1
|
Wang C, Yan H, Zhang R, Chen F, Liu F. Numerical study of laser-induced cavitation bubble with consideration of chemical reactions. ULTRASONICS SONOCHEMISTRY 2024; 109:107007. [PMID: 39111248 DOI: 10.1016/j.ultsonch.2024.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/25/2024]
Abstract
Cavitation generated during injector jetting can significantly affect fuel atomization. Laser-induced cavitation bubble is an important phenomenon in laser induced plasma ignition technology. Limited by the difficulties in experimental measurements, numerical simulations have become an important tool in the study of laser-induced cavitation bubble, but most previous numerical models used to study the dynamics of laser-induced cavitation bubble usually ignore the effect of chemical reactions. In this study, the finite volume method is used to solve the compressible two-dimensional reynolds averaged Navier-Stokes equation by considering the heat and mass transfer as well as the chemical reactions within the cavitation bubble. The effects of overall reaction and elementary reactions on the cavitation bubble are evaluated, respectively. It is found that by additionally considering chemical reactions within the numerical model, lower maximum temperatures and higher maximum pressures are predicted within the bubble. And the generated non-condensable gases produced by the chemical reactions enhance the subsequent expansion process of the cavitation bubble. Besides, the effect of the one-sided wall boundary condition on cavitation bubble is compared with the infinite boundary condition. Influenced by the wall boundary, the cavitation bubble forms a localized high pressure on the side of the bubble away from the wall during the collapse process, which causes the bubble to be compressed into a "crescent" shape. The maximum pressure and temperature inside the bubble are lower due to localized losses caused by the wall.
Collapse
Affiliation(s)
- Chengyan Wang
- School of power and energy, Northwestern Polytechnical University, Xi'an 710129, PR China.
| | - Hong Yan
- School of power and energy, Northwestern Polytechnical University, Xi'an 710129, PR China.
| | - Ruifan Zhang
- School of power and energy, Northwestern Polytechnical University, Xi'an 710129, PR China.
| | - Fuzhen Chen
- School of power and energy, Northwestern Polytechnical University, Xi'an 710129, PR China.
| | - Fan Liu
- School of power and energy, Northwestern Polytechnical University, Xi'an 710129, PR China.
| |
Collapse
|
2
|
Ozan SC, Muller PJ, Cloete JH. On efficient modelling of radical production in cavitation assisted reactors. ULTRASONICS SONOCHEMISTRY 2024; 104:106833. [PMID: 38452712 DOI: 10.1016/j.ultsonch.2024.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Process intensification by cavitation is gaining widespread attention due to the benefits that the intense bubble collapse conditions can provide, yet, several knowledge gaps exist in the modelling of such systems. This work studies the numerical prediction of single bubble dynamics and the various approaches that can be employed to estimate the changes in the chemical composition of cavitating bubbles. Specific emphasis is placed on the prediction of the radical production rates during bubble collapse and the computational performance, with the aim of coupling the single bubble dynamics to flow models for reactor hydrodynamics. The results reveal that the choice of chemical reaction approach has virtually no effect on the bubble dynamics, whereas the predicted radical production rates can differ substantially. It is found that evaluating the radical production only on temperature peaks, an approach commonly followed in literature, may result in the most erroneous estimations (on average 12.8 times larger than those of the full kinetic model), while a simplified kinetic model yields more accurate predictions (2.3 times larger) at the expense of increased computational times. Continuous evaluation of the bubble content by assuming equilibrium when the bubble temperature is above a certain threshold (≈1500K) is shown to be capable of predicting total radical production values close to those estimated by solving the kinetics of a detailed reaction model (19.8% difference), as well as requiring only 22.2% more computational costs compared to simulations without chemical reaction modelling. Such an equilibrium approach is therefore recommended for future studies aiming to couple flow simulations with single bubble dynamics to accurately predict radical production rates in cavitation devices, involving numerous bubbles following different flow trajectories. Furthermore, an algebraic expression that successfully approximates the full kinetic simulation results is proposed as a function of the initial nucleus size and the time integral of the liquid pressure when it is under vapor pressure. Such a model can be applied in modelling efforts that do not require local instantaneous radical concentrations, and paves the way for efficient closure modelling of radical production in CFD simulations of hydrodynamic reactors.
