1
|
Hu Z, Xu H, Cheng J, Zhang H, Zhao Y, Hu J, Sun Y, Huang L, Yao W, Yu Z, Xie Y. Catalyst-free regeneration of plasma-activated water via ultrasonic cavitation: Removing aggregation concealment of antibiotic-resistant bacteria with enhanced wastewater sustainability. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135705. [PMID: 39217933 DOI: 10.1016/j.jhazmat.2024.135705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Aggregation is a crucial factor in bacterial biofilm formation, and comprehending its properties is vital for managing waterborne antibiotic-resistant bacteria. In this study, we examined Methicillin-resistant Staphylococcus aureus (MRSA) cell aggregation under varying conditions and assessed the inactivation efficiency of a novel disinfection method, micro-nano bubbles plasma-activated water via ultrasonic stirring cavitation (MPAW-US), on aggregated MRSA cells. Aggregation efficiency increased over time and at low salt concentrations but diminished at higher concentrations. Elevated MRSA cell aggregation in actual water samples represented significant real-life biohazard risks. Unlike conventional disinfection, MPAW-US treatment exhibited minimal change in the inactivation rate constant despite protective outer layers. Enhanced inactivation efficiency results from the synergistic effects of increased intracellular oxidative stress damage and extracellular substance disruption, triggered by ultrasound-activated micro-nano bubbles that improve PAW reactivity and applicability. This approach neither induced MRSA cross-resistance to unfavorable conditions nor increased toxicity or regrowth potential of aggregative MRSA, utilizing ATP levels as potential regrowth capability indicators. Ultimately, this energy-efficient disinfection technology functions effectively across diverse temperature ranges, showcasing exceptional sterilization and nutritional bean sprout production after cyclic filtering, thereby promoting wastewater sustainability amidst carbon emission concerns.
Collapse
Affiliation(s)
- Zhenyang Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Hongwen Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Jun Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Huan Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Yali Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Jian Hu
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China
| | - Yingying Sun
- Research Institute, Centre Testing International Group Co., Ltd., Shenzhen 518000, China
| | - Lijun Huang
- Wuxi Food Safety Inspection and Test Center, 35-210 Changjiang South Road, Wuxi 214142, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Zhilong Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| |
Collapse
|
2
|
Adamou P, Harkou E, Villa A, Constantinou A, Dimitratos N. Ultrasonic reactor set-ups and applications: A review. ULTRASONICS SONOCHEMISTRY 2024; 107:106925. [PMID: 38810367 PMCID: PMC11157283 DOI: 10.1016/j.ultsonch.2024.106925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Sonochemistry contributes to green science as it uses less hazardous solvents and methods to carry out a reaction. In this review, different reactor designs are discussed in detail providing the necessary knowledge for implementing various processes. The main characteristics of ultrasonic batch systems are their low cost and enhanced mixing; however, they still have immense drawbacks such as their scalability. Continuous flow reactors offer enhanced production yields as the limited cognition which governs the design of these sonoreactors, renders them unusable in industry. In addition, microstructured sonoreactors show improved heat and mass transfer phenomena due to their small size but suffer though from clogging. The optimisation of various conditions of regulations, such as temperature, frequency of ultrasound, intensity of irradiation, sonication time, pressure amplitude and reactor design, it is also discussed to maximise the production rates and yields of reactions taking place in sonoreactors. The optimisation of operating parameters and the selection of the reactor system must be considered to each application's requirements. A plethora of different applications that ultrasound waves can be implemented are in the biochemical and petrochemical engineering, the chemical synthesis of materials, the crystallisation of organic and inorganic substances, the wastewater treatment, the extraction processes and in medicine. Sonochemistry must overcome challenges that consider the scalability of processes and its embodiment into commercial applications, through extensive studies for understanding the designs and the development of computational tools to implement timesaving and efficient theoretical studies.
Collapse
Affiliation(s)
- Panayiota Adamou
- Department of Chemical Engineering Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, 3036 Limassol, Cyprus
| | - Eleana Harkou
- Department of Chemical Engineering Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, 3036 Limassol, Cyprus
| | - Alberto Villa
- Dipartimento di Chimica, Universitá degli Studi di Milano, via Golgi, 20133 Milan, Italy
| | - Achilleas Constantinou
- Department of Chemical Engineering Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, 3036 Limassol, Cyprus.
| | - Nikolaos Dimitratos
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, viale Risorgimento 4, 40136 Bologna, Italy; Center for Chemical Catalysis - C3, University of Bologna, viale Risorgimento 4, 40136 Bologna, Italy.
| |
Collapse
|
3
|
Soyama H, Liang X, Yashiro W, Kajiwara K, Asimakopoulou EM, Bellucci V, Birnsteinova S, Giovanetti G, Kim C, Kirkwood HJ, Koliyadu JCP, Letrun R, Zhang Y, Uličný J, Bean R, Mancuso AP, Villanueva-Perez P, Sato T, Vagovič P, Eakins D, Korsunsky AM. Revealing the origins of vortex cavitation in a Venturi tube by high speed X-ray imaging. ULTRASONICS SONOCHEMISTRY 2023; 101:106715. [PMID: 38061251 PMCID: PMC10750113 DOI: 10.1016/j.ultsonch.2023.106715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Hydrodynamic cavitation is useful in many processing applications, for example, in chemical reactors, water treatment and biochemical engineering. An important type of hydrodynamic cavitation that occurs in a Venturi tube is vortex cavitation known to cause luminescence whose intensity is closely related to the size and number of cavitation events. However, the mechanistic origins of bubbles constituting vortex cavitation remains unclear, although it has been concluded that the pressure fields generated by the cavitation collapse strongly depends on the bubble geometry. The common view is that vortex cavitation consists of numerous small spherical bubbles. In the present paper, aspects of vortex cavitation arising in a Venturi tube were visualized using high-speed X-ray imaging at SPring-8 and European XFEL. It was discovered that vortex cavitation in a Venturi tube consisted of angulated rather than spherical bubbles. The tangential velocity of the surface of vortex cavitation was assessed considering the Rankine vortex model.
