1
|
Yuan S, Liu Z, Duan X, Ren X, Zhao X. Enhancing degradation of sulfamethoxazole by layered double hydroxide/carbon nanotubes catalyst via synergistic effect of photocatalysis/persulfate activation. ENVIRONMENTAL RESEARCH 2024; 261:119647. [PMID: 39032618 DOI: 10.1016/j.envres.2024.119647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
A Co3Mn-LDHs and carbon nanotube (Co3Mn-LDHs/CNT) composite catalyst was constructed for permonosulfate (PMS) activation and degrading sulfamethoxazole (SMX) under Vis light irradiation. The introduction of CNTs into Co3Mn-LDHs facilitate the exciton dissociation and carrier migration, and the e- and h+ were readily separated from Co3Mn-LDHs/CNT in the photocatalysis process, which promoted the production rate of reactive oxygen species (ROS), so the Co3Mn-LDHs + Vis + PMS system exhibited better activity with an SMX degradation ratio of 61.25% than those of Co3Mn-LDHs + Vis system (42.30%) and Co3Mn-LDHs + PMS system (48.30%). After 10 cycles, the degradation rate of SMX only decreased by 7.16%, indicating the good reusability of the Co3Mn-LDHs/CNTs catalyst. The results of electron paramagnetic resonance (EPR) analysis and radical quenching experiments demonstrated that that the SO4•- played crucial role for SMX removal in Co3Mn-LDHs/CNTs + Vis + PMS system, and both e- and h+ made an important contribution to activating PMS to produce ROS. Overall, this work provided an excellent catalyst for photo-assisted PMS activation and suggested the activation mechanism for organic pollutant remediation.
Collapse
Affiliation(s)
- Siyi Yuan
- School of Engineering, Jilin Normal University, Siping, 136000, China
| | - Zhibo Liu
- School of Engineering, Jilin Normal University, Siping, 136000, China
| | - Xiaoyue Duan
- School of Engineering, Jilin Normal University, Siping, 136000, China; Key Laboratory of Environmental Materials and Pollution Control (Jilin Normal University), Education Department of Jilin Province, Siping, 136000, China
| | - Xin Ren
- School of Engineering, Jilin Normal University, Siping, 136000, China; Key Laboratory of Environmental Materials and Pollution Control (Jilin Normal University), Education Department of Jilin Province, Siping, 136000, China.
| | - Xuesong Zhao
- School of Engineering, Jilin Normal University, Siping, 136000, China; Key Laboratory of Environmental Materials and Pollution Control (Jilin Normal University), Education Department of Jilin Province, Siping, 136000, China.
| |
Collapse
|
2
|
Dehghani A, Baradaran S, Movahedirad S. Synergistic degradation of Congo Red by hybrid advanced oxidation via ultraviolet light, persulfate, and hydrodynamic cavitation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116042. [PMID: 38310821 DOI: 10.1016/j.ecoenv.2024.116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
In the present study, hybrid activation of sodium peroxydisulfate (PS) by hydrodynamic cavitation and ultraviolet radiation was investigated for Congo Red (CR) degradation. Experiments were conducted using the Box-Benken design on inlet pressure (2-6 bar), PS concentration (0-50 mg. L-1) and UV radiation power (0-32 W). According to the results, at the optimum point where the pressure, PS concentration and UV radiation power were equal to 4.5 bar, 30 mg. L-1 and 16 W respectively, 92.01% of decolorization was achieved. Among the investigated processes, HC/UV/PS was the best process with the rate constant and synergetic coefficient of 38.6 × 10-3 min-1 and 2.76, respectively. At the optimum conditions, increasing the pollutant concentration from 20 mg. L-1 to 80 mg. L-1 decrease degradation rate from 92.01 to 45.21. Presence of natural organic mater (NOM) in all concentrations inhibited the CR degradation. Quenching experiments revealed that in the HC/UV/PS hybrid AOP free radicals accounted for 63.4% of the CR degradation, while the contribution of sulfate (SRs) and hydroxyl radicals (HRs) was 53.1% and 46.9%, respectively.
