1
|
Qu H, Wang Y, Wang B, Li C. Pulsed electric field treatment of seeds altered the endophytic bacterial community and promotes early growth of roots in buckwheat. BMC Microbiol 2023; 23:290. [PMID: 37833633 PMCID: PMC10571398 DOI: 10.1186/s12866-023-02943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/12/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Endophytic bacteria provide nutrients and stimulate systemic resistance during seed germination and plant growth and development, and their functional properties in combating various stresses make them a powerful tool in green agricultural production. In this paper we explored the function of the endophyte community in buckwheat seeds in order to provide a theoretical basis for the application and scientific research of endophytes in buckwheat cultivation. We used pulsed electric field (PEF) technology to treat buckwheat seeds, monitored the effect of high-voltage pulse treatment on buckwheat seed germination, and analyzed the diversity of endophytic bacteria in buckwheat seeds using the amplicon sequencing method. RESULTS PEF treatment promoted root development during buckwheat seed germination. A total of 350 Operational taxonomic units (OTUs) that were assigned into 103 genera were obtained from control and treatment groups using 16SrRNA amplicon sequencing technology. Additionally, PEF treatment also caused a significant decrease in the abundance of Actinobacteria, Proteobacteria, and Bacteroidetes. The abundance of 28 genera changed significantly as well: 11 genera were more abundant, and 17 were less abundant. The number of associated network edges was reduced from 980 to 117, the number of positive correlations decreased by 89.1%, and the number of negative correlations decreased by 86.6%. CONCLUSION PEF treatment promoted early root development in buckwheat and was able to alter the seed endophytic bacterial community. This study thus makes a significant contribution to the field of endophyte research and to the application of PEF technology in plant cultivation.
Collapse
Affiliation(s)
- Hao Qu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, China
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Trans-boundary Pests, Yunnan Agricultural University, Kunming, China
| | - Baijuan Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, China.
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Trans-boundary Pests, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
2
|
Park S, Kang SE, Kim SJ, Kim J. Graphene-encapsulated yeast cells in harsh conditions. Fungal Biol 2023; 127:1389-1396. [PMID: 37993250 DOI: 10.1016/j.funbio.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/24/2023]
Abstract
Yeast, as a versatile microorganism, holds significant importance in various industries and research fields due to its remarkable characteristics. In the pursuit of biotechnological applications, cell-surface engineering including encapsulation has been proposed as a new strategy to interface with individual living yeast cells. While previous researches of yeast encapsulation with materials have shown promise, it often involves complex processes and lacks confirmation of condition-dependent yeast viability under harsh conditions. To address these issues, we present a rational and facile design for graphene-encapsulated yeast cells. Through a straightforward blending technique, yeast cells are encapsulated with graphene layers, demonstrating the unique properties of yeast cells in structural and functional aspects with graphene. We show graphene layer-dependent functions of yeast cells under various conditions, including pH and temperature-dependent conditions. The layer of graphene can induce the delayed lag time without the transfer of graphene-layered membrane. Our findings highlight the high potential of graphene-encapsulated yeast cells for various industrial applications, offering new avenues for exploration in biotechnology.
Collapse
Affiliation(s)
- Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - So-Ee Kang
- Department of Food Science and Technology Graduate School, Chonnam National University, Gwangju, 61185, Republic of Korea
| | - Soo-Jung Kim
- Department of Food Science and Technology Graduate School, Chonnam National University, Gwangju, 61185, Republic of Korea; Research Center for Biological Cybernetics, Chonnam National University, Gwangju, 61185, Republic of Korea.
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
3
|
Popa EE, Ungureanu EL, Geicu-Cristea M, Mitelut AC, Draghici MC, Popescu PA, Popa ME. Trends in Food Pathogens Risk Attenuation. Microorganisms 2023; 11:2023. [PMID: 37630583 PMCID: PMC10459359 DOI: 10.3390/microorganisms11082023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Foodborne pathogens represent one of the most dangerous threats to public health along the food chain all over the world. Over time, many methods were studied for pathogen inhibition in food, such as the development of novel packaging materials with enhanced properties for microorganisms' growth inhibition (coatings, films) and the use of emerging technologies, like ultrasound, radio frequency or microwave. The aim of this study was to evaluate the current trends in the food industry for pathogenic microorganisms' inhibition and food preservation in two directions, namely technology used for food processing and novel packaging materials development. Five technologies were discussed in this study, namely high-voltage atmospheric cold plasma (HVACP), High-Pressure Processing (HPP), microwaves, radio frequency (RF) heating and ultrasound. These technologies proved to be efficient in the reduction of pathogenic microbial loads in different food products. Further, a series of studies were performed, related to novel packaging material development, by using a series of antimicrobial agents such as natural extracts, bacteriocins or antimicrobial nanoparticles. These materials proved to be efficient in the inhibition of a wide range of microorganisms, including Gram-negative and Gram-positive bacteria, fungi and yeasts.
