1
|
Peng S, Li Q, Wei H, Li P, Liu S, Nie L, Leng Y, Huang X. Highly Efficient AIE-Active palmatine photosensitizer for photodynamic inactivation of Listeria monocytogenes in apple juice preservation. Food Res Int 2024; 197:115253. [PMID: 39593335 DOI: 10.1016/j.foodres.2024.115253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/06/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Photodynamic sterilization is a promising alternative to conventional antibacterial approaches with merits of high efficiency and safety. The exploration of aggregation-induced emission (AIE)-type photosensitizers from natural sources is highly valued by researchers and food industry. Herein, the use of palmatine (PA), an aggregation-induced emission-active natural product from traditional Chinese medicine, as photosensitizers for photodynamic inactivation of a tenacious foodborne pathogen of Listeria monocytogenes is investigated. Antibacterial and antibiofilm activity against L. monocytogenes of PA-mediated photodynamic process were first assessed. The results showed that PA-mediated photodynamic process could inhibit the growth of L. monocytogenes, and the minimum bactericidal concentration was determined as 80 μM. At this PA dosing level, well-established biofilms of L. monocytogenes can be effectively destroyed under light irritation. Afterward, cell- and gene-level investigations were conducted to explore the antibacterial mechanism. It is concluded that the exceptional photodynamic antibacterial activity of PA against L. monocytogenes is attributed to the disruption of the cell wall and membrane, increased cell permeability, leakage of functional proteins, and damage to DNA structure. Subsequently, PA-mediated photodynamic process was applied to reduce bacterial activity in apple juice while preserving its quality. Overall, this work highlights the significant potential of PA-mediated photodynamic strategy for controlling foodborne pathogens in food systems.
Collapse
Affiliation(s)
- Shiyu Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Qianying Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Hui Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Ping Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Shuyuan Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Lijuan Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, PR China.
| | - Yuankui Leng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, PR China.
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, PR China.
| |
Collapse
|
2
|
Mandal TK. Nanomaterial-Enhanced Hybrid Disinfection: A Solution to Combat Multidrug-Resistant Bacteria and Antibiotic Resistance Genes in Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1847. [PMID: 39591087 PMCID: PMC11597552 DOI: 10.3390/nano14221847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
This review explores the potential of nanomaterial-enhanced hybrid disinfection methods as effective strategies for addressing the growing challenge of multidrug-resistant (MDR) bacteria and antibiotic resistance genes (ARGs) in wastewater treatment. By integrating hybrid nanocomposites and nanomaterials, natural biocides such as terpenes, and ultrasonication, this approach significantly enhances disinfection efficiency compared to conventional methods. The review highlights the mechanisms through which hybrid nanocomposites and nanomaterials generate reactive oxygen species (ROS) under blue LED irradiation, effectively disrupting MDR bacteria while improving the efficacy of natural biocides through synergistic interactions. Additionally, the review examines critical operational parameters-such as light intensity, catalyst dosage, and ultrasonication power-that optimize treatment outcomes and ensure the reusability of hybrid nanocomposites and other nanomaterials without significant loss of photocatalytic activity. Furthermore, this hybrid method shows promise in degrading ARGs, thereby addressing both microbial and genetic pollution. Overall, this review underscores the need for innovative wastewater treatment solutions that are efficient, sustainable, and scalable, contributing to the global fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Jiang Z, Wang Y, Bai S, Bai C, Tu Z, Li H, Guo P, Liao T, Qiu L. The viable but non-culturable (VBNC) status of Shewanella putrefaciens (S. putrefaciens) with thermosonication (TS) treatment. ULTRASONICS SONOCHEMISTRY 2024; 109:107008. [PMID: 39096846 PMCID: PMC11345692 DOI: 10.1016/j.ultsonch.2024.107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Although thermosonication (TS) treatment has been widely used in food sterilization, the viable but non-culturable (VBNC) of bacteria with TS treatment has still concerned potential food safety and public health. The molecular mechanism of VBNC status of bacteria with TS treatment is not clearly known. Therefore, in this study, we used Shewanella putrefaciens, which was a common putrefactive bacteria in aquatic products, to study the VBNC state of bacteria with TS treatment. Firstly, our results revealed that S. putrefaciens still could enter the VBNC state after TS treatments: 50 kHz, 300 W, 30 min ultrasonic treatment and 70 °C heating; Subsequently, we found the VBNC state of S. putrefaciens can resist the damage of TS treatment, such as cell wall break, DNA degradation, etc; Finally, four-dimensional data-independent acquisition-based proteomics showed that under VBNC state, S. putrefaciens upregulated functional proteins to resist TS treatment, such as: ribosomal proteins to accelerate the synthesis of stress proteins to counteract TS treatments, ornithine decarboxylase SpeF and MraY to repair TS treatment-induced damage, etc. Meanwhile, S. putrefaciens downregulates metabolic and transport functional proteins such as dehydrogenase to reduce the metabolism. Importantly, among those proteins, the ribosomal transcriptional regulatory protein family, such as rpsB, etc, may be the key proteins for S. putrefaciens entering VBNC state. This finding can provide some new strategies for preventing VBNC status of bacteria with TS treatment, such as: inhibition of key proteins, etc.