Collapse
Affiliation(s)
- Abolfazl Dehghani
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Soroush Baradaran
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
| | - Salman Movahedirad
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| |
Collapse
|
3
|
Wang J, Wang S, Hu C. Advanced treatment of coking wastewater: Recent advances and prospects. CHEMOSPHERE 2024; 349:140923. [PMID: 38092162 DOI: 10.1016/j.chemosphere.2023.140923] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Advanced treatment of refractory industrial wastewater is still a challenge. Coking wastewater is one of coal chemical wastewater, which contains various refractory organic pollutants. To meet the more and more rigorous discharge standard and increase the reuse ratio of coking wastewater, advanced treatment process must be set for treating the biologically treated coking wastewater. To date, several advanced oxidation processes (AOPs), including Fenton, ozone, persulfate-based oxidation, and iron-carbon micro-electrolysis, have been applied for the advanced treatment of coking wastewater. However, the performance of different advanced treatment processes changed greatly, depending on the components of coking wastewater and the unique characteristics of advanced treatment processes. In this review article, the state-of-the-art advanced treatment process of coking wastewater was systematically summarized and analyzed. Firstly, the major organic pollutants in the secondary effluents of coking wastewater was briefly introduced, to better understand the characteristics of the biologically treated coking wastewater. Then, the performance of various advanced treatment processes, including physiochemical methods, biological methods, advanced oxidation methods and combined methods were discussed for the advanced treatment of coking wastewater in detail. Finally, the conclusions and remarks were provided. This review will be helpful for the proper selection of advanced treatment processes and promote the development of advanced treatment processes for coking wastewater.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Shizong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China
| | - Chengzhi Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
4
|
Estrada-Flórez SE, Serna-Galvis EA, Lee J, Torres-Palma RA. Unraveling kinetic and synergistic effects during ultrasound-enhanced carbocatalysis for water remediation as a function of ultrasonic frequency. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119548. [PMID: 38007926 DOI: 10.1016/j.jenvman.2023.119548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/15/2023] [Accepted: 11/04/2023] [Indexed: 11/28/2023]
Abstract
The ability of the ultrasound (US) combined with peroxymonosulfate (PMS), and a carbonaceous material (BC) was evaluated in the degradation of a model pollutant (acetaminophen, ACE). The US/BC/PMS system was compared with other possible systems (US, oxidation by PMS, BC adsorption, BC/PMS, US/PMS, and US/BC. The effect of the ultrasonic frequency (40, 375, and 1135 kHz) on the kinetics and synergy of the ACE removal was evaluated. In the US system, kinetics was favored at 375 kHz due to the increased production of hydroxyl radicals (HO•), but this did not improve in the US/PMS and US/BC systems. However, synergistic and antagonistic effects were observed at the low and high frequencies where the production of radicals is less efficient but there is an activation of PMS through mechanical effects. US/BC/PMS at 40 kHz was the most efficient system obtaining ∼95% ACE removal (40 μM) in the first 10 min of treatment, and high synergy (S = 10.30). This was promoted by disaggregation of the carbonaceous material, increasing the availability of catalytic sites where PMS is activated. The coexistence of free-radical and non-radical pathways was analyzed. Singlet oxygen (1O2) played the dominant role in degradation, while HO• and sulfate radicals (SO4•-), scarcely generated at low frequency, play a minimum role. Performance in hospital wastewater (HWW), urine, and seawater (SW) evidenced the competition of organic matter by BC active sites and reactive species and the removal enhancement when Cl- is present. Besides, toxicity decreased by ∼20% after treatment, being the system effective after three cycles of reuse.
