1
|
Liu Y, Dar BN, Makroo HA, Aslam R, Martí-Quijal FJ, Castagnini JM, Amigo JM, Barba FJ. Optimizing Recovery of High-Added-Value Compounds from Complex Food Matrices Using Multivariate Methods. Antioxidants (Basel) 2024; 13:1510. [PMID: 39765839 PMCID: PMC11672994 DOI: 10.3390/antiox13121510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
In today's food industry, optimizing the recovery of high-value compounds is crucial for enhancing quality and yield. Multivariate methods like Response Surface Methodology (RSM) and Artificial Neural Networks (ANNs) play key roles in achieving this. This review compares their technical strengths and examines their sustainability impacts, highlighting how these methods support greener food processing by optimizing resources and reducing waste. RSM is valued for its structured approach to modeling complex processes, while ANNs excel in handling nonlinear relationships and large datasets. Combining RSM and ANNs offers a powerful, synergistic approach to improving predictive models, helping to preserve nutrients and extend shelf life. The review emphasizes the potential of RSM and ANNs to drive innovation and sustainability in the food industry, with further exploration needed for scalability and integration with emerging technologies.
Collapse
Affiliation(s)
- Yixuan Liu
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain; (Y.L.); (F.J.M.-Q.)
| | - Basharat N. Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, Jammu & Kashmir, India; (B.N.D.); (H.A.M.)
| | - Hilal A. Makroo
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, Jammu & Kashmir, India; (B.N.D.); (H.A.M.)
| | - Raouf Aslam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab, India;
| | - Francisco J. Martí-Quijal
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain; (Y.L.); (F.J.M.-Q.)
| | - Juan M. Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain; (Y.L.); (F.J.M.-Q.)
| | - Jose Manuel Amigo
- IKERBASQUE, Basque Society for the Promotion of Science, Plaza Euskadi, 5, 48009 Bilbao, Spain;
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, Barrio Sarriena S/N, 48940 Leioa, Spain
| | - Francisco J. Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain; (Y.L.); (F.J.M.-Q.)
| |
Collapse
|
2
|
Tsegay ZT, Agriopoulou S, Chaari M, Smaoui S, Varzakas T. Statistical Tools to Optimize the Recovery of Bioactive Compounds from Marine Byproducts. Mar Drugs 2024; 22:182. [PMID: 38667799 PMCID: PMC11050780 DOI: 10.3390/md22040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Techniques for extracting important bioactive molecules from seafood byproducts, viz., bones, heads, skin, frames, fins, shells, guts, and viscera, are receiving emphasis due to the need for better valorization. Employing green extraction technologies for efficient and quality production of these bioactive molecules is also strictly required. Hence, understanding the extraction process parameters to effectively design an applicable optimization strategy could enable these improvements. In this review, statistical optimization strategies applied for the extraction process parameters of obtaining bioactive molecules from seafood byproducts are focused upon. The type of experimental designs and techniques applied to criticize and validate the effects of independent variables on the extraction output are addressed. Dominant parameters studied were the enzyme/substrate ratio, pH, time, temperature, and power of extraction instruments. The yield of bioactive compounds, including long-chain polyunsaturated fatty acids, amino acids, peptides, enzymes, gelatine, collagen, chitin, vitamins, polyphenolic constituents, carotenoids, etc., were the most studied responses. Efficiency and/or economic and quality considerations and their selected optimization strategies that favor the production of potential bioactive molecules were also reviewed.
Collapse
Affiliation(s)
- Zenebe Tadesse Tsegay
- Department of Food Science and Post-Harvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle P.O. Box 231, Ethiopia;
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece;
| | - Moufida Chaari
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (M.C.); (S.S.)
| | - Slim Smaoui
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (M.C.); (S.S.)
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece;
| |
Collapse
|
3
|
Morón-Ortiz Á, Mapelli-Brahm P, Meléndez-Martínez AJ. Sustainable Green Extraction of Carotenoid Pigments: Innovative Technologies and Bio-Based Solvents. Antioxidants (Basel) 2024; 13:239. [PMID: 38397837 PMCID: PMC10886214 DOI: 10.3390/antiox13020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Carotenoids are ubiquitous and versatile isoprenoid compounds. The intake of foods rich in these pigments is often associated with health benefits, attributable to the provitamin A activity of some of them and different mechanisms. The importance of carotenoids and their derivatives for the production of foods and health-promotion through the diet is beyond doubt. In the new circular economy paradigm, the recovery of carotenoids in the biorefinery process is highly desirable, for which greener processes and solvents are being advocated for, considering the many studies being conducted at the laboratory scale. This review summarizes information on different extraction technologies (ultrasound, microwaves, pulsed electric fields, pressurized liquid extraction, sub- and supercritical fluid extraction, and enzyme-assisted extraction) and green solvents (ethyl lactate, 2-methyltetrahydrofuran, natural deep eutectic solvents, and ionic liquids), which are potential substitutes for more toxic and less environmentally friendly solvents. Additionally, it discusses the results of the latest studies on the sustainable green extraction of carotenoids. The conclusions drawn from the review indicate that while laboratory results are often promising, the scalability to real industrial scenarios poses a significant challenge. Furthermore, incorporating life cycle assessment analyses is crucial for a comprehensive evaluation of the sustainability of innovative extraction processes compared to industry-standard methods.