Collapse
Affiliation(s)
- Ziwei Jiang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China; School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 4300731, China
| | - Yi Wang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Shunjie Bai
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Chan Bai
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Ziyi Tu
- HuBei Crawfish Industrial Tech Ltd., Qianjiang 433100, China
| | - Hailan Li
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Peng Guo
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Tao Liao
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China.
| | - Liang Qiu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China.
| |
Collapse
|
4
|
Luo W, Tang J, Wang B, Wu D, Wang J, Cheng L, Geng F. The potential mechanism of low-power water bath ultrasound to enhance the effectiveness of low-concentration chlorine dioxide in inhibiting Salmonella Typhimurium. Food Chem X 2023; 20:100901. [PMID: 38144795 PMCID: PMC10740011 DOI: 10.1016/j.fochx.2023.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Accepted: 09/23/2023] [Indexed: 12/26/2023] Open
Abstract
This chapter presents a systematic study of the inhibition effect of chlorine dioxide treatment alone and in combination with ultrasound treatment of Salmonella and the physiological metabolic processes within the treated cells. The low-power ultrasound (0.03 W/mL) significantly enhanced the effectiveness (110.00 %) of low concentrations of chlorine dioxide (0.25 mg/L) in inhibiting Salmonella, which, in turn, would significantly reduce the potential environmental impact. In addition, further studies found that low-power ultrasound may enhance the structural and functional damage of chlorine dioxide on Salmonella cell membranes (significant increase in permeability of the outer and inner cell membranes) and disrupt intracellular substance metabolism (small molecule and nucleotide metabolism) and energy metabolism (significant reduction in ATP content and ATPase activity) balance to improve the bacterial inhibitory effect of chlorine dioxide. The results of the study will provide a theoretical basis and methodological guidance for the implementation of "cleaner production" in the food industry.
Collapse
Affiliation(s)
- Wei Luo
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Jie Tang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Beibei Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Di Wu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Jinqiu Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Lei Cheng
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| |
Collapse
|
5
|
Yang S, Piao Y, Li X, Mu D, Ji S, Wu R, Wu J. A new decontamination method for Bacillus subtilisin pasteurized milk: Thermosonication treatment. Food Res Int 2023; 163:112291. [PMID: 36596196 DOI: 10.1016/j.foodres.2022.112291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Thermosonication (TS) is a novel and viable technique employed to replace conventional thermal processing. TS treatment combined with pasteurization was used to kill the residual heat-resistant Bacillus in pasteurized milk and extend the shelf life of pasteurized milk and compared with High Temperture Shoort Time (HTST) pasteurization to study its decontamination effect on Bacillus subtilis and the quality of treated milk. The results showed that after 40 kHz, 240 W, 25 min ultrasonic treatment and 50 °C heating decontamination treatment, the number of B. subtilis in the medium and milk medium decreased by 4.17 log CFU/mL and 4.09 log CFU/mL respectively. The results of cell membrane permeability showed that the leakage of DNA and protein in the HTST-TS group increased by 52.3 % and 34 %, respectively, when compared to that in the HTST group. In addition, transmission electron microscopy (TEM) analysis showed that the bacterial cell membrane of the HTST-TS group swelled up, the cell wall was ruptured, and the cell content was accumulated in the cells. The results showed that HTST-TS treatment significantly inhibited the activities of ATPase (47 %), succinate dehydrogenase (SDH) (68.6 %), and malate dehydrogenase (MDH) (54.4 %). The physical and chemical sensory evaluation of milk treated with HTST-TS showed that HTST-TS treatment could improve the L* value (2.24 %), zeta potential (64.19 %), and colloidal particle size (14.49 %) of milk but had no significant effect on oral sensitivity. In conclusion, this study provides new insights, which may be helpful in implementing this new combined decontamination method in the dairy industry to improve the quality of pasteurized milk and extend the its shelf life.
Collapse
Affiliation(s)
- Shanshan Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning Province; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Yuqiong Piao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning Province; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Xinfei Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning Province; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, Liaoning Province, PR China
| | - Delun Mu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning Province; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning Province; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning Province; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, Liaoning Province, PR China.