Collapse
Affiliation(s)
- Sandra E Estrada-Flórez
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Judy Lee
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, GU27XH, United Kingdom
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
5
|
Yue X, Zhang Y, Shan Y, Shen K, Jiao W. Lab-scale transport and activation of peroxydisulfate for phenanthrene degradation in soil: A comprehensive assessment of the remediation process, soil environment and microbial diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165771. [PMID: 37532036 DOI: 10.1016/j.scitotenv.2023.165771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/23/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
Electrokinetic transport followed by electrical resistance heating activation of peroxydisulfate is a novel in situ soil remediation method. However, the strategy of electrokinetic transport coupled with electrical resistance heating and the comprehensive evaluation of restored soil need to be further explored. In this study, a lab-scale simulation device for in situ electrokinetic transport coupled with electrical resistance heating activation of peroxydisulfate was constructed to monitor the transport and transfer of peroxydisulfate, target pollutants, and process parameters, and the physicochemical properties and bacterial community of treated soil were evaluated. The results showed that adding 10 wt% peroxydisulfate to both the anode and cathode resulted in the optimized transfer rate and cumulative concentration of peroxydisulfate under electrokinetics. After 8 h, the cumulative concentration of peroxydisulfate reached 66.15- 166.29 mmol L-1, which was attributed to the migration of a large amount of S2O82- from the cathode to the soil under electromigration. Additionally, the anodic interfacial electric potential was improved, which was more conducive to electroosmotic transport of peroxydisulfate from the anode chamber. By alternating electrokinetic transport and electrical resistance heating activation of peroxydisulfate for two cycles, the phenanthrene degradation efficiency in four evenly distributed wells between electrodes reached 75.4 %, 87.6 %, 92.3 %, and 94.4 %. With slight variations in soil morphology and structure, the electrokinetic transport coupled with electrical resistance heating activation of peroxydisulfate elevated the soil fertility index. The abundance and diversity of bacterial communities in treated soil recovered to above the original soil level after 15 days. Our findings may support the application of electrokinetic transport coupled with electrical resistance heating activation of peroxydisulfate as a promising green ecological technology for the in situ remediation of organic-contaminated soil.
Collapse
Affiliation(s)
- Xiupeng Yue
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yaping Zhang
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Yongping Shan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kai Shen
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Wentao Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
Fagan WP, Thayer SR, Weavers LK. Kinetics and Mechanism of Ultrasonic Defluorination of Fluorotelomer Sulfonates. J Phys Chem A 2023. [PMID: 37490391 DOI: 10.1021/acs.jpca.3c03011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Ultrasound degrades "legacy" per- and polyfluoroalkyl substances (PFAS) via thermolysis at the interface of cavitation bubbles. However, compared to "legacy" PFAS, polyfluoroalkyl substances have a lesser affinity to the interface and may react with •OH. To understand the effect of size on degradation kinetics and mechanism of polyfluoroalkyl substances, this work compared ultrasonic treatment (f = 354 kHz) of n:2 fluorotelomer sulfonates (FTSAs) of varying chain lengths (n = 4, 6, 8). Of the congeners tested, 4:2 fluorotelomer sulfonate (FtS) degraded the fastest in individual solutions and in mixtures. Sonolytic rate constants correlated to diffusion coefficients of FTSAs, indicating that diffuse short-chain FTSAs outcompete long-chain FTSAs to adsorb and react at the bubble interface. Interestingly, 4:2 and 8:2 FtS had different evolutions of fluoride-to-sulfate ratios, [F-]/[SO42-], over time. Initially, [F-]/[SO42-]4:2 FtS and [F-]/[SO42-]8:2 FtS were respectively higher and lower than theoretical ratios. This difference was attributed to the lower maximum surface excess of 8:2 FtS, hindering its ability to pack and, consequently, defluorinate at the interface. In the presence of an •OH scavenger, FTSAs had similar %F- release compared to no scavenger, whereas %SO42- release was drastically diminished. Therefore, thermolysis is the primary degradation pathway of FTSAs; •OH supplements SO42- formation. These results indicate that ultrasound directly cleaves C-F bonds within the fluoroalkyl chain. This work shows that ultrasound efficiently degrades FTSAs of various sizes and may potentially treat other classes of polyfluoroalkyl substances.
