1
|
Fikry M, Jafari S, Shiekh KA, Kijpatanasilp I, Khongtongsang S, Khojah E, Aljumayi H, Assatarakul K. Ultrasound-assisted extraction of bioactive compounds from longan seeds powder: Kinetic modelling and process optimization. ULTRASONICS SONOCHEMISTRY 2024; 108:106949. [PMID: 39003930 DOI: 10.1016/j.ultsonch.2024.106949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Investigating the extraction of bioactive compounds represents a hopeful direction for maximizing the value of longan fruit byproducts. This study explored the influence of ultrasonic-assisted extraction (UAE) parameters-specifically ultrasonic power ratios, temperatures, and exposure times-utilizing water as a green solvent on several properties of the longan seeds extract (LSE). These properties encompassed the energy consumption of the UAE process (EC), extraction yield (EY), total phenolic contents (TPC), total flavonoid contents (TFC), and antioxidant activity (DPPH). Additionally, the study sought to optimize the conditions of UAE process and examine its thermodynamic properties. A three-level, three-factor full factorial design was utilized to assess the effects of different factors on LSE properties. Results indicated that EC, EY, TPC, TFC, and DPPH were significantly influenced by power ratios, temperatures, and exposure time. Moreover, the proposed models effectively characterized the variations in different properties during the extraction process. The optimized extraction conditions, aimed at minimizing EC while maximizing EY, TPC, TFC, and DPPH radical scavenging activity, were demonstrated as an ultrasonic power ratio of 44.4 %, a temperature of 60 °C, and an extraction time of 17.7 min. Optimization led to 563 kJ for EC, 7.85 % for EY, 47.21 mg GAE/mL for TPC, 96.8 mg QE/mL for TFC, and 50.15 % for DPPH radical scavenging activity. The results emphasized that the UAE process exhibited characteristics of endothermicity and spontaneity. The results provide valuable insights that could inform the enhancement of extraction processes, potentially benefiting industrial utilization and pharmaceutical formulations.
Collapse
Affiliation(s)
- Mohammad Fikry
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, 13736 Moshtohor, Toukh, Egypt; Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Saeid Jafari
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Khursheed Ahmad Shiekh
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Isaya Kijpatanasilp
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supanit Khongtongsang
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif 21944, Saudi Arabia
| | - Huda Aljumayi
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif 21944, Saudi Arabia
| | - Kitipong Assatarakul
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Ozcelik MM, Aydin S, Aydin E, Ozkan G. Preserving nutrient content in red cabbage juice powder via foam-mat hybrid microwave drying: Application in fortified functional pancakes. Food Sci Nutr 2024; 12:1340-1355. [PMID: 38370060 PMCID: PMC10867499 DOI: 10.1002/fsn3.3847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 02/20/2024] Open
Abstract
Red cabbage, a highly nutritious cool-season cruciferous vegetable, is rich in anthocyanins; however, the instability of anthocyanins during processing and storage poses challenges. This study aimed to optimize the foam-mat drying process of red cabbage juice (RCJ) with a high anthocyanin content using a hybrid microwave hot air-drying system (MW-HAD) as a dehydration method compared to conventional techniques (HAD) using response surface methodology (RSM). Additionally, the produced red cabbage juice powder (RCJP) was used to enrich the pancake formulation. The developed model exhibited a high degree of reliability with optimal conditions and was determined for microwave power, temperature, foaming agent carboxymethylcellulose (CMC), and egg white protein (EWP) as 360 W, 60°C, 0.3%, and 1.2%, respectively. Moisture content (%) was decreased from 93.47 to 8.62 at optimum process conditions. In comparison to the control (60°C), foam mat drying with the MW-HAD hybrid system reduced the drying time (DT) by more than 90.9% due to the higher drying rate, while many physicochemical properties, especially total anthocyanin content (TAC), were better preserved. Utilization of RCJP in the production of anthocyanin-rich functional pancakes resulted in enhanced nutritional qualities compared to control pancakes with increased protein (35.07%), total phenolic (75.8%), dietary fiber (82.9%), and anthocyanin content (100%). In conclusion, MW-HAD demonstrates significant potential as a promising drying method to reduce the DT and preserve the physicochemical properties of RCJP. Furthermore, the application of the optimized RCJP in anthocyanin-rich functional pancakes highlights improved nutritional qualities, making a substantial contribution to the advancement of functional foods.