Collapse
Affiliation(s)
| | - Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.M.-O.); (A.J.M.-M.)
| | | |
Collapse
|
4
|
Anaya-Esparza LM, Aurora-Vigo EF, Villagrán Z, Rodríguez-Lafitte E, Ruvalcaba-Gómez JM, Solano-Cornejo MÁ, Zamora-Gasga VM, Montalvo-González E, Gómez-Rodríguez H, Aceves-Aldrete CE, González-Silva N. Design of Experiments for Optimizing Ultrasound-Assisted Extraction of Bioactive Compounds from Plant-Based Sources. Molecules 2023; 28:7752. [PMID: 38067479 PMCID: PMC10707804 DOI: 10.3390/molecules28237752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Plant-based materials are an important source of bioactive compounds (BC) with interesting industrial applications. Therefore, adequate experimental strategies for maximizing their recovery yield are required. Among all procedures for extracting BC (maceration, Soxhlet, hydro-distillation, pulsed-electric field, enzyme, microwave, high hydrostatic pressure, and supercritical fluids), the ultrasound-assisted extraction (UAE) highlighted as an advanced, cost-efficient, eco-friendly, and sustainable alternative for recovering BC (polyphenols, flavonoids, anthocyanins, and carotenoids) from plant sources with higher yields. However, the UAE efficiency is influenced by several factors, including operational variables and extraction process (frequency, amplitude, ultrasonic power, pulse cycle, type of solvent, extraction time, solvent-to-solid ratio, pH, particle size, and temperature) that exert an impact on the molecular structures of targeted molecules, leading to variations in their biological properties. In this context, a diverse design of experiments (DOEs), including full or fractional factorial, Plackett-Burman, Box-Behnken, Central composite, Taguchi, Mixture, D-optimal, and Doehlert have been investigated alone and in combination to optimize the UAE of BC from plant-based materials, using the response surface methodology and mathematical models in a simple or multi-factorial/multi-response approach. The present review summarizes the advantages and limitations of the most common DOEs investigated to optimize the UAE of bioactive compounds from plant-based materials.
Collapse
Affiliation(s)
- Luis Miguel Anaya-Esparza
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - Edward F. Aurora-Vigo
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - Zuamí Villagrán
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| | - Ernesto Rodríguez-Lafitte
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - José Martín Ruvalcaba-Gómez
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Mexico;
| | - Miguel Ángel Solano-Cornejo
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - Victor Manuel Zamora-Gasga
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (V.M.Z.-G.); (E.M.-G.)
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (V.M.Z.-G.); (E.M.-G.)
| | - Horacio Gómez-Rodríguez
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| | - César Eduardo Aceves-Aldrete
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| | - Napoleón González-Silva
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| |
Collapse
|
5
|
Vega EN, Ciudad-Mulero M, Fernández-Ruiz V, Barros L, Morales P. Natural Sources of Food Colorants as Potential Substitutes for Artificial Additives. Foods 2023; 12:4102. [PMID: 38002160 PMCID: PMC10670170 DOI: 10.3390/foods12224102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, the demand of healthier food products and products made with natural ingredients has increased overwhelmingly, led by the awareness of human beings of the influence of food on their health, as well as by the evidence of side effects generated by different ingredients such as some additives. This is the case for several artificial colorants, especially azo colorants, which have been related to the development of allergic reactions, attention deficit and hyperactivity disorder. All the above has focused the attention of researchers on obtaining colorants from natural sources that do not present a risk for consumption and, on the contrary, show biological activity. The most representative compounds that present colorant capacity found in nature are anthocyanins, anthraquinones, betalains, carotenoids and chlorophylls. Therefore, the present review summarizes research published in the last 15 years (2008-2023) in different databases (PubMed, Scopus, Web of Science and ScienceDirect) encompassing various natural sources of these colorant compounds, referring to their obtention, identification, some of the efforts made for improvements in their stability and their incorporation in different food matrices. In this way, this review evidences the promising path of development of natural colorants for the replacement of their artificial counterparts.