Collapse
Affiliation(s)
- William P Fagan
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shannon R Thayer
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Linda K Weavers
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Xiong X, Shang Y, Bai L, Luo S, Seviour TW, Guo Z, Ottosen LDM, Wei Z. Complete defluorination of perfluorooctanoic acid (PFOA) by ultrasonic pyrolysis towards zero fluoro-pollution. WATER RESEARCH 2023; 235:119829. [PMID: 36958219 DOI: 10.1016/j.watres.2023.119829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Advanced oxidation/reduction of PFAS is challenged and concerned by the formation of toxic, short-chain intermediates during water treatments. In this study, we investigated the complete defluorination of PFOA by ultrasound/persulfate (US/PS) with harmless end-products of CO2, H2O, and F‒ ions. We observed 100% defluorination after 4 h of US treatment alone with a power input of 900 W. PS addition, however, suppressed defluorination. We demonstrated by kinetics-fitted Langmuir-type adsorption modeling, the added PS increased competition with PFOA for adsorption sites on the bubble-water interface where radical oxidation and pyrolysis may occur. Providing sulfate (SO4•-) and hydroxyl (•OH) radicals by means other than US did not defluorinate PFOA, indicating that pyrolysis likely contributes to the high defluorination performance. Bond dissociation energies for CC and CF were independent of pressure but decreased at elevated temperatures within cavitation bubbles (i.e., 5000 K) favoring the pyrolysis reactions. Furthermore, bond length calculations indicated that PFOA cleavage only begins to occur at temperatures in excess of those generated at the bubble interface (i.e., >1500 K) at the femtosecond level. This suggests that PFOA vaporizes or injects by nanodrops upon attachment to the cavitation bubble, enters the bubble, and is then cleaved within the bubble by pyrolysis. Our research in low-frequency ultrasonic horn system challenges the previous founding that defluorination of PFOA initiates and occurs at the bubble-water interface. We describe here that supplementing US-based processes with complementary treatments may have undesired effects on the efficacy of US. The mechanistic insights will further promote the implementation of US technology for PFAS treatment in achieving the zero fluoro-pollution goal.
Collapse
Affiliation(s)
- Xingaoyuan Xiong
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark
| | - Yanan Shang
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100, China
| | - Lu Bai
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark
| | - Shuang Luo
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark; College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Thomas William Seviour
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark
| | - Zheng Guo
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark
| | - Lars D M Ottosen
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark.
| |
Collapse
|
8
|
Liu Z, Ren X, Duan X, Sarmah AK, Zhao X. Remediation of environmentally persistent organic pollutants (POPs) by persulfates oxidation system (PS): A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160818. [PMID: 36502984 DOI: 10.1016/j.scitotenv.2022.160818] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Over the past few years, persistent organic pollutants (POPs) exhibiting high ecotoxicity have been widely detected in the environment. Persulfate-oxidation hybrid system is one of the most widely used novel advanced oxidation techniques and is based on the persulfate generation of SO4-∙ and ∙OH from persulfate to degrade POPs. The overarching aim of this work is to provide a critical review of the variety of methods of peroxide activation (e.g., light activated persulfate, heat-activated persulfate, ultrasound-activated persulfate, electrochemically-activated persulfate, base-activated persulfate, transition metal activated persulfate, as well as Carbon based material activated persulfate). Specifically, through this article we make an attempt to provide the important characteristics and uses of main activated PS methods, as well as the prevailing mechanisms of activated PS to degrade organic pollutants in water. Finally, the advantages and disadvantages of each activation method are analyzed. This work clearly illustrates the benefits of different persulfate activation technologies, and explores persulfate activation in terms of Sustainable Development Goals, technical feasibility, toxicity assessment, and economics to facilitate the large-scale application of persulfate technologies. It also discusses how to choose the most suitable activation method to degrade different types of POPs, filling the research gap in this area and providing better guidance for future research and engineering applications of persulfates.
Collapse
Affiliation(s)
- Zhibo Liu
- College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China
| | - Xin Ren
- College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China; Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China
| | - Xiaoyue Duan
- College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China
| | - Ajit K Sarmah
- The Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Xuesong Zhao
- College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China; Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China.