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning Province; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China.
| |
Collapse
|
6
|
Luo W, Wang J, Sun L, Li R, Wu D, Tang J, Zhang J, Geng F. Metabolome analysis shows that ultrasound enhances the lethality of chlorine dioxide against Salmonella enterica subsp. Enterica by disrupting its material and energy metabolism. Food Res Int 2022; 162:112135. [DOI: 10.1016/j.foodres.2022.112135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/05/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
|
7
|
Luo W, Wang J, Chen Y, Wang Y, Li R, Tang J, Geng F. Quantitative proteomic analysis provides insight into the survival mechanism of Salmonella typhimurium under high-intensity ultrasound treatment. Curr Res Food Sci 2022; 5:1740-1749. [PMID: 36268134 PMCID: PMC9576580 DOI: 10.1016/j.crfs.2022.09.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/21/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
The survival mechanism of Salmonella treated with high-intensity ultrasound (HIU) should be explored to further enhance the bactericidal efficacy of HIU. In this study, culturable Salmonella was reduced by applying HIU. Electron microscope imaging revealed that HIU caused the disintegration of cell structure and leakage of intracellular substances. For the Salmonella after the HIU treatment, key enzymes of the tricarboxylic acid [TCA] cycle were significantly downregulated, which led to a reduced ATP content (45.25%-75.00%), although ATPase activity was augmented by 33.82%-60.64% in the Salmonella. Accordingly, surviving Salmonella could have tolerated the stress of HIU by upregulating their environmental sensing (two-component system), chemotaxis (bacterial chemotaxis), substance uptake (ABC transporter), and ATP production (oxidative phosphorylation). Therefore, synergistically blocking the ATP production, signal transduction, or substance intake of Salmonella offer promising potential strategies to improve the bactericidal effect of HIU in industrial food processing.
Collapse
Affiliation(s)
- Wei Luo
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| | - Jinqiu Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| | - Yan Chen
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| | - Yixu Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| | - Rui Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plants, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| | - Jie Tang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| |
Collapse
|
8
|
Ren Y, He X, Yang Y, Cao Y, Li Q, Lu L, Peng L, Zou L. Mitochondria-Mediated Apoptosis and Autophagy Participate in Buprofezin-Induced Toxic Effects in Non-Target A549 Cells. TOXICS 2022; 10:551. [PMID: 36287832 PMCID: PMC9610203 DOI: 10.3390/toxics10100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Buprofezin (BUP) is an insecticide used for control of sucking pests. Its widespread use has raised concerns about possible adverse effects on the environment, and especially human health. The mechanism of toxicity of BUP, with respect to human health, is still unclear. Consequently, human A549 cells were employed to clarify the cytotoxicity and toxic mechanism of BUP at the molecular and cellular levels. The outcomes revealed BUP latent toxicity to A549 in a time- and dose-related way. Moreover, BUP induced mitochondrial dysfunction associated with mitochondrial membrane potential collapse, mitochondrial calcium overload, and ROS aggregation, ultimately resulting in the apoptosis and autophagy of A549 cells. Symbolic apoptotic and autophagic modifications were detected, including leakage of cyt-c, elevation of Bax/Bcl-2, activation of cas-9/-3, constitution of autophagic vacuoles, promotion of Beclin-1, conversion of LC3-II, and reduction of p62. Additionally, in total, 1216 differentially expressed genes (DEGs) were defined after BUP treatment. Several apoptosis- and autophagy-related genes, such as BCL2, ATG5, and ATG16, down- or upregulated at the RNA transcription level, and functional DEGs enrichment analysis showed their involvement in the metabolism of xenobiotics by cytochrome P450, mTOR signalling pathway, and AMPK signalling pathway. Results confirmed that BUP could induce cytotoxicity associated with mitochondria-mediated programmed cell death in A549 cells.
Collapse
Affiliation(s)
- Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xuan He
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yanting Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yanan Cao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lidan Lu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
9
|
Ren Y, He X, Yan X, Yang Y, Li Q, Yao T, Lu L, Peng L, Zou L. Unravelling the Polytoxicology of Chlorfenapyr on Non-Target HepG2 Cells: The Involvement of Mitochondria-Mediated Programmed Cell Death and DNA Damage. Molecules 2022; 27:molecules27175722. [PMID: 36080487 PMCID: PMC9457613 DOI: 10.3390/molecules27175722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Chlorfenapyr (CHL) is a type of insecticide with a wide range of insecticidal activities and unique targets. The extensive use of pesticides has caused an increase in potential risks to the environment and human health. However, the potential toxicity of CHL and its mechanisms of action on humans remain unclear. Therefore, human liver cells (HepG2) were used to investigate the cytotoxic effect and mechanism of toxicity of CHL at the cellular level. The results showed that CHL induced cellular toxicity in HepG2 cells and induced mitochondrial damage associated with reactive oxygen species (ROS) accumulation and mitochondrial calcium overload, ultimately leading to apoptosis and autophagy in HepG2 cells. Typical apoptotic changes occurred, including a decline in the mitochondrial membrane potential, the promotion of Bax/Bcl-2 expression causing the release of cyt-c into the cytosol, the activation of cas-9/-3, and the cleavage of PARP. The autophagic effects included the formation of autophagic vacuoles, accumulation of Beclin-1, transformation of LC3-II, and downregulation of p62. Additionally, DNA damage and cell cycle arrest were detected in CHL-treated cells. These results show that CHL induced cytotoxicity associated with mitochondria-mediated programmed cell death (PCD) and DNA damage in HepG2 cells.