Collapse
Affiliation(s)
- Hitoshi Soyama
- Department of Finemechanics, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | - Xiaoyu Liang
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Wataru Yashiro
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan; International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kentaro Kajiwara
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | | | | | | | | | - Chan Kim
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - Romain Letrun
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Yuhe Zhang
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund, 221 00, Sweden
| | - Jozef Uličný
- Faculty of Science, Department of Biophysics, P. J. Šafárik University, Jesenná 5, 04154 Košice, Slovakia
| | - Richard Bean
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Adrian P Mancuso
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Diamond House, Didcot, OX11 0DE, UK; Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Pablo Villanueva-Perez
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund, 221 00, Sweden
| | - Tokushi Sato
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Patrik Vagovič
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany; Center for Free-Electron Laser (CFEL), DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Daniel Eakins
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Alexander M Korsunsky
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| |
Collapse
|
4
|
Li G, Zhao Y, Li J, Xiao Y. Evolution behavior of cavitation bubble in pure Sn liquid medium with narrow gap under low-amplitude ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 99:106567. [PMID: 37647743 PMCID: PMC10481357 DOI: 10.1016/j.ultsonch.2023.106567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
In this study, a numerical model of cavitation bubble in the narrow-gap pure Sn liquid medium was established by two-dimensional compressible multiphase flow simulation. The effects of the pressure amplitude and the gap size on the shape, size and position of the cavitation bubble were investigated. The calculation results showed that the cavitation bubble in the narrow-gap soldering seam could exist stably after experiencing two stages of the nonlinear oscillation and the near-wall oscillation with the low-amplitude ultrasound and moved directionally on the metal substrate surface. When the pressure amplitude increased or the gap size decreased, the directional motion rate of the cavitation bubble increased and the shape of the bubble was elliptical due to the confinement effect of the substrate wall. The ultrasonic degassing mechanism of the narrow-gap soldering seam under the action of exponential decay ultrasonic vibration was analyzed by comparing the fluid pressure and velocity field variations. The flow field in the center of the soldering seam vibrated stronger than that of the peripheral regions, which could promote the outward motion of the cavitation bubble. Within the calculation time of 0.002 s, the maximum horizontal motion distance of bubble in the narrow-gap soldering seam was 1.13 mm.
Collapse
Affiliation(s)
- Guokui Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yu Zhao
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jiaqi Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yong Xiao
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
5
|
Qin D, Zou Q, Zhong X, Zhang B, Li Z. Effects of medium viscoelasticity on bubble collapse strength of interacting polydisperse bubbles. ULTRASONICS SONOCHEMISTRY 2023; 95:106375. [PMID: 36965309 PMCID: PMC10060372 DOI: 10.1016/j.ultsonch.2023.106375] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 06/06/2023]
Abstract
Due to its physical and/or chemical effects, acoustic cavitation plays a crucial role in various emerging applications ranging from advanced materials to biomedicine. The cavitation bubbles usually undergo oscillatory dynamics and violent collapse within a viscoelastic medium, which are closely related to the cavitation-associated effects. However, the role of medium viscoelasticity on the cavitation dynamics has received little attention, especially for the bubble collapse strength during multi-bubble cavitation with the complex interactions between size polydisperse bubbles. In this study, modified Gilmore equations accounting for inter-bubble interactions were coupled with the Zener viscoelastic model to simulate the dynamics of multi-bubble cavitation in viscoelastic media. Results showed that the cavitation dynamics (e.g., acoustic resonant response, nonlinear oscillation behavior and bubble collapse strength) of differently-sized bubbles depend differently on the medium viscoelasticity and each bubble is affected by its neighboring bubbles to a different degree. More specifically, increasing medium viscosity drastically dampens the bubble dynamics and weakens the bubble collapse strength, while medium elasticity mainly affects the bubble resonance at which the bubble collapse strength is maximum. Differently-sized bubbles can achieve resonances and even subharmonic resonances at high driving acoustic pressures as the elasticity changes to certain values, and the resonance frequency of each bubble increases with the elasticity increasing. For the interactions between the size polydisperse bubbles, it indicated that the largest bubble generally has a dominant effect on the dynamics of smaller ones while in turn it is almost unaffected, exhibiting a pattern of destructive and constructive interactions. This study provides a valuable insight into the acoustic cavitation dynamics of multiple interacting polydisperse bubbles in viscoelastic media, which may offer a potential of controlling the medium viscoelasticity to appropriately manipulate the dynamics of multi-bubble cavitation for achieving proper cavitation effects according to the desired application.
Collapse
Affiliation(s)
- Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China; Postdoctoral Workstation of Chongqing People's Hospital, Chongqing, People's Republic of China.
| | - Qingqin Zou
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Xianhua Zhong
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Bingyu Zhang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Zhangyong Li
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China.
| |
Collapse
|