| |
Collapse
|
9
|
Lin Y, zhang Q, Lou Y, Liu G, Li S, Chen L, Yuan B, Zou D, Chen J. Efficient degradation of Nizatidine by a Fe(II)/ persulfate system actived with Zero-valent iron. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
10
|
Large-Scale Synthesis of Iron Ore@Biomass Derived ESBC to Degrade Tetracycline Hydrochloride for Heterogeneous Persulfate Activation. Catalysts 2022. [DOI: 10.3390/catal12111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron-based catalysts are widely used in water treatment and environmental remediation due to their abundant content in nature and their ability to activate persulfate at room temperature. Here, eggshell biochar-loaded natural iron slag (IO@ESBC) was successfully synthesized to remove tetracycline hydrochloride (TCH) by activated persulfate. The morphology, structure and chemical composition of IO@ESBC were systematically characterized. The IO@ESBC/PS process showed good performance for TCH removal. The decomposition rate constant (k) for IO@ESBC was 0.011 min−1 and the degradation rate was 3690 mmol/g/h in this system. With the increase of PS concentration and IO@ESBC content, the removal rate of TCH both increased. The IO@ESBC/PS process can effectively remove TCH at pH 3–9. There are different effects on TCH removal for the reason that the addition of water matrix species (humic acid, Cl−, HCO3−, NO3− and HPO42−). The IO@ESBC/PS system for degrading TCH was mainly controlled by both the free radical pathway (SO4•−, •OH and O2•−) and non-free radical pathway (1O2). The loading of ESBC slows down the agglomeration between iron particles, and more active sites are exposed. The removal rate of TCH was still above 75% after five cycles of IO@ESBC. This interesting investigation has provided a green route for synthesis of composite driving from waste resources, expanding its further application for environmental remediations.
Collapse
|
11
|
Chen C, Liu L, Li W, Lan Y, Li Y. Reutilization of waste self-heating pad by loading cobalt: A magnetic and green peroxymonosulfate activator for naphthalene degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129572. [PMID: 35863229 DOI: 10.1016/j.jhazmat.2022.129572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/10/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The disposal and recovery of solid wastes and the remediation of polycyclic aromatic hydrocarbons (PAHs) are the key issues of environmental pollution control. In this study, micro cobalt loaded on iron-carbon-vermiculite composite (Co-ICV) was prepared for the first time by the reutilization of waste self-heating pad as a carrier of cobalt catalyst, which exhibited better performance than bulk cobalt catalyst in peroxymonosulfate (PMS) activation for the degradation of naphthalene (NAP) in water. Above 98% of NAP (2.0 mg/L) was effectively eliminated within 15 min by the Co-ICV (0.2 g/L) activated PMS (0.5 mmol/L) in a pH range of 5.0-9.0. High magnetism and very limited cobalt leaching realized the convenient separation and stable reusability of Co-ICV. Mechanism investigation indicated that Co(II) species were the main active sites to activate PMS decomposition for the generation of SO4•- and •OH, contributing to the rapid degradation of NAP. Meanwhile, the NAP degradation pathways were deduced via combining the identification of intermediates and the calculation of frontier electron densities (FEDs). Furthermore, the ability of the Co-ICV/PMS system for the NAP degradation in actual lake water and the removal of other refractory pollutants demonstrated that the combination of Co-ICV and PMS was a prospective method for the removal of PAHs. Overall, Co-ICV is a green and promising activator of PMS, and the future development will provide more insights into the comprehensive utilization of solid wastes for the remediation of wastewater containing PAHs.
Collapse
Affiliation(s)
- Cheng Chen
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Li Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wei Li
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019, PR China
| | - Yeqing Lan
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Ying Li
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
12
|
Bellouk H, Mrabet IE, Tanji K, Nawdali M, Benzina M, Eloussaief M, Zaitan H. Performance of coagulation-flocculation followed by ultra-violet/ultrasound activated persulfate/hydrogen peroxide for landfill leachate treatment. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Degradation of Tetracycline Hydrochloride by a Novel CDs/g-C3N4/BiPO4 under Visible-Light Irradiation: Reactivity and Mechanism. Catalysts 2022. [DOI: 10.3390/catal12070774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In recent years, with the large-scale use of antibiotics, the pollution of antibiotics in the environment has become increasingly serious and has attracted widespread attention. In this study, a novel CDs/g-C3N4/BiPO4 (CDBPC) composite was successfully synthesized by a hydrothermal method for the removal of the antibiotic tetracycline hydrochloride (TC) in water. The experimental results showed that the synthesized photocatalyst was crystalline rods and cotton balls, accompanied by overlapping layered nanosheet structures, and the specific surface area was as high as 518.50 m2/g. This photocatalyst contains g-C3N4 and bismuth phosphate (BiPO4) phases, as well as abundant surface functional groups such as C=N, C-O, and P-O. When the optimal conditions were pH 4, CDBPC dosage of 1 g/L, and TC concentration of 10 mg/L, the degradation rate of TC reached 75.50%. Active species capture experiments showed that the main active species in this photocatalytic system were holes (h+), hydroxyl radicals, and superoxide anion radicals. The reaction mechanism for the removal of TC by CDBPC was also proposed. The removal of TC was mainly achieved by the synergy between the adsorption of CDBPC and the oxidation of both holes and hydroxyl radicals. In this system, TC was adsorbed on the surface of CDBPC, and then the adsorbed TC was degraded into small molecular products by an attack with holes and hydroxyl radicals and finally mineralized into carbon dioxide and water. This study indicated that this novel photocatalyst CDBPC has a huge potential for antibiotic removal, which provides a new strategy for antibiotic treatment of wastewater.