Collapse
Affiliation(s)
- Suat Canberk Ozan
- Process Technology Department, SINTEF Industry, S.P. Andersens veg 15B, NO-7031 Trondheim, Norway; Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.
| | - Pascal Jan Muller
- Department of Mechanical Engineering, ETH Zurich, D-MAVT Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Jan Hendrik Cloete
- Process Technology Department, SINTEF Industry, S.P. Andersens veg 15B, NO-7031 Trondheim, Norway
| |
Collapse
|
3
|
Qin D, Lei S, Zhang B, Liu Y, Tian J, Ji X, Yang H. Influence of interactions between bubbles on physico-chemical effects of acoustic cavitation. ULTRASONICS SONOCHEMISTRY 2024; 104:106808. [PMID: 38377805 DOI: 10.1016/j.ultsonch.2024.106808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Ultrasound technology has been extensively used as one of the efficient and economic methodology to achieve the desired outcomes in many applications by harnessing the physico-chemical effects of acoustic cavitation. However, the cavitation-associated effects, primarily determined by the oscillatory dynamics of cavitation bubbles, are considerably complex and still remain poorly understood. The main objective of this study was to perform a numerical analysis of the acoustic cavitation (i.e., the cavitation dynamics, the resultant temperature, pressure and chemical yields within collapsing bubbles), particularly focusing on the influence of the interactions between bubbles. A comprehensive model was developed to simulate the acoustic cavitation dynamics via combining the influences of mass transfer, heat conduction and chemical reactions as well as the interaction effects between bubbles. The results demonstrated that only the large bubble exerts a greater impact on the small one in a two-bubble system. Specifically, within parameter ranges covered this study, there are noticeable decreases in the expansion ratio of the small bubble, the resultant temperature, pressure and molar yields of free radicals, hence weakening the cavitation intensity and cavitation- associated physico-chemical effects. Moreover, the influences of the interactions between bubbles were further assessed quantitatively under various parameters, such as the ultrasound amplitude PA and frequency f, the distance between bubbles d0, the initial radius of the large bubble R20, as well as the liquid properties (e.g., surface tension σ and viscosity μ). It was found that the suppression effect can be amplified when subjected to ultrasound with an increased PA and/or a decreased f, probably due to a stronger cavitation intensity under this condition. Additionally, the suppression effect is also enhanced with a decrease in d0, σ and μ, but with R20 increasing. This study can contribute to deepening knowledge about acoustic cavitation and the resultant physical and/or chemical effects, potentially further facilitating the ultrasound-assisted various applications involving acoustic cavitation.
Collapse
Affiliation(s)
- Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China; Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China
| | - Shuang Lei
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Bingyu Zhang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Yanping Liu
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Jian Tian
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Xiaojuan Ji
- Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China; Department of Ultrasound, Chongqing General Hospital, Chongqing, People's Republic of China.
| | - Haiyan Yang
- Department of Ultrasound, Chongqing General Hospital, Chongqing, People's Republic of China.
| |
Collapse
|
4
|
Ferkous H, Hamdaoui O, Pétrier C. Sonochemical reactor characterization in the presence of cylindrical and conical reflectors. ULTRASONICS SONOCHEMISTRY 2023; 99:106556. [PMID: 37586183 PMCID: PMC10450984 DOI: 10.1016/j.ultsonch.2023.106556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Ultrasonic systems must be able to produce an acoustic field with the highest possible energy concentration in sonochemical reactors to accomplish maximum efficacy in the sonolytic degradation of water contaminants. In the present study, the impact of cylindrical and conical stainless-steel reflectors placed on the liquid surface on the sonochemical oxidation activity of ultrasonication reactors was investigated. The amount of effective acoustic power transferred to the ultrasonicated medium without and with reflectors was measured by calorimetric characterization of the sono-reactors at diverse ultrasonication frequencies in the interval of 300-800 kHz and different electrical powers in the range of 40-120 W. Iodide dosimetry without and with reflectors at diverse ultrasonication conditions (300-800 kHz and 40-120 W) and various aqueous solution volumes in the range of 300-500 mL was used to assess the sonochemical oxidation activity, i.e., the generation of oxidative species (mainly hydroxyl radicals). Sonochemiluminescence (SCL) imaging was used to study the active acoustic cavitation bubbles distribution in the sono-reactors without and with reflectors. Significant impacts of the position and shape of the reflectors on the active acoustic cavitation bubble distribution and the sonochemical oxidation activity were observed due to remarkable modifications of the ultrasonic field by directing and focusing of the ultrasonic waves. A significant augmentation in the triiodide formation rate was obtained in the presence of the conical reflector, especially at 630 kHz and 120 W (60.5% improvement), while iodide oxidation was quenched in the presence of the cylindrical reflector at all ultrasonication frequencies and powers. The SCL images show a noteworthy modification in the ultrasonic field and the acoustic cavitation bubble population when reflectors were used. The sonochemical oxidation activity was improved by the conical reflector when placed in the Fresnel zone (near field region).
