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Shuang Lei
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Wei Wang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Zhangyong Li
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China.
| |
Collapse
|
19
|
Cavitation Dynamics and Inertial Cavitation Threshold of Lipid Coated Microbubbles in Viscoelastic Media with Bubble-Bubble Interactions. MICROMACHINES 2021; 12:mi12091125. [PMID: 34577768 PMCID: PMC8493799 DOI: 10.3390/mi12091125] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/08/2023]
Abstract
Encapsulated microbubbles combined with ultrasound have been widely utilized in various biomedical applications; however, the bubble dynamics in viscoelastic medium have not been completely understood. It involves complex interactions of coated microbubbles with ultrasound, nearby microbubbles and surrounding medium. Here, a comprehensive model capable of simulating the complex bubble dynamics was developed via taking the nonlinear viscoelastic behaviors of the shells, the bubble–bubble interactions and the viscoelasticity of the surrounding medium into account simultaneously. For two interacting lipid-coated bubbles with different initial radii in viscoelastic media, it exemplified that the encapsulating shell, the inter-bubble interactions and the medium viscoelasticity would noticeably suppress bubble oscillations. The inter-bubble interactions exerted a much stronger suppressing effect on the small bubble within the parameters examined in this paper, which might result from a larger radiated pressure acting on the small bubble due to the inter-bubble interactions. The lipid shells make the microbubbles exhibit two typical asymmetric dynamic behaviors (i.e., compression or expansion dominated oscillations), which are determined by the initial surface tension of the bubbles. Accordingly, the inertial cavitation threshold decreases as the initial surface tension increases, but increases as the shell elasticity and viscosity increases. Moreover, with the distance between bubbles decreasing and/or the initial radius of the large bubble increasing, the oscillations of the small bubble decrease and the inertial cavitation threshold increases gradually due to the stronger suppression effects caused by the enhanced bubble–bubble interactions. Additionally, increasing the elasticity and/or viscosity of the surrounding medium would also dampen bubble oscillations and result in a significant increase in the inertial cavitation threshold. This study may contribute to both encapsulated microbubble-associated ultrasound diagnostic and emerging therapeutic applications.
Collapse
|
20
|
Xu J, Salari A, Wang Y, He X, Kerr L, Darbandi A, de Leon AC, Exner AA, Kolios MC, Yuen D, Tsai SSH. Microfluidic Generation of Monodisperse Nanobubbles by Selective Gas Dissolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100345. [PMID: 33811441 DOI: 10.1002/smll.202100345] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Nanotechnology currently enables the fabrication of uniform solid nanoparticles and liquid nano-emulsions, but not uniform gaseous nanobubbles (NBs). In this article, for the first time, a method based on microfluidics that directly produces monodisperse NBs is reported. Specifically, a two-component gas mixture of water-soluble nitrogen and water-insoluble octafluoropropane as the gas phase are used in a microfluidic bubble generator. First, monodisperse microbubbles (MBs) with a classical microfluidic flow-focusing junction is generated, then the MBs shrink down to ≈100 nm diameter, due to the dissolution of the water-soluble components in the gas mixture. The degree of shrinkage is controlled by tuning the ratio of water-soluble to water-insoluble gas components. This technique maintains the monodispersity of the NBs, and enables precise control of the final NB size. It is found that the monodisperse NBs show better homogeneity than polydisperse NBs in in vitro ultrasound imaging experiments. Proof-of-concept in vivo kidney imaging is performed in live mice, demonstrating enhanced contrast using the monodisperse NBs. The NB monodispersity and imaging results make microfluidically generated NBs promising candidates as ultrasound contrast and molecular imaging agents.
Collapse
Affiliation(s)
- Jiang Xu
- Institute for Biomedical Engineering, Science and Technology (iBEST)-a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada
| | - Alinaghi Salari
- Institute for Biomedical Engineering, Science and Technology (iBEST)-a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada
- Biomedical Engineering Graduate Program, Ryerson University, Toronto, Ontario, M5B 2K2, Canada
| | - Yanjie Wang
- Institute for Biomedical Engineering, Science and Technology (iBEST)-a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada
- Department of Physics, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Xiaolin He
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada
- Division of Nephrology, Department of Medicine, Unity Health Toronto and University of Toronto, Toronto, Ontario, M5B 1W8, Canada
| | - Liam Kerr
- Institute for Biomedical Engineering, Science and Technology (iBEST)-a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada
| | - Ali Darbandi
- Nanoimaging Centre, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, Toronto, Ontario, M5G 0A4, Canada
| | - Al C de Leon
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Michael C Kolios
- Institute for Biomedical Engineering, Science and Technology (iBEST)-a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada
- Department of Physics, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Darren Yuen
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada
- Division of Nephrology, Department of Medicine, Unity Health Toronto and University of Toronto, Toronto, Ontario, M5B 1W8, Canada
| | - Scott S H Tsai
- Institute for Biomedical Engineering, Science and Technology (iBEST)-a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada
| |
Collapse
|
21
|
Sojahrood AJ, Haghi H, Shirazi NR, Karshafian R, Kolios MC. On the threshold of 1/2 order subharmonic emissions in the oscillations of ultrasonically excited bubbles. ULTRASONICS 2021; 112:106363. [PMID: 33508558 DOI: 10.1016/j.ultras.2021.106363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
The pressure threshold for 1/2 order subharmonic (SH) emissions and period doubling during the oscillations of ultrasonically excited bubbles is thought to be minimum when the bubble is sonicated with twice its resonance frequency (fr). This estimate is based on studies that simplified or neglected the effects of thermal damping. In this work, the nonlinear dynamics of ultrasonically excited bubbles is investigated accounting for the thermal dissipation. Results are visualized using bifurcation diagrams as a function of pressure. Here we show that, and depending on the gas, the pressure threshold for 1/2 order SHs can be minimum at a frequency between 0.5fr≤f≤0.6fr. In this frequency range, the generation of 1/2 order SHs are due to the occurrence of 5/2 order ultra-harmonic resonance. The stability of such oscillations is size dependent. For an air bubble immersed in water, only bubbles bigger than 1 μm in diameter are able to emit non-destructive SHs in these frequency ranges.