Collapse
|
14
|
Peroxymonosulfate catalytic degradation of persistent organic pollutants by engineered catalyst of self-doped iron/carbon nanocomposite derived from waste toner powder. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120963] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Ma Y, Wang Z, Li J, Song B, Liu S. Electrochemical-assisted ultraviolet light coupled peroxodisulfate system to degrade ciprofloxacin in water: Kinetics, mechanism and pathways. CHEMOSPHERE 2022; 295:133838. [PMID: 35143863 DOI: 10.1016/j.chemosphere.2022.133838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The persulfate advanced oxidation is an emerging and efficient pollutant treatment method, but usually requires the help of other materials or energy to catalyze and produce highly oxidizing active substances. In this paper, electrochemical-assisted ultraviolet light coupled peroxodisulfate system (E-UV-PDS) was used to degrade ciprofloxacin (CIP), and it was determined that electrolysis and ultraviolet photolysis were synergistic by calculation. The effects of initial pH, voltage, peroxodisulfate dosage, CIP concentration and coexisting anions on the degradation process were explored. The quenching experiments showed that 1O2, ⋅OH and SO4-⋅ were the main active oxygen species. Under the following conditions, ultraviolet light = 6 W, voltage = 4 V, [peroxodisulfate] = 20 mM, [pH]0 = 7 and [CIP] = 100 mgL-1, the degradation rate of CIP reached about 100% after 120 min, and the influence of inorganic anions was also discussed. Several intermediate products were identified by LC-MS, and three degradation pathways were speculated for CIP degradation. Finally, economic evaluation of the E-UV-PDS system was made, and it was useful to construct environmentally friendly and low-cost catalytic processes for the efficient degradation of organic pollutants.
Collapse
Affiliation(s)
- Yanan Ma
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi, 832000, Xinjiang, PR China; College of Earth and Environmental Sciences, MOE Key Laboratory of Western China's Environmental Systems, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhaoyang Wang
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi, 832000, Xinjiang, PR China; College of Earth and Environmental Sciences, MOE Key Laboratory of Western China's Environmental Systems, Lanzhou University, Lanzhou, 730000, PR China.
| | - Junfeng Li
- College of Earth and Environmental Sciences, MOE Key Laboratory of Western China's Environmental Systems, Lanzhou University, Lanzhou, 730000, PR China
| | - Bo Song
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi, 832000, Xinjiang, PR China; College of Earth and Environmental Sciences, MOE Key Laboratory of Western China's Environmental Systems, Lanzhou University, Lanzhou, 730000, PR China
| | - Shenglin Liu
- Xinjiang Shuchuang Environmental Protection Technology Co., Ltd, Alaer, 843399, Xinjiang, PR China
| |
Collapse
|
16
|
Li X, Jie B, Lin H, Deng Z, Qian J, Yang Y, Zhang X. Application of sulfate radicals-based advanced oxidation technology in degradation of trace organic contaminants (TrOCs): Recent advances and prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114664. [PMID: 35149402 DOI: 10.1016/j.jenvman.2022.114664] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The large amount of trace organic contaminants (TrOCs) in wastewater has caused serious impacts on human health. In the past few years, Sulfate radical (SO4•-) based advanced oxidation processes (SR-AOPs) are widely recognized for their high removal rates of recalcitrant TrOCs from water. Peroxymonosulfate (PMS) and persulfate (PS) are stable and non-toxic strong oxidizing oxidants and can act as excellent SO4•- precursors. Compared with hydroxyl radicals(·OH)-based methods, SR-AOPs have a series of advantages, such as long half-life and wide pH range, the oxidation capacity of SO4•- approaches or even exceeds that of ·OH under suitable conditions. In this review, we present the progress of activating PS/PMS to remove TrOCs by different methods. These methods include activation by transition metal, ultrasound, UV, etc. Possible activation mechanisms and influencing factors such as pH during the activation are discussed. Finally, future activation studies of PS/PMS are summarized and prospected. This review summarizes previous experiences and presents the current status of SR-AOPs application for TrOCs removal. Misconceptions in research are avoided and a research basis for the removal of TrOCs is provided.