Collapse
Affiliation(s)
- Hamza Ferkous
- Department of Process Engineering, Faculty of Technology, Badji Mokhtar - Annaba University, P.O. Box 12, 23000 Annaba, Algeria
| | - Oualid Hamdaoui
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421 Riyadh, Saudi Arabia.
| | - Christian Pétrier
- Université Grenoble Alpes, INP Grenoble, LRP, 38000 Grenoble, France
| |
Collapse
|
5
|
Fatimah S, Hazmatulhaq F, Sheng Y, Suhartono T, Oh JM, Nashrah N, Kang JH, Ko YG. Effect of Ultrasonic Frequency on Structure and Corrosion Properties of Coating Formed on Magnesium Alloy via Plasma Electrolytic Oxidation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5424. [PMID: 37570128 PMCID: PMC10419714 DOI: 10.3390/ma16155424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
This study explores the application of ultrasonic vibration during plasma electrolytic oxidation (PEO) to enhance the corrosion resistance of magnesium (Mg) alloy. To this end, three different ultrasonic frequencies of 0, 40, and 135 kHz were utilized during PEO. In the presence of ultrasonic waves, the formation of a uniform and dense oxide layer on Mg alloys is facilitated. This is achieved through plasma softening, acoustic streaming, and improved mass transport for successful deposition and continuous reforming of the oxide layer. The oxide layer exhibits superior protective properties against corrosive environments due to the increase in compactness. Increasing ultrasonic frequency from 40 to 135 kHz, however, suppresses the optimum growth of the oxide layer due to the occurrence of super-soft plasma swarms, which results in a low coating thickness. The integration of ultrasonic vibration with PEO presents a promising avenue for practical implementation in industries seeking to enhance the corrosion protection of Mg alloys, manipulating microstructures and composition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Young Gun Ko
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
6
|
Qin D, Lei S, Chen B, Li Z, Wang W, Ji X. Numerical investigation on acoustic cavitation characteristics of an air-vapor bubble: Effect of equation of state for interior gases. ULTRASONICS SONOCHEMISTRY 2023; 97:106456. [PMID: 37271030 DOI: 10.1016/j.ultsonch.2023.106456] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
The cavitation dynamics of an air-vapor mixture bubble with ultrasonic excitation can be greatly affected by the equation of state (EOS) for the interior gases. To simulate the cavitation dynamics, the Gilmore-Akulichev equation was coupled with the Peng-Robinson (PR) EOS or the Van der Waals (vdW) EOS. In this study, the thermodynamic properties of air and water vapor predicted by the PR and vdW EOS were first compared, and the results showed that the PR EOS gives a more accurate estimation of the gases within the bubble due to the less deviation from the experimental values. Moreover, the acoustic cavitation characteristics predicted by the Gilmore-PR model were compared to the Gilmore-vdW model, including the bubble collapse strength, the temperature, pressure and number of water molecules within the bubble. The results indicated that a stronger bubble collapse was predicted by the Gilmore-PR model rather than the Gilmore-vdW model, with higher temperature and pressure, as well as more water molecules within the collapsing bubble. More importantly, it was found that the differences between both models increase at higher ultrasound amplitudes or lower ultrasound frequencies while decreasing as the initial bubble radius and the liquid parameters (e.g., surface tension, viscosity and temperature of the surrounding liquid) increase. This study might offer important insights into the effects of the EOS for interior gases on the cavitation bubble dynamics and the resultant acoustic cavitation-associated effects, contributing to further optimization of its applications in sonochemistry and biomedicine.