Collapse
Affiliation(s)
- A J Sojahrood
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada.
| | - H Haghi
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - N R Shirazi
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - R Karshafian
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - M C Kolios
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Sojahrood AJ, Haghi H, Karshafian R, Kolios MC. Nonlinear dynamics and bifurcation structure of ultrasonically excited lipid coated microbubbles. ULTRASONICS SONOCHEMISTRY 2021; 72:105405. [PMID: 33360533 PMCID: PMC7803687 DOI: 10.1016/j.ultsonch.2020.105405] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 05/04/2023]
Abstract
In many applications, microbubbles (MBs) are encapsulated by a lipid coating to increase their stability. However, the complex behavior of the lipid coating including buckling and rupture sophisticates the dynamics of the MBs and as a result the dynamics of the lipid coated MBs (LCMBs) are not well understood. Here, we investigate the nonlinear behavior of the LCMBs by analyzing their bifurcation structure as a function of acoustic pressure. We show that, the LC can enhance the generation of period 2 (P2), P3, higher order subharmonics (SH), superharmonics and chaos at very low excitation pressures (e.g. 1 kPa). For LCMBs sonicated by their SH resonance frequency and in line with experimental observations with increasing pressure, P2 oscillations exhibit three stages: generation at low acoustic pressures, disappearance and re-generation. Within non-destructive oscillation regimes and by pressure amplitude increase, LCMBs can also exhibit two saddle node (SN) bifurcations resulting in possible abrupt enhancement of the scattered pressure. The first SN resembles the pressure dependent resonance phenomenon in uncoated MBs and the second SN resembles the pressure dependent SH resonance. Depending on the initial surface tension of the LCMBs, the nonlinear behavior may also be suppressed for a wide range of excitation pressures.
Collapse
Affiliation(s)
- A J Sojahrood
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada.
| | - H Haghi
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - R Karshafian
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - M C Kolios
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Sujarittam K, Choi JJ. Angular dependence of the acoustic signal of a microbubble cloud. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:2958. [PMID: 33261381 DOI: 10.1121/10.0002490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Microbubble-mediated ultrasound therapies have a common need for methods that can noninvasively monitor the treatment. One approach is to use the bubbles' acoustic emissions as feedback to the operator or a control unit. Current methods interpret the emissions' frequency content to infer the microbubble activities and predict therapeutic outcomes. However, different studies placed their sensors at different angles relative to the emitter and bubble cloud. Here, it is evaluated whether such angles influence the captured emissions such as the frequency content. In computer simulations, 128 coupled bubbles were sonicated with a 0.5-MHz, 0.35-MPa pulse, and the acoustic emissions generated by the bubbles were captured with two sensors placed at different angles. The simulation was replicated in experiments using a microbubble-filled gel channel (0.5-MHz, 0.19-0.75-MPa pulses). A hydrophone captured the emissions at two different angles. In both the simulation and the experiments, one angle captured periodic time-domain signals, which had high contributions from the first three harmonics. In contrast, the other angle captured visually aperiodic time-domain features, which had much higher harmonic and broadband content. Thus, by placing acoustic sensors at different positions, substantially different acoustic emissions were captured, potentially leading to very different conclusions about the treatment outcome.