Collapse
Affiliation(s)
- Muhammed Mustafa Ozcelik
- Department of Food Engineering, Faculty of Engineering and Natural SciencesSuleyman Demirel UniversityIspartaTurkey
| | - Sedef Aydin
- Department of Food Engineering, Faculty of Engineering and Natural SciencesSuleyman Demirel UniversityIspartaTurkey
| | - Ebru Aydin
- Department of Food Engineering, Faculty of Engineering and Natural SciencesSuleyman Demirel UniversityIspartaTurkey
| | - Gulcan Ozkan
- Department of Food Engineering, Faculty of Engineering and Natural SciencesSuleyman Demirel UniversityIspartaTurkey
| |
Collapse
|
3
|
Sun M, Zhuang Y, Gu Y, Zhang G, Fan X, Ding Y. A comprehensive review of the application of ultrasonication in the production and processing of edible mushrooms: Drying, extraction of bioactive compounds, and post-harvest preservation. ULTRASONICS SONOCHEMISTRY 2024; 102:106763. [PMID: 38219551 PMCID: PMC10825639 DOI: 10.1016/j.ultsonch.2024.106763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Edible mushrooms are high in nutrients, low in calories, and contain bioactive substances; thus, they are a valuable food source. However, the high moisture content of edible mushrooms not only restricts their storage and transportation after harvesting, but also leads to a shorter processable cycle, production and processing limitations, and a high risk of deterioration. In recent years, ultrasonic technology has been widely applied to various food production operations, including product cleaning, post-harvest preservation, freezing and thawing, emulsifying, and drying. This paper reviews applications of ultrasonic technology in the production and processing of edible mushrooms in recent years. The effects of ultrasonic technology on the drying, extraction of bioactive substances, post-harvest preservation, shelf life/preservation, freezing and thawing, and frying of edible mushrooms are discussed. In summary, the application of ultrasonic technology in the edible mushroom industry has a positive effect and promotes the development of this industry.
Collapse
Affiliation(s)
- Mianli Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China
| | - Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China.
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727, Jingming South Road, Chenggong District, Kunming 650500, China.
| |
Collapse
|
4
|
Salehi F, Inanloodoghouz M, Ghazvineh S. Influence of microwave pretreatment on the total phenolics, antioxidant activity, moisture diffusivity, and rehydration rate of dried sweet cherry. Food Sci Nutr 2023; 11:7870-7876. [PMID: 38107109 PMCID: PMC10724636 DOI: 10.1002/fsn3.3703] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 12/19/2023] Open
Abstract
The target of this work was to investigate the influence of microwave pretreatments (at five levels of 0, 30, 60, 90, and 120 s) on the total phenolics content, antioxidant potential, mass transfer rate, effective moisture diffusivity (D eff), and rehydration rate of sweet cherries (SC). The drying duration of microwave-treated SC was shorter than the untreated sample. The average drying time of fresh SC microwaved for 0, 30, 60, 90, and 120 s were 220, 205, 190, 175, and 150 min, respectively. The D eff values, total phenolics, and antioxidant capacity of microwave-treated SC were higher than the untreated sample. In this study, the SC D eff as determined by the second Fick law varied from 8.73 × 10-10 to 1.41 × 10-9 m2/s. The experimental data for the dehydration curves were fitted to different thin-layer equations, and the Midilli equation using the experimental constants best described the drying rate of SC. As the microwave pretreatment time increased from 0 to 120 s, the total phenolics and antioxidant capacity of dried SC increased from 1491.4 μg Gallic acid equivalents (GAE)/g dry to 2272.1 μg GAE/g dry, and 54.47%-62.59% (p < .05). The microwave pretreatment enhanced the rehydration rate of dried SC. The rehydration percent of dried SC microwaved for 0, 30, 60, 90, and 120 s were 127.27%, 136.63%, 136.91%, 137.07%, and 136.72%, respectively.