Collapse
Affiliation(s)
- Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China; Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China.
| | - Shuang Lei
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Bo Chen
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Zhangyong Li
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Wei Wang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China.
| | - Xiaojuan Ji
- Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China; Department of Ultrasound, Chongqing General Hospital, Chongqing, People's Republic of China.
| |
Collapse
|
7
|
Dehane A, Haddad B, Merouani S, Hamdaoui O. The impact of methanol mass transport on its conversion for the production of hydrogen and oxygenated reactive species in sono-irradiated aqueous solution. ULTRASONICS SONOCHEMISTRY 2023; 95:106380. [PMID: 36990049 PMCID: PMC10457556 DOI: 10.1016/j.ultsonch.2023.106380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
This study aims principally to assess numerically the impact of methanol mass transport (i.e., evaporation/condensation across the acoustic bubble wall) on the thermodynamics and chemical effects (methanol conversion, hydrogen and oxygenated reactive species production) of acoustic cavitation in sono-irradiated aqueous solution. This effect was revealed at various ultrasound frequencies (from 213 to 1000 kHz) and acoustic intensities (1 and 2 W/cm2) over a range of methanol concentrations (from 0 to 100%, v/v). It was found that the impact of methanol concentration on the expansion and compression ratios, bubble temperature, CH3OH conversion and the molar productions inside the bubble is frequency dependent (either with or without consideration of methanol mass transport), where this effect is more pronounced when the ultrasound frequency is decreased. Alternatively, the decrease in acoustic intensity decreases clearly the effect of methanol mass transport on the bubble sono-activity. When methanol mass transfer is eliminated, the decrease of the bubble temperature, CH3OH conversion and the molar yield of the bubble with the rise of methanol concentration was found to be more amortized as the wave frequency is reduced from 1 MHz to 213 kHz, compared to the case when the mass transport of methanol is taken into account. Our findings indicate clearly the importance of incorporating the evaporation and condensation mechanisms of methanol throughout the numerical simulations of a single bubble dynamics and chemical activity.
Collapse
Affiliation(s)
- Aissa Dehane
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider-Constantine 3, P.O. Box 72, 25000 Constantine, Algeria
| | - Boumediene Haddad
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421 Riyadh, Saudi Arabia
| | - Slimane Merouani
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider-Constantine 3, P.O. Box 72, 25000 Constantine, Algeria
| | - Oualid Hamdaoui
- Department of Chemistry, Dr. Moulay Tahar University of Saida, 20000 Saida, Algeria.
| |
Collapse
|
8
|
Dehane A, Nemdili L, Merouani S, Ashokkumar M. Critical Analysis of Hydrogen Production by Aqueous Methanol Sonolysis. Top Curr Chem (Cham) 2023; 381:9. [PMID: 36729180 DOI: 10.1007/s41061-022-00418-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/10/2022] [Indexed: 02/03/2023]
Abstract
Recently, several experimental and theoretical studies have demonstrated the feasibility of enhancing the sonochemical production of hydrogen via methanol pyrolysis within acoustic cavitation bubbles (i.e. sonolysis of aqueous methanol solution). This review includes both the experimental and theoretical achievements in the field of hydrogen production by methanol sonolysis. Additionally, the limits of the process's applicability and plausible solutions are highlighted. The impact of different parameters influencing the process performance is discussed. Finally, the effects of methanol concentration on the size distribution of active cavitation bubbles are analyzed.
Collapse
Affiliation(s)
- Aissa Dehane
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Constantine, 3 Salah Boubnider, P.O. Box 72, 25000, Constantine, Algeria.
| | - Leila Nemdili
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Constantine, 3 Salah Boubnider, P.O. Box 72, 25000, Constantine, Algeria
| | - Slimane Merouani
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Constantine, 3 Salah Boubnider, P.O. Box 72, 25000, Constantine, Algeria
| | | |
Collapse
|
9
|
Dehane A, Merouani S, Chibani A, Hamdaoui O, Yasui K, Ashokkumar M. Estimation of the number density of active cavitation bubbles in a sono-irradiated aqueous solution using a thermodynamic approach. ULTRASONICS 2022; 126:106824. [PMID: 36041384 DOI: 10.1016/j.ultras.2022.106824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/14/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
An alternative semi-empirical technique is developed to determine the number density of active cavitation bubbles (N) formed in sonicated solutions. This was achieved by relating the acoustic power supplied to the solution (i.e., determined experimentally) to the released heat by a single bubble. The energy dissipation via heat exchange is obtained by an advanced cavitation model accounting for the liquid compressibility and viscosity, the non-equilibrium condensation/evaporation of water vapor, and heat conduction across the bubble wall and heats of chemical reactions resulting within the bubble at the collapse. A good concordance was observed between our results and those found in the literature. It was found that the number of active bubbles increased proportionally with a rise in ultrasound frequency. Additionally, the increase of acoustic intensity increases the number of active bubbles, whatever the sonicated solution's volume. On the other hand, it was observed that the rise of the irradiated solution volume causes the number of active bubbles to be reduced even when the acoustic power is increased. A decrease in acoustic energy accelerates this negative impact.