Collapse
Affiliation(s)
- Erika N. Vega
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - María Ciudad-Mulero
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
| | - Virginia Fernández-Ruiz
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Patricia Morales
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
| |
Collapse
|
6
|
Rojas-Orduña E, Hernández-Carrión M, Gómez-Franco JD, Narváez-Cuenca CE, Sánchez-Camargo ADP. Utilization of red and yellow Coffea arabica var. Caturra pulp: macronutrient analysis, carotenoid extraction, and encapsulation for dairy product enrichment. Front Nutr 2023; 10:1231049. [PMID: 37720375 PMCID: PMC10501141 DOI: 10.3389/fnut.2023.1231049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
This study aimed to investigate the macronutrient and carotenoid content of red and yellow Coffea arabica var. Caturra pulp, a by-product of coffee processing in Colombia. The study employed ultra-sound-assisted extraction (UAE) to extract carotenoids, and a 23 factorial design was used to evaluate the effects of pulp color, biomass-solvent ratio, and solvent mixture composition on carotenoid content and extraction yield. The condition that provided the highest carotenoid extraction was further encapsulated by spray drying and added to a dairy product. The results showed that coffee pulp has significant dietary fiber content and high levels of carotenoids, with yellow pulp having a higher content than red pulp. Lutein isomers and lutein esters were the most abundant carotenoids found in both red and yellow coffee pulp. The highest carotenoid extraction was achieved using a 1:40 (g/mL) biomass:solvent ratio and a 20:80% v/v Ethanol:Ethyl Acetate solvent mixture for the yellow pulp. The carotenoid extract also demonstrated high encapsulation efficiency (46.57 ± 4.03%) and was found to be stable when added to a fermented milk product. This study presents an alternative solution for utilizing coffee by-products in Colombia, which could positively impact the families of over half a million Colombian coffee producers.
Collapse
Affiliation(s)
- Elkin Rojas-Orduña
- Group of Product and Process Design, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | - María Hernández-Carrión
- Group of Product and Process Design, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Juan David Gómez-Franco
- Food Chemistry Research Group, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos-Eduardo Narváez-Cuenca
- Food Chemistry Research Group, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | |
Collapse
|
7
|
Silva DSN, Silva MDS, Coelho TLS, Dantas C, Lopes Júnior CA, Caldas NM, Vieira EC. Combining high intensity ultrasound and experimental design to improve carotenoid extraction efficiency from Buriti (Mauritia flexuosa). ULTRASONICS SONOCHEMISTRY 2022; 88:106076. [PMID: 35753138 PMCID: PMC9249909 DOI: 10.1016/j.ultsonch.2022.106076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Buriti (Mauritia flexuosa L.) is a significant source of carotenoids, but these compounds have been extracted using laborious and low-effective methods. The present work evaluated the high-intensity ultrasound combined with a chemometric approach to developing an optimal extraction method of carotenoids from buriti pulp. The multivariate optimization was carried out through two steps. First, a simplex-lattice mixture design was used to optimize the extractor solution finding higher extraction yield (903 ± 21 µg g-1) with the acetone:ethanol (75/25) mixture. After, sample mass (80 mg) and sonication time (30 min) were optimized applying central composite design (CCD) which provided a 14% improvement in the extraction method yield. So, the total carotenoid content (TCC) with optimal extraction conditions was 1026 ± 13 µg g-1which is almost twice the yield of methods known in the literature for buriti. The RP-HPLC-DAD analysis revealed that the carotenoids are gently extracted and β-carotene is the major compound in the extracts. To confirm the accuracy, buriti samples spiked with β-carotene standard and the developed method showed recovery >84% and precision <6.5%. Furthermore, the optimized ultrasound-assisted extraction (UAE) method was applied to other samples (tomato, guava, carrot, mango, acerola, papaya, and pumpkin) and presented a yield to 5.5-fold higher when compared to the reported methods indicating high robustness. Based on results, the UAE method developed has demonstrated feasibility and reliability for the study of carotenoids in buriti pulp as well as in other plant matrices with high biological relevance.
Collapse
Affiliation(s)
- Darlisson Slag Neri Silva
- Grupo de Instrumentação Analítica e Preparo de Amostra (GRIAPA), Department of Chemistry, Federal University of Piauí - UFPI, 64049-550 Teresina, Piauí, Brazil
| | - Matheus de Sousa Silva
- Grupo de Instrumentação Analítica e Preparo de Amostra (GRIAPA), Department of Chemistry, Federal University of Piauí - UFPI, 64049-550 Teresina, Piauí, Brazil
| | - Tiago Linus Silva Coelho
- Grupo de Instrumentação Analítica e Preparo de Amostra (GRIAPA), Department of Chemistry, Federal University of Piauí - UFPI, 64049-550 Teresina, Piauí, Brazil
| | - Clecio Dantas
- Laboratório de Química Computacional Inorgânica e Quimiometria - (LQCINMETRIA), State University of Maranhão - UEMA, 65604-380 Caxias, Maranhão, Brazil
| | - Cícero Alves Lopes Júnior
- Grupo de Estudos em Bioanalítica - GEBIO, Department of Chemistry, Federal University of Piauí, 64049-550 Teresina, PI, Brazil; Institute for Chemistry, TESLA - Analytical Chemistry, University of Graz, Universitätsplatz 1/I, 8010 Graz, Austria.
| | - Naise Mary Caldas
- Grupo de Instrumentação Analítica e Preparo de Amostra (GRIAPA), Department of Chemistry, Federal University of Piauí - UFPI, 64049-550 Teresina, Piauí, Brazil.
| | - Edivan Carvalho Vieira
- Grupo de Instrumentação Analítica e Preparo de Amostra (GRIAPA), Department of Chemistry, Federal University of Piauí - UFPI, 64049-550 Teresina, Piauí, Brazil.
| |
Collapse
|