Collapse
Affiliation(s)
- Fakhreddin Salehi
- Department of Food Science and TechnologyBu‐Ali Sina UniversityHamedanIran
| | | | - Sara Ghazvineh
- Department of Food Science and TechnologyBu‐Ali Sina UniversityHamedanIran
| |
Collapse
|
5
|
Zhu H, Xing Y, Akan OD, Yang T. Ultrafine comminution-assisted ultrasonic-microwave synergistic extraction of Pueraria mirifica (Kudzu flower and root) flavonoids. Heliyon 2023; 9:e21137. [PMID: 37920497 PMCID: PMC10618490 DOI: 10.1016/j.heliyon.2023.e21137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/19/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Extracts of the Pueraria mirifica (Kudzu) plant have several significant human health-promoting benefits. This study utilized orthogonal tests to evaluate the effects of differential ultrasonic power, microwave, and time on the rate of flavonoid extraction from Kudzu samples. Ultrafine processing resulted in finer powder microstructures (SEM) with high solubility. The smallest D50 measurements of ultrafine Kudzu flower and root particles were 11.7 ± 0.004b and 14.3 ± 0.013c μm, respectively. Increasing ultrasonic power from 200 to 600 W yielded increased flavonoids. Increased microwave power from 200 to 800 W also yielded increased flavonoid extract. We found that the best combination factor was A3B2C3 (A-ultrasonic power, B- time, and C- microwave power), showing that flavonoid extraction rate was primarily influenced by microwave power, followed by ultrasonic time and ultrasonic power. Conclusively, ultrafine pulverization increased the flavonoid extraction rate from Kudzu powder particles. Also, scanning electron microscopy results showed that the finer particles had increased solubility.
Collapse
Affiliation(s)
- He Zhu
- College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, 410004, China
- College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, China
| | - Yanxia Xing
- College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, China
| | - Otobong D. Akan
- College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, 410004, China
- Microbiology Department, Faculty of Biological Sciences, Akwa Ibom State University, Uyo, P.M.B, 1167, Akwa-Ibom State, Nigeria
| | - Tao Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, 410004, China
| |
Collapse
|
6
|
Islam M, Malakar S, Rao MV, Kumar N, Sahu JK. Recent advancement in ultrasound-assisted novel technologies for the extraction of bioactive compounds from herbal plants: a review. Food Sci Biotechnol 2023; 32:1763-1782. [PMID: 37781053 PMCID: PMC10541372 DOI: 10.1007/s10068-023-01346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 10/03/2023] Open
Abstract
Herbal plants comprise potent bioactives, and they have a potential for the development of functional foods. Ultrasonication technology can be used to enhance the efficiency and quality of these bioactivities. The present review discussed the ultrasound-assisted novel extraction technologies (supercritical carbon dioxide (CO2) and high pressurized liquid), including mechanistic understanding, influencing factors, extract process efficiency, and the recovery of bioactives with an industrial perspective. The strong observations of this study are the novel ultrasound-induced extraction process variables, such as ultrasound amplitude, sonication time, temperature, solid-solvent ratio, and pressure, are significantly influenced and must be optimized for maximum recovery of bioactives. The novel green technologies (ultrasound and assisted) could remarkably improve the extraction efficiency and enhance the quality of green extract. This review will support technological understanding about the impact on process parameters for the extraction of bioactives for the development of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Makdud Islam
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana, 131028 India
| | - Santanu Malakar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana, 131028 India
| | - Madaraboina Venkateswara Rao
- Department of Food Technology, Vignan’s Foundation for Science Technology and Research, Vadlamudi, Andhra Pradesh India 522213
| | - Nitin Kumar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana, 131028 India
| | - Jatindra K. Sahu
- Food Customization Research Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi New Delhi, India
| |
Collapse
|
7
|
Taghinezhad E, Kaveh M, Szumny A, Figiel A, Blasco J. Qualitative, energy and environmental aspects of microwave drying of pre-treated apple slices. Sci Rep 2023; 13:16152. [PMID: 37752295 PMCID: PMC10522627 DOI: 10.1038/s41598-023-43358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023] Open
Abstract
In the present research, response parameters such as specific energy consumption (SEC), thermal efficiency (TE), energy efficiency (EF), drying time (DT), greenhouse gas (GHG) emission (such as CO2 and NOx), and quality features (color variation and shrinkage) were modeled by response surface methodology (RSM) for apple slices dried in a microwave dryer under ultrasonication (30 ℃-10 min) and blanching (80 °C-2 min) pretreatments. Also, RSM was applied to optimize two independent parameters including microwave power and sample thickness in the levels 100, 200, and 300 W and 2, 4, and 6 mm, respectively. The results indicated the significant influence (P < 0.01) of the independent parameters on the response parameters. The vales of SEC, DT, GHG emission, shrinkage, and color difference were linearly decreased with the declining sample thickness and increasing microwave power, while the energy and thermal efficiencies were increased by a quadratic equation. The use of ultrasonication and blanching pretreatments decreased the SEC, GHG emissions, and DT; while improving the quality of the samples as compared to the non-treated slices. The optimization results showed the optimal drying times (31.55, 82.19, and 50.55 min), SEC (3.42, 10.07, and 4.37 MJ/kg), CO2 with natural gas (1539.75, 1518.75, and 4585 g), CO2 with gas oil (3662.53, 2099.25, 2721.25 g), NOx with natural gas (10.094, 9.956, and 12.906 g), and NOx with gas oil (12.934, 12.758, and 16.538 g) at a microwave power of 300 W and sample thickness of 2 mm with desirability of 0.921, 0.935, and 0.916 for control samples, ultrasonicated, and blanched, respectively.