Collapse
Affiliation(s)
- Xingyu Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Borui Jie
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Huidong Lin
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhongpei Deng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Junyao Qian
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yiqiong Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
17
|
Fagan WP, Villamena FA, Zweier JL, Weavers LK. In Situ EPR Spin Trapping and Competition Kinetics Demonstrate Temperature-Dependent Mechanisms of Synergistic Radical Production by Ultrasonically Activated Persulfate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3729-3738. [PMID: 35226467 DOI: 10.1021/acs.est.1c08562] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultrasound coupled with activated persulfate can synergistically degrade aqueous organic contaminants. Here, in situ electron paramagnetic resonance spin trapping was used to compare radicals produced by ultrasonically activated persulfate (US-PS) and its individual technologies, ultrasound alone (US) and heat-activated persulfate (PS), with respect to temperature. Radicals were trapped using 5,5-dimethyl-1-pyrroline-N-oxide, DMPO, to form detectable nitroxide adducts. Using initial rates of radical adduct formation, and compared to US and PS, US-PS at 40 and 50 °C resulted in the largest synergistic production of radicals. Radicals generated from US were reasonably consistent from 40 to 70 °C, indicating that temperature had little effect on cavitational bubble collapse over this range. However, synergy indexes calculated from initial rates showed that ultrasonic activation of persulfate at the bubble interface changes with temperature. From these results, we speculate that higher temperatures enhance persulfate uptake into cavitation bubbles via nanodroplet injection. DMPO-OH was the predominant adduct detected for all conditions. However, competition modeling and spin trapping in the presence of nitrobenzene and atrazine probes showed that SO4•- predominated. Therefore, the DMPO-OH signal is derived from SO4•- trapping with subsequent DMPO-SO4- hydrolysis to DMPO-OH. Spin trapping is effective in quantifying total radical adduct formation but limited in measuring primary radical speciation in this case.
Collapse
Affiliation(s)
- William P Fagan
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Frederick A Villamena
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jay L Zweier
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio 43210, United States
| | - Linda K Weavers
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
18
|
Treatment of arsenite contaminated water by electrochemically activated persulfate oxidation process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119999] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
He Z, He Y, Chang F, Li Z, Niu J, Li M, Zhang S, Li X, Shi R, Hu G. Efficient pH-universal degradation of antibiotic tetracycline via Co 2P decorated Neosinocalamus affinis biochar. CHEMOSPHERE 2022; 286:131759. [PMID: 34388433 DOI: 10.1016/j.chemosphere.2021.131759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/10/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Considering the complexity of traditional cobalt phosphide (Co2P) loaded biochar synthesis research on a simple and efficient synthesis method has practical significance. In this study, after phosphoric acid activation, Neosinocalamus affinis biochar (NAB) and nanoplate Co3O4 quickly formed a Co2P-NAB composite material with high Co2P crystallinity and was uniformly dispersed on the surface of NAB in a microwave reactor. Co2P-NAB has an excellent catalytic degradation effect in the activation of peroxymonosulfate (PMS) to degrade tetracycline (TC). The optimal TC degradation efficiency was achieved with the addition of 50 mg L-1 TC concentration, 0.2 g L-1 catalysts, 0.406 mM PMS and pH = 6.02. In addition, according to the pseudo-first-order reaction rate constant calculation, the composite of Co2P-NAB and PMS the synergy efficiency is 81.55 %. Compared with Co2P-NAB (10.83 %) and PMS (7.62 %) alone, the Co2P-NAB/PMS system has a significant promotion effect on the degradation of TC molecules. Additionally, the Co2P-NAB/PMS system had a TC mineralization rate of 68 % in 30 min. Furthermore, after a series of characterization, detection and analysis, and influencing factor experiments, we proposed a potential mechanism for the Co2P-NAB/PMS reaction system to degrade TC and found that singlet oxygen (1O2) plays an essential role in the non-radical degradation process. Finally, according to the liquid chromatography-mass spectrometry (LC-MS) detection of TC degradation intermediates, a possible degradation route was proposed. Therefore, this work uses microwave technology to present a novel and simple synthesis method for transition metal phosphides, which provides potential application value for the treatment of actual wastewater with heterogeneous catalysts.