Collapse
Affiliation(s)
- Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xuan He
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xiyue Yan
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yanting Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Tian Yao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lidan Lu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Correspondence:
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
10
|
Ye H, Wang J, Wang N, Wu D, Li H, Geng F. Ultrasound-assisted pH-shifting remodels egg-yolk low-density lipoprotein to enable construction of a stable aqueous solution of vitamin D3. Curr Res Food Sci 2022; 5:964-972. [PMID: 35721392 PMCID: PMC9198362 DOI: 10.1016/j.crfs.2022.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/05/2022] Open
Abstract
Egg-yolk low-density lipoprotein (LDL) has a natural liposome structure. Using ultrasound-assisted pH-shifting (pH 12), a naturally safe and stable aqueous solution of vitamin D3 (VD3) was constructed employing LDL as the carrier. Images from electron microscopy showed that pH-shifting remodeled LDL molecules, resulting in a dramatic reduction in particle size (∼50%) and an increase in specific surface area, which reduced the turbidity (27.7%) and provided new interfaces for VD3 loading. Fluorescence analyses showed that the binding of VD3 to LDL under pH-shifting was strong, involved quenching, and the binding constant was 6.19 × 104 M−1. Thermogravimetric analysis and Fourier transform-infrared spectroscopy showed that pH-shifting hydrolyzed the esters in LDL to fatty acid salts, and the maximum weight loss of LDL occurred from 381.9 °C to 457.0 °C. Ultrasonic treatment enhanced the binding of LDL and VD3 (binding constant increased to 2.56 × 107 M−1), reduced the particle size, and increased the ζ-potential of the complex between LDL and VD3, thereby resulting in the improvement of solution stability and storage stability of VD3. Ultrasound-assisted pH-shifting could remodel LDL to construct a stable aqueous solution of VD3, which showed the potential of LDL as a carrier for lipid-soluble components. pH-shifting remodels LDL and results in a reduction in particle size. Under pH-shifting, VD3 was bound stably to LDL with strong affinity. pH-shifting remodeled LDL can be used to encapsulate active ingredients. The binding of VD3 to LDL was enhanced by ultrasonic treatment.
Collapse
|
11
|
Xiao J, Wang J, Gan R, Wu D, Xu Y, Peng L, Geng F. Quantitative N-glycoproteome analysis of bovine milk and yogurt. Curr Res Food Sci 2022; 5:182-190. [PMID: 35072106 PMCID: PMC8763629 DOI: 10.1016/j.crfs.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 12/02/2022] Open
Abstract
Post-translational modification structure of food's proteins might be changed during processing, thereby affecting the nutritional characteristics of the food product. In this study, differences in protein N-glycosylation patterns between milk and yogurt were quantitatively compared based on glycopeptide enrichment, liquid chromatography separation, and tandem mass spectrometry analysis. A total of 181 N-glycosites were identified, among which 142 were quantified in milk and yogurt. Significant alterations in the abundance of 13 of these N-glycosites were evident after the fermentation of milk into yogurt. Overall, the N-glycosylation status of the majority of milk proteins remained relatively unchanged in yogurt, suggesting that their conformations, activities, and functions were maintained despite the fermentation process. Among the main milk proteins, N241 of cathepsin D and N358 of lactoperoxidase were markedly reduced after undergoing lactic acid fermentation to produce yogurt. Furthermore, a comparative analysis of current and previously reported N-glycoproteomic data revealed heterogeneity in the N-glycosylation of milk proteins. To sum up, a quantitative comparison of the N-glycoproteomes of milk and yogurt was presented here for the first time, providing evidence that the fermentation process of yogurt could cause changes in the N-glycosylation of certain milk proteins. 181 N-glycosites from 118 N-glycoproteins were identified in milk and yogurt. 13 N-glycosites changed significantly after fermentation of milk into yogurt. N241 of cathepsin D and N358 of lactoperoxidase was markedly reduced in yogurt. Heterogeneity of N-glycosylation of milk protein has been documented.
Collapse
Affiliation(s)
- Jing Xiao
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jinqiu Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Renyou Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, Sichuan, China
| | - Di Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Yisha Xu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Corresponding author.
| |
Collapse
|