Collapse
Affiliation(s)
- Aissa Dehane
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Constantine 3 Salah Boubnider, P.O. Box 72, 25000 Constantine, Algeria
| | - Slimane Merouani
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Constantine 3 Salah Boubnider, P.O. Box 72, 25000 Constantine, Algeria.
| | - Atef Chibani
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Constantine 3 Salah Boubnider, P.O. Box 72, 25000 Constantine, Algeria
| | - Oualid Hamdaoui
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421 Riyadh, Saudi Arabia
| | - Kyuichi Yasui
- National Institute of Advanced Industrial Science and Technology, 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560, Japan
| | | |
Collapse
|
10
|
Sidnell T, Wood RJ, Hurst J, Lee J, Bussemaker MJ. Sonolysis of per- and poly fluoroalkyl substances (PFAS): A meta-analysis. ULTRASONICS SONOCHEMISTRY 2022; 87:105944. [PMID: 35688120 PMCID: PMC9184745 DOI: 10.1016/j.ultsonch.2022.105944] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 05/15/2023]
Abstract
Human ingestion of per- and polyfluoroalkyl substances (PFAS) from contaminated food and water is linked to the development of several cancers, birth defects and other illnesses. The complete mineralisation of aqueous PFAS by ultrasound (sonolysis) into harmless inorganics has been demonstrated in many studies. However, the range and interconnected nature of reaction parameters (frequency, power, temperature etc.), and variety of reaction metrics used, limits understanding of degradation mechanisms and parametric trends. This work summarises the state-of-the-art for PFAS sonolysis, considering reaction mechanisms, kinetics, intermediates, products, rate limiting steps, reactant and product measurement techniques, and effects of co-contaminants. The meta-analysis showed that mid-high frequency (100 - 1,000 kHz) sonolysis mechanisms are similar, regardless of reaction conditions, while the low frequency (20 - 100 kHz) mechanisms are specific to oxidative species added, less well understood, and generally slower than mid-high frequency mechanisms. Arguments suggest that PFAS degradation occurs via adsorption (not absorption) at the bubble interface, followed by headgroup cleavage. Further mechanistic steps toward mineralisation remain to be proven. For the first time, complete stoichiometric reaction equations are derived for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) sonolysis, which add H2 as a reaction product and consider CO an intermediate. Fluorinated intermediate products are derived for common, and more novel PFAS, and a naming system proposed for novel perfluoroether carboxylates. The meta-analysis also revealed the transition between pseudo first and zero order PFOA/S kinetics commonly occurs at 15 - 40 µM. Optimum values of; ultrasonic frequency (300 - 500 kHz), concentration (>15 - 40 μM), temperature (≈20 °C), and pH range (3.2 - 4) for rapid PFOX degradation are derived by evaluation of prior works, while optimum values for the dilution factor applied to PFAS containing firefighting foams and applied power require further work. Rate limiting steps are debated and F- is shown to be rate enhancing, while SO42- and CO2 by products are theorised to be rate limiting. Sonolysis was compared to other PFAS destructive technologies and shown to be the only treatment which fully mineralises PFAS, degrades different PFAS in order of decreasing hydrophobicity, is parametrically well studied, and has low-moderate energy requirements (several kWh g-1 PFAS). It is concluded that sonolysis of PFAS in environmental samples would be well incorporated within a treatment train for improved efficiency.