Collapse
Affiliation(s)
- Zhuang He
- Institute for Ecological Research and Pollution Control of Plateau Lakes, Institute of International Rivers and Eco-Security, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China; School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Yingnan He
- Institute for Ecological Research and Pollution Control of Plateau Lakes, Institute of International Rivers and Eco-Security, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, Institute of International Rivers and Eco-Security, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Zaixing Li
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| | - Jianrui Niu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Meng Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450000, China
| | - Shusheng Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaohua Li
- Rural Energy & Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China.
| | - Rongguang Shi
- Agro-environmental Protection Institute Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, Institute of International Rivers and Eco-Security, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China.
| |
Collapse
|
20
|
Li X, Qin Y, Jia Y, Wang R, Ye Z, Zhou M. Persulfate activation by novel iron–carbon composites for organic contaminant removal: Performance, mechanism, and DFT calculations. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Hung CM, Huang CP, Chen CW, Dong CD. Hydrodynamic cavitation activation of persulfate for the degradation of polycyclic aromatic hydrocarbons in marine sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117245. [PMID: 33965800 DOI: 10.1016/j.envpol.2021.117245] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Hydrodynamic cavitation (HC) coupled with persulfate (PS)-based that resulted in the synergistic degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated marine sediments. The effects of HC injection pressure and Σ[PAH]: [PS] on the rate and extent of PAH degradation were studied in the pressure range of 0.5-2.0 bar, PS concentration rage of 2 × 10-4 to 2 × 10-2 M or Σ[PAH]: [PS] of 1:10-1000, and reaction time of 20-60 min. A pseudo-first-order rate law fitted PAHs removal kinetics well. The degradation rate constant increased with injection pressure, reaching the maximum level at 0.5 bar, then decreased at injection pressure became greater than 0.5 bar. The results showed that PAH removal was 84% by the combined HC and PS process, whereas, HC alone only achieved a 43% removal of PAHs in marine sediments under the optimal inlet pressure of 0.5 bar at PS concentration of 2 × 10-2 M in 60 min. The HC‒PS system effectively removed PH, PY, FLU, BaA, and CH at 91, 99, 91, 84, and 90%, respectively. The maximum removal of 6-, 5-, 4-, 3-, and 2-ring PAHs was 89, 87, 84, 76, and 34%, respectively. Major reactive oxygen species (ROSs), namely, SO4-• and HO•, were responsible for PAHs degradation. Results clearly highlighted the feasibility of HC-PS system for the clean-up of PAHs-laden sediments in particular and other recalcitrant organic contaminants in general.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
22
|
Wang J, Wang X, Liu X, Guo Q, Kong W, Liu D. Efficient and Solvent-Free Oxidation Coupling of Amines to Imines Using Persulfate as Oxidant with Ultrasound Assistance. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1977350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Junyan Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, P. R. China
| | - Xing Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, P. R. China
| | - Xiaona Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, P. R. China
| | - Qingbin Guo
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, P. R. China
| | - Weimeng Kong
- Organic Chemical Plant, Beijing Dongfang Petrochemical Co. Ltd, Beijing, P. R. China
| | - Di Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, P. R. China
| |
Collapse
|
23
|
Niu L, Zhang G, Xian G, Ren Z, Wei T, Li Q, Zhang Y, Zou Z. Tetracycline degradation by persulfate activated with magnetic γ-Fe2O3/CeO2 catalyst: Performance, activation mechanism and degradation pathway. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118156] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|