Collapse
Affiliation(s)
- Krit Sujarittam
- Department of Bioengineering, Imperial College London, 2 Imperial College Road, South Kensington, London, SW7 2AZ, United Kingdom
| | - James J Choi
- Department of Bioengineering, Imperial College London, 2 Imperial College Road, South Kensington, London, SW7 2AZ, United Kingdom
| |
Collapse
|
24
|
Sojahrood AJ, Haghi H, Li Q, Porter TM, Karshafian R, Kolios MC. Nonlinear power loss in the oscillations of coated and uncoated bubbles: Role of thermal, radiation and encapsulating shell damping at various excitation pressures. ULTRASONICS SONOCHEMISTRY 2020; 66:105070. [PMID: 32279052 DOI: 10.1016/j.ultsonch.2020.105070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/29/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
This study presents the fundamental equations governing the pressure dependent disipation mechanisms in the oscillations of coated bubbles. A simple generalized model (GM) for coated bubbles accounting for the effect of compressibility of the liquid is presented. The GM was then coupled with nonlinear ODEs that account for the thermal effects. Starting with mass and momentum conservation equations for a bubbly liquid and using the GM, nonlinear pressure dependent terms were derived for power dissipation due to thermal damping (Td), radiation damping (Rd) and dissipation due to the viscosity of liquid (Ld) and coating (Cd). The pressure dependence of the dissipation mechanisms of the coated bubble have been analyzed. The dissipated energies were solved for uncoated and coated 2-20 μm in bubbles over a frequency range of 0.25fr-2.5fr (fr is the bubble resonance) and for various acoustic pressures (1 kPa-300 kPa). Thermal effects were examined for air and C3F8 gas cores. In the case of air bubbles, as pressure increases, the linear thermal model looses accuracy and accurate modeling requires inclusion of the full thermal model. However, for coated C3F8 bubbles of diameter 1-8 μm, which are typically used in medical ultrasound, thermal effects maybe neglected even at higher pressures. For uncoated bubbles, when pressure increases, the contributions of Rd grow faster and become the dominant damping mechanism for pressure dependent resonance frequencies (e.g. fundamental and super harmonic resonances). For coated bubbles, Cd is the strongest damping mechanism. As pressure increases, Rd contributes more to damping compared to Ld and Td. For coated bubbles, the often neglected compressibility of the liquid has a strong effect on the oscillations and should be incorporated in models. We show that the scattering to damping ratio (STDR), a measure of the effectiveness of the bubble as contrast agent, is pressure dependent and can be maximized for specific frequency ranges and pressures.
Collapse
Affiliation(s)
- A J Sojahrood
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada.
| | - H Haghi
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - Q Li
- Department of Mechanical Engineering and the Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - T M Porter
- Department of Mechanical Engineering and the Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - R Karshafian
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - M C Kolios
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Hegedűs F, Krähling P, Aron M, Lauterborn W, Mettin R, Parlitz U. Feedforward attractor targeting for non-linear oscillators using a dual-frequency driving technique. CHAOS (WOODBURY, N.Y.) 2020; 30:073123. [PMID: 32752633 DOI: 10.1063/5.0005424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
A feedforward control technique is presented to steer a harmonically driven, non-linear system between attractors in the frequency-amplitude parameter plane of the excitation. The basis of the technique is the temporary addition of a second harmonic component to the driving. To illustrate this approach, it is applied to the Keller-Miksis equation describing the radial dynamics of a single spherical gas bubble placed in an infinite domain of liquid. This model is a second-order, non-linear ordinary differential equation, a non-linear oscillator. With a proper selection of the frequency ratio of the temporary dual-frequency driving and with the appropriate tuning of the excitation amplitudes, the trajectory of the system can be smoothly transformed between specific attractors; for instance, between period-3 and period-5 orbits. The transformation possibilities are discussed and summarized for attractors originating from the subharmonic resonances and the equilibrium state (absence of external driving) of the system.
Collapse
Affiliation(s)
- F Hegedűs
- Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - P Krähling
- Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - M Aron
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany and Institut für Dynamik komplexer Systeme, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - W Lauterborn
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund Platz 1, D-37077 Göttingen, Germany
| | - R Mettin
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund Platz 1, D-37077 Göttingen, Germany
| | - U Parlitz
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany and Institut für Dynamik komplexer Systeme, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| |
Collapse
|
26
|
de Leon A, Wei P, Bordera F, Wegierak D, McMillen M, Yan D, Hemmingsen C, Kolios MC, Pentzer EB, Exner AA. Pickering Bubbles as Dual-Modality Ultrasound and Photoacoustic Contrast Agents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22308-22317. [PMID: 32307987 PMCID: PMC8985135 DOI: 10.1021/acsami.0c02091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Microbubbles (MBs) stabilized by particle surfactants (i.e., Pickering bubbles) have better thermodynamic stability compared to MBs stabilized by small molecules as a result of steric hindrance against coalescence, higher diffusion resistance, and higher particle desorption energy. In addition, the use of particles to stabilize MBs that are typically used as an ultrasound (US) contrast agent can also introduce photoacoustic (PA) properties, thus enabling a highly effective dual-modality US and PA contrast agent. Here, we report the use of partially reduced and functionalized graphene oxide as the sole surfactant to stabilize perfluorocarbon gas bubbles in the preparation of a dual-modality US and PA agent, with high contrast in both imaging modes and without the need for small-molecule or polymer additives. This approach offers an increase in loading of the PA agent without destabilization and increased thickness of the MB shell compared to traditional systems, in which the focus is on adding a PA agent to existing MB formulations.
Collapse
Affiliation(s)
- Al de Leon
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Peiran Wei
- Department of Chemistry and Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Filip Bordera
- Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Dana Wegierak
- Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Madelyn McMillen
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - David Yan
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Christina Hemmingsen
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Michael C Kolios
- Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Emily B Pentzer
- Department of Chemistry and Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|