Collapse
Affiliation(s)
- Ebrahim Taghinezhad
- Department of Agricultural Technology Engineering, Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, 5619911367, Ardabil, Iran.
- Department of Chemistry, Wroclaw University of Environmental and Life Science, CK Norwida 25, 50-375, Wrocław, Poland.
| | - Mohammad Kaveh
- Department of Petroleum Engineering, College of Engineering, Knowledge University, 44001, Erbil, Iraq
| | - Antoni Szumny
- Department of Chemistry, Wroclaw University of Environmental and Life Science, CK Norwida 25, 50-375, Wrocław, Poland
| | - Adam Figiel
- Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37a, 51-630, Wrocław, Poland
| | - José Blasco
- Centro de Agroingeniería, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10.7, Moncada, 46113, Valencia, Spain
| |
Collapse
|
8
|
Li M, Zhou C, Wang B, Zeng S, Mu R, Li G, Li B, Lv W. Research progress and application of ultrasonic- and microwave-assisted food processing technology. Compr Rev Food Sci Food Saf 2023; 22:3707-3731. [PMID: 37350041 DOI: 10.1111/1541-4337.13198] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
Microwaves are electromagnetic waves of specific frequencies (300 MHz-3000 GHz), whereas ultrasonic is mechanical waves of specific frequencies. Microwave and ultrasonic technology as a new processing method has been widely used in food processing fields. Combined ultrasonic and microwave technology is exploited by researchers as an improvement technique and has been successfully applied in food processing such as thawing, drying, frying, extraction, and sterilization. This paper overviews the principle and characteristics of ultrasonic- and microwave-assisted food processing techniques, particularly their combinations, design of equipment, and their applications in the processing of agricultural products such as thawing, drying, frying, extraction, and sterilization. The combination of ultrasonic and microwave is applied in food processing, where microwave enhances the heating rate, and ultrasonic improves the efficiency of heat and mass transfer. The synergy of the heating effect of microwave and the cavitation effect of ultrasonic improves processing efficiency and damages the cell structure of the material. The degradation of nutrient composition and energy consumption due to the short processing time of combined ultrasonic and microwave technology is decreased. Ultrasonic technology, as an auxiliary means of efficient microwave heating, is pollution-free, highly efficient, and has a wide range of applications in food processing.
