1
|
Fleite S, Cassanello M, Buera MDP. Modifications of biological membranes, fat globules and liposomes promoted by cavitation processes. Consequences and applications. Chem Phys Lipids 2024; 267:105462. [PMID: 39622431 DOI: 10.1016/j.chemphyslip.2024.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Cavitation-based technologies, such as ultrasound (or acoustic cavitation, AC) and hydrodynamic cavitation (HC), are gaining interest among green processing technologies due to their cost effectiveness in operation, toxic solvent use reduction, and ability to obtain superior processed products, compared to conventional methods. Both AC and HC generate bubbles, but their effects may differ and it is difficult to make comparisons as both are based on different phenomena and are subject to different operational variables. AC is one of the most used techniques in extraction and homogenization processes at the laboratory level. However, upscaling to an industrial level is hard. On the other hand, HC is based on the passage of the liquid through a constriction (orifice plate, Venturi, throttling valve), which causes an increase in liquid velocity at the expense of local pressure, forcing the pressure around the contraction below the threshold pressure that induces the formation of cavities. Some applications of cavitation technologies, such as the production of liposomes or lipid nanoparticles (LNPs) allow the generation of delivery systems for biomedical applications.Many others (inactivation of pathogenic viruses, bacteria and algae for water purification, extraction procedures, third generation of biofuel production, green extractions) are based on the disruption of lipid membranes. There are also applications aimed at the modification of membranes (like the milk fat globule) for the development of innovative products. Process parameters, such as cavitation intensity, duration and temperature define the impact of the process on the physical, chemical, and biological characteristics of the membranes. Thus, the adequate implementation of cavitation processes requires understanding of interactions and synergistic mechanisms in complex systems and of their effects on membranes at the microscopic or molecular level. In the present work, the use of cavitation technologies for the generation of LNPs or nanostructured lipid carriers, and the effects of AC and HC treatments on several types of membrane systems (liposomes, solid lipid nanoparticles, milk fat globules, algae and bacterial membranes) are discussed, focusing on the structural and chemical modifications of lipidic structures under cavitation.
Collapse
Affiliation(s)
- Santiago Fleite
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Química Inorgánica y Analítica, Argentina
| | - Miryan Cassanello
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina
| | - María Del Pilar Buera
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
4
|
Podbevšek D, Ledoux G, Dular M. Investigation of hydrodynamic cavitation induced reactive oxygen species production in microchannels via chemiluminescent luminol oxidation reactions. WATER RESEARCH 2022; 220:118628. [PMID: 35640501 DOI: 10.1016/j.watres.2022.118628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Hydrodynamic cavitation was evaluated for its reactive oxygen species production in several convergent-divergent microchannel at the transition from micro to milli scale. Channel widths and heights were systematically varied to study the influence of geometrical parameters at the transitory scale. A photomultiplier tube was used for time-resolved photon detection and monitoring of the chemiluminescent luminol oxidation reactions, allowing for a contactless and in situ quantization of reactive oxygen species production in the channels. The radical production rates at various flow parameters were evaluated, showing an optimal yield per flow rate exists in the observed geometrical range. While cavitation cloud shedding was the prevailing regime in this type of channels, the photon arrival time analysis allowed for an investigation of the cavitation structure dynamics and their contribution to the chemical yield, revealing that radical production is not linked to the synchronous cavitation cloud collapse events. Instead, individual bubble collapses occurring throughout the cloud formation were recognized to be the source of the reactive oxygen species.
Collapse
Affiliation(s)
- Darjan Podbevšek
- Faculty of Mechanical Engineering, University of Ljubljana, Askerčeva 6, 1000 Ljubljana, Slovenia.
| | - Gilles Ledoux
- Institut Lumière Matière, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Matevž Dular
- Faculty of Mechanical Engineering, University of Ljubljana, Askerčeva 6, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Seyedmirzaei Sarraf S, Rokhsar Talabazar F, Namli I, Maleki M, Sheibani Aghdam A, Gharib G, Grishenkov D, Ghorbani M, Koşar A. Fundamentals, biomedical applications and future potential of micro-scale cavitation-a review. LAB ON A CHIP 2022; 22:2237-2258. [PMID: 35531747 DOI: 10.1039/d2lc00169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thanks to the developments in the area of microfluidics, the cavitation-on-a-chip concept enabled researchers to control and closely monitor the cavitation phenomenon in micro-scale. In contrast to conventional scale, where cavitation bubbles are hard to be steered and manipulated, lab-on-a-chip devices provide suitable platforms to conduct smart experiments and design reliable devices to carefully harness the collapse energy of cavitation bubbles in different bio-related and industrial applications. However, bubble behavior deviates to some extent when confined to micro-scale geometries in comparison to macro-scale. Therefore, fundamentals of micro-scale cavitation deserve in-depth investigations. In this review, first we discussed the physics and fundamentals of cavitation induced by tension-based as well as energy deposition-based methods within microfluidic devices and discussed the similarities and differences in micro and macro-scale cavitation. We then covered and discussed recent developments in bio-related applications of micro-scale cavitation chips. Lastly, current challenges and future research directions towards the implementation of micro-scale cavitation phenomenon to emerging applications are presented.
Collapse
Affiliation(s)
- Seyedali Seyedmirzaei Sarraf
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
| | - Farzad Rokhsar Talabazar
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
| | - Ilayda Namli
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
| | - Mohammadamin Maleki
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
| | - Araz Sheibani Aghdam
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
| | - Ghazaleh Gharib
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Orhanli, 34956, Tuzla, Istanbul, Turkey
| | - Dmitry Grishenkov
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, SE-141 57 Stockholm, Sweden
| | - Morteza Ghorbani
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Orhanli, 34956, Tuzla, Istanbul, Turkey
| | - Ali Koşar
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Orhanli, 34956, Tuzla, Istanbul, Turkey
| |
Collapse
|