Collapse
Affiliation(s)
- Tim Sidnell
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Richard James Wood
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Jake Hurst
- ARCADIS, 1 Whitehall Riverside, Leeds LS1 4BN, United Kingdom
| | - Judy Lee
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Madeleine J Bussemaker
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom.
| |
Collapse
|
11
|
Hong S, Son G. Numerical modelling of acoustic cavitation threshold in water with non-condensable bubble nuclei. ULTRASONICS SONOCHEMISTRY 2022; 83:105932. [PMID: 35121570 PMCID: PMC8818585 DOI: 10.1016/j.ultsonch.2022.105932] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/11/2022] [Accepted: 01/22/2022] [Indexed: 05/09/2023]
Abstract
Numerical modelling of acoustic cavitation threshold in water is presented taking into account non-condensable bubble nuclei, which are composed of water vapor and non-condensable air. The cavitation bubble growth and collapse dynamics are modeled by solving the Rayleigh-Plesset or Keller-Miksis equation, which is combined with the energy equations for both the bubble and liquid domains, and directly evaluating the phase-change rate from the liquid and bubble side temperature gradients. The present work focuses on elucidating acoustic cavitation in water with a wide range of cavitation thresholds (0.02-30 MPa) reported in the literature. Computations for different nucleus sizes and acoustic frequencies are performed to investigate their effects on bubble growth and cavitation threshold. The numerical predictions are observed to be comparable to the experimental data in the previous works and show that the cavitation threshold in water has a wide range depending on the bubble nucleus size.
Collapse
Affiliation(s)
- Seongjin Hong
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, South Korea
| | - Gihun Son
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, South Korea.
| |
Collapse
|
12
|
Dehane A, Merouani S, Hamdaoui O, Ashokkumar M. An alternative technique for determining the number density of acoustic cavitation bubbles in sonochemical reactors. ULTRASONICS SONOCHEMISTRY 2022; 82:105872. [PMID: 34920350 PMCID: PMC8686066 DOI: 10.1016/j.ultsonch.2021.105872] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 05/09/2023]
Abstract
The present paper introduces a novel semi-empirical technique for the determination of active bubbles' number in sonicated solutions. This method links the chemistry of a single bubble to that taking place over the whole sonochemical reactor (solution). The probe compound is CCl4, where its eliminated amount within a single bubble (though pyrolysis) is determined via a cavitation model which takes into account the non-equilibrium condensation/evaporation of water vapor and heat exchange across the bubble wall, reactions heats and liquid compressibility and viscosity, all along the bubble oscillation under the temporal perturbation of the ultrasonic wave. The CCl4 degradation data in aqueous solution (available in literature) are used to determine the number density through dividing the degradation yield of CCl4 to that predicted by a single bubble model (at the same experimental condition of the aqueous data). The impact of ultrasonic frequency on the number density of bubbles is shown and compared with data from the literature, where a high level of consistency is found.
Collapse
Affiliation(s)
- Aissa Dehane
- Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, P.O. Box 12, 23000 Annaba, Algeria
| | - Slimane Merouani
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Constantine 3 Salah Boubnider, P.O. Box 72, 25000 Constantine, Algeria.
| | - Oualid Hamdaoui
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421 Riyadh, Saudi Arabia
| | | |
Collapse
|
13
|
Dehane A, Merouani S, Hamdaoui O. Theoretical investigation of the effect of ambient pressure on bubble sonochemistry: Special focus on hydrogen and reactive radicals production. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Dispersion State and Damage of Carbon Nanotubes and Carbon Nanofibers by Ultrasonic Dispersion: A Review. NANOMATERIALS 2021; 11:nano11061469. [PMID: 34206063 PMCID: PMC8227429 DOI: 10.3390/nano11061469] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022]
Abstract
Dispersion of carbon nanotubes and carbon nanofibers is a crucial processing step in the production of polymer-based nanocomposites and poses a great challenge due to the tendency of these nanofillers to agglomerate. Besides the well-established three-roll mill, the ultrasonic dispersion process is one of the most often used methods. It is fast, easy to implement, and obtains considerably good results. Nevertheless, damage to the nanofibers due to cavitation may lead to shortening and changes in the surface of the nanofillers. The proper application of the sonicator to limit damage and at the same time enable high dispersion quality needs dedicated knowledge of the damage mechanisms and characterization methods for monitoring nano-particles during and after sonication. This study gives an overview of these methods and indicates parameters to be considered in this respect. Sonication energy rather than sonication time is a key factor to control shortening. It seems likely that lower powers that are induced by a broader tip or plate sonicators at a longer running time would allow for proper dispersions, while minimizing damage.
Collapse
|