Collapse
Affiliation(s)
- Mengge Li
- College of Engineering, China Agricultural University, Beijing, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bo Wang
- School of Behavioural and Health Science, Australian Catholic University, Sydney, New South Wales, Australia
| | - Shiyu Zeng
- College of Engineering, China Agricultural University, Beijing, China
| | - Rongyi Mu
- College of Engineering, China Agricultural University, Beijing, China
| | - Guohua Li
- College of Engineering, China Agricultural University, Beijing, China
| | - Bingzheng Li
- Guangxi Bioscience and Technology Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Santos NC, Almeida RLJ, Saraiva MMT, de Alcântara Ribeiro VH, de Sousa FM, de Lima TLB, de Alcântara Silva VM, André AMMCN, Leite Filho MT, de Almeida Mota MM. Application of microwave-assisted freeze–thaw pretreatment in kiwi drying: mass transfer, X-ray diffraction and bioaccessibility of phenolic compounds. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
10
|
Zhang D, Huang D, Zhang Y, Lu Y, Huang S, Gong G, Li L. Ultrasonic assisted far infrared drying characteristics and energy consumption of ginger slices. ULTRASONICS SONOCHEMISTRY 2023; 92:106287. [PMID: 36599279 PMCID: PMC9817171 DOI: 10.1016/j.ultsonch.2022.106287] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Three drying methods, including far infrared drying, infrared convection drying, and ultrasonic pretreatment assisted far infrared drying, were adopted in the drying of ginger slices. The effects of main parameters (ultrasonic pretreatment power and time, far infrared temperature and power, sample thickness, infrared convection temperature) on the drying kinetics, energy consumption, and color change were investigated and discussed in detail. The results showed that the drying process of ginger slices was controlled by falling rate period. For far infrared drying, the drying rate increased with the increase of infrared temperature and decrease of sample thickness, while the infrared power had no obvious effect on the drying process. The infrared convection drying showed the fastest drying rate and the smallest color change, however, the energy consumption was the highest. For ultrasonic pretreatment assisted far infrared drying, an appropriate ultrasonic pretreatment time and power would promote the far infrared drying process and the energy consumption was only slightly increased. However, the color change was relatively large. The ultrasound technology showed its greatest potential to enhance the drying rate at the early stage of drying and increasing ultrasonic power was more effective than prolonging the pretreatment time in promoting far infrared drying.
Collapse
Affiliation(s)
- Dongyan Zhang
- Department of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Dan Huang
- Department of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yixiao Zhang
- Department of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yijun Lu
- Department of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shuai Huang
- Department of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Guiliang Gong
- Department of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lijun Li
- Department of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
11
|
Aydar AY, Aydın T, Karaiz A, Alabey F, Kothakota A, Raposo A, Abdullah Albaridi N, Pandiselvam R. Effect of ultrasound assisted cleaning on pesticide removal and quality characteristics of Vitis vinifera leaves. ULTRASONICS SONOCHEMISTRY 2023; 92:106279. [PMID: 36580835 PMCID: PMC9808015 DOI: 10.1016/j.ultsonch.2022.106279] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In this study, the pesticide (acetamiprid, deltamethrin, and pyridaben) removal and physicochemical quality improvement of vine (Vitis vinifera) leaf were examined using ultrasonic and traditional cleaning for 5, 10, and 15 min. After an ultrasonic cleaning procedure at 37 kHz for 10 min, acetamiprid, deltamethrin, and pyridaben in vine leaf were reduced by 54.76, 58.22, and 54.55 %, respectively. Furthermore, the total phenolic content (TPC) in vine leaf increased to 13.45 mg GAE/g DW compared to that in control samples using traditional cleaning (10.37 mg GAE/g DW), but there were no significant differences in DPPH radical scavenging activity. After 15 min of conventional cleaning, the total chlorophyll and total carotenoid content of leaves were found to be lowest among all samples, at 6.52 mg/kg and 0.48 mg/kg, respectively. In conclusion, when compared to conventional cleaning methods, ultrasonic cleaning with no chemicals or heat treatment has proven to be a successful and environmentally friendly application in reducing commonly used pesticides and improving the physicochemical qualities of leaves.
Collapse
Affiliation(s)
- Alev Yüksel Aydar
- Department of Food Engineering, Manisa Celal Bayar University, 45140, Yunusemre, Manisa, Turkiye.
| | - Tuba Aydın
- Department of Food Engineering, Manisa Celal Bayar University, 45140, Yunusemre, Manisa, Turkiye
| | - Alican Karaiz
- Department of Food Engineering, Manisa Celal Bayar University, 45140, Yunusemre, Manisa, Turkiye
| | - Furkan Alabey
- Department of Food Engineering, Manisa Celal Bayar University, 45140, Yunusemre, Manisa, Turkiye
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Najla Abdullah Albaridi
- Department of Health Science, College of Health and Rehabilitation, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod 671 124, Kerala, India.
| |
Collapse
|