Collapse
Affiliation(s)
- Elisabeta Elena Popa
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Elena Loredana Ungureanu
- National Research and Development Institute for Food Bioresources, 6 Dinu Vintila Str., 021102 Bucharest, Romania
| | - Mihaela Geicu-Cristea
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Amalia Carmen Mitelut
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Mihaela Cristina Draghici
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Paul Alexandru Popescu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Mona Elena Popa
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| |
Collapse
|
4
|
Muñoz-García R, Díaz-Maroto MC, Arévalo Villena M, Pérez-Coello MS, Alañón ME. Ultrasounds and microwaves techniques as physical methods to accelerate oak wood aged aroma in wines. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
5
|
Liu J, Huang T, Hong W, Peng F, Lu Z, Peng G, Fu X, Liu G, Wang Z, Peng Q, Gong X, Zhou L, Li L, Li B, Xu Z, Lan H. A comprehensive study on ultrasonic deactivation of opportunistic pathogen Saccharomyces cerevisiae in food processing: From transcriptome to phenotype. Lebensm Wiss Technol 2022; 170:114069. [DOI: 10.1016/j.lwt.2022.114069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junyan Liu
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Tengyi Huang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fang Peng
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zerong Lu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Gongyong Peng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Fu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gongliang Liu
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Zhi Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qingmei Peng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiangjun Gong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Lizhen Zhou
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Zhenbo Xu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Haifeng Lan
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Gavahian M, Manyatsi TS, Morata A, Tiwari BK. Ultrasound-assisted production of alcoholic beverages: From fermentation and sterilization to extraction and aging. Compr Rev Food Sci Food Saf 2022; 21:5243-5271. [PMID: 36214172 DOI: 10.1111/1541-4337.13043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/07/2022] [Accepted: 08/26/2022] [Indexed: 01/28/2023]
Abstract
Ultrasound is sound waves above 20 kHz that can be used as a nonthermal ''green'' technology for agri-food processing. It has a cavitation effect, causing bubbles to form and collapse rapidly as they travel through the medium during ultrasonication. Therefore, it inactivates microorganisms and enzymes through cell membrane disruption with physicochemical and sterilization effects on foods or beverages. This emerging technology has been explored in wineries to improve wine color, taste, aroma, and phenolic profile. This paper aims to comprehensively review the research on ultrasound applications in the winery and alcoholic beverages industry, discuss the impacts of this process on the physicochemical properties of liquors, the benefits involved, and the research needed in this area. Studies have shown that ultrasonic technology enhances wine maturation, improves wine fermentation, accelerates wine aging, and deactivates microbes while enhancing quality, as observed with better critical aging markers such as phenolic compounds and color intensity. Besides, ultrasound enhances phytochemical, physicochemical, biological, and organoleptic properties of alcoholic beverages. For example, this technology increased anthocyanin in red wine by 50%. It also enhanced the production rate by decreasing the aging time by more than 90%. Ultrasound can be considered an economically viable technology that may contribute to wineries' waste valorization, resource efficiency improvement, and industry profit enhancement. Despite numerous publications and successful industrial applications discussed in this paper, ultrasound up-scaling and applications for other types of liquors need further efforts.
Collapse
Affiliation(s)
- Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Republic of China, Taiwan
| | - Thabani Sydney Manyatsi
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Republic of China, Taiwan
| | - Antonio Morata
- Departamento de Química y Tecnología de Alimentos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Brijesh K Tiwari
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
| |
Collapse
|
7
|
Nunes BV, da Silva CN, Bastos SC, de Souza VR. Microbiological Inactivation by Ultrasound in Liquid Products. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02818-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Chavan P, Sharma P, Sharma SR, Mittal TC, Jaiswal AK. Application of High-Intensity Ultrasound to Improve Food Processing Efficiency: A Review. Foods 2022; 11:122. [PMID: 35010248 PMCID: PMC8750622 DOI: 10.3390/foods11010122] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
The use of non-thermal processing technologies has grown in response to an ever-increasing demand for high-quality, convenient meals with natural taste and flavour that are free of chemical additions and preservatives. Food processing plays a crucial role in addressing food security issues by reducing loss and controlling spoilage. Among the several non-thermal processing methods, ultrasound technology has shown to be very beneficial. Ultrasound processing, whether used alone or in combination with other methods, improves food quality significantly and is thus considered beneficial. Cutting, freezing, drying, homogenization, foaming and defoaming, filtration, emulsification, and extraction are just a few of the applications for ultrasound in the food business. Ultrasounds can be used to destroy germs and inactivate enzymes without affecting the quality of the food. As a result, ultrasonography is being hailed as a game-changing processing technique for reducing organoleptic and nutritional waste. This review intends to investigate the underlying principles of ultrasonic generation and to improve understanding of their applications in food processing to make ultrasonic generation a safe, viable, and innovative food processing technology, as well as investigate the technology's benefits and downsides. The breadth of ultrasound's application in the industry has also been examined. This will also help researchers and the food sector develop more efficient strategies for frequency-controlled power ultrasound in food processing applications.
Collapse
Affiliation(s)
- Prasad Chavan
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144402, India;
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Pallavi Sharma
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Sajeev Rattan Sharma
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Tarsem Chand Mittal
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, Faculty of Science, Technological University Dublin—City Campus, Central Quad, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin—City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| |
Collapse
|