1
|
Sharma A, Thakur A, Nanda V. Impact of green techniques on intricate cell wall structure of bee pollen to enhance functional characteristics and improve its in vitro digestibility. J Food Sci 2024. [PMID: 39495596 DOI: 10.1111/1750-3841.17472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 11/06/2024]
Abstract
Bee pollen is a nutrient-rich super food, but its rigid dual-layered structure limits nutrient release and absorption. The outer exine, composed of stress-resistant sporopollenin, and the inner intine, consisting of cellulose and pectin, form a barrier to digestive breakdown. This study investigates the potential of green techniques, specifically supercritical fluid extraction and ultrasonication, to disaggregate pollen cell walls, enhancing its bioavailability and maximizing nutrient utilization. Ultrasonication treated pollen (USTP) and supercritical fluid extraction-treated pollen (STP) demonstrated disruption, as evidenced by scanning electron microscopy imaging. In relation to scanning electron microscopy, techno-functional, antioxidant, and compositional analysis displayed a positive outcome, with crude lipid, protein, antioxidant activity (2,2-diphenyl-1-picrylhydrazyl activity and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid assay) and total phenolic content increased by 34.80%, 32.58%, 10.80%, 11.37%, and 83.94%, respectively. Based on the above properties, USTP for 4 h and STP at 400 bar for 40 min were identified as the optimal conditions for disintegration. Furthermore, optimized samples analyzed for amino acid and mineral release revealed a notable increase in composition of essential amino acid and minerals (Ca, Cu, Fe, etc.) by ∼1.5 and 1.2 times, respectively. Along with significant changes in composition, fractured pollen exhibited 1.4 folds increase in protein digestibility with minor differences in thermal stability, and crystallinity as established by differential scanning calorimetry, and X-ray diffraction analysis. The study confirms that nutrient release and absorption remain restricted without pre-treatment, highlighting the necessity of specific treatment to disintegrate bee pollen before its use as a functional food ingredient. PRACTICAL APPLICATION: Bee pollen is a rich source of all the essential nutrients required by the humans and recognised as a complete food. However, its tough cellular structure restricts its utilisation in numerous food applications. Therefore, to disintegrate bee pollen and release its nutrients, ultrasonication and super critical fluid extraction processes were employed to improve its utilization for human purposes. Both the treatment techniques, enhanced bee pollen's bioavailability and functional properties, making it more suitable for use in nutraceuticals and functional foods.These treatments proved to increase the antioxidant capacity, digestibility, and create high-value ingredient for supplements, beverages, and fortified foods.
Collapse
Affiliation(s)
- Anamika Sharma
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| | - Avinash Thakur
- Department of Chemical Engineering, Sant Longowal Institute of Engineering and Technology, Longowal, India
| | - Vikas Nanda
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| |
Collapse
|
2
|
Alcalá-Orozco M, Lobo-Farfan I, Tirado DF, Mantilla-Escalante DC. Enhancing the Nutritional and Bioactive Properties of Bee Pollen: A Comprehensive Review of Processing Techniques. Foods 2024; 13:3437. [PMID: 39517221 PMCID: PMC11544882 DOI: 10.3390/foods13213437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Bee pollen is recognized as a superfood due to its high content of nutrients and bioactive compounds. However, its bioavailability is restricted by a degradation-resistant outer layer known as exine. Physical and biotechnological techniques have recently been developed to degrade this layer and improve pollen's nutritional and functional profile. This review examines how processing methods such as fermentation, enzymatic hydrolysis, ultrasound, and drying affect pollen's chemical profile, nutrient content, and bioactive compounds. The review also considers changes in exine structure and possible synergistic effects between these methods. In addition, the challenges associated with the commercialization of processed bee pollen are examined, including issues such as product standardization, stability during storage, and market acceptance. The objective was to provide an understanding of the efficacy of these techniques, their physicochemical conditions, and their effect on the nutritional value of the pollen. The work also analyzes whether pollen transformation is necessary to maximize its benefits and offers conclusions based on the analysis of available methods, helping to determine whether pollen transformation is a valid strategy for inclusion in functional foods and its impact on consumer health. Although the literature reports that pollen transformation influences its final quality, further studies are needed to demonstrate the need for pollen exine modification, which could lead to greater market availability of pollen-based products with functional properties.
Collapse
Affiliation(s)
- María Alcalá-Orozco
- Universidad Nacional Abierta y a Distancia (UNAD), Sede Cartagena, Cartagena de Indias 130015, Colombia;
- Cooperativa Multiactiva de Apicultores Orgánicos Montes de María (COOAPOMIEL), El Carmen de Bolívar 132050, Colombia
| | - Isabella Lobo-Farfan
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia;
| | - Diego F. Tirado
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia;
| | - Diana C. Mantilla-Escalante
- Universidad Nacional Abierta y a Distancia (UNAD), Sede Cartagena, Cartagena de Indias 130015, Colombia;
- Cooperativa Multiactiva de Apicultores Orgánicos Montes de María (COOAPOMIEL), El Carmen de Bolívar 132050, Colombia
- Universidad del Sinú Elías Bechara Zainúm, Seccional Cartagena, Cartagena de Indias 1300001, Colombia
| |
Collapse
|
3
|
Van den Wouwer B, Brijs K, Wouters AGB, Raes K. The effect of ultrasound on the extraction and foaming properties of proteins from potato trimmings. Food Chem 2024; 455:139877. [PMID: 38824726 DOI: 10.1016/j.foodchem.2024.139877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
High-intensity ultrasonication is an emerging technology for plant protein isolation and modification. In this study, the potential of temperature-controlled ultrasonication to enhance the recovery of functional proteins from potato trimmings was assessed. Different ultrasound energy levels [2000-40,000 J/g fresh weight (FW)] were applied during protein extraction at pH 9.0. True protein yields after ultrasonication significantly increased (up to 91%) compared to conventional extraction (33%). Microstructural analysis of the extraction residues showed more disrupted cells as ultrasonication time increased. Ultrasound treatments (10,000 and 20,000 J/g FW) increased the protein yield without affecting the foaming and air-water interfacial properties of protein isolates obtained after isoelectric precipitation (pH 4.0). However, proteins obtained after extended ultrasonication (40,000 J/g FW) had significantly slower early-stage adsorption kinetics. This was attributed to ultrasound-induced aggregation of the protease inhibitor fraction. In conclusion, ultrasonication shows potential to help overcome some challenges associated with plant protein extraction.
Collapse
Affiliation(s)
- Ben Van den Wouwer
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium; Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium.
| | - Kristof Brijs
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium.
| | - Arno G B Wouters
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium.
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| |
Collapse
|
4
|
Tkacz E, Rujna P, Więcławek W, Lewandowski B, Mika B, Sieciński S. Application of 2D Extension of Hjorth's Descriptors to Distinguish Defined Groups of Bee Pollen Images. Foods 2024; 13:3193. [PMID: 39410227 PMCID: PMC11476096 DOI: 10.3390/foods13193193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Adulteration of food products is a serious problem in the current economy. Honey has become the third most counterfeit food product in the world and requires effective authentication methods. This article presents a new approach to the differentiation of bee pollen, which can support the development of a methodology to test honey quality based on the analysis of bee pollen. The proposed method is built on applying the Hjorth descriptors-Activity, Mobility, and Complexity-known from electroencephalography (EEG) analysis, for 2D bee pollen images. The sources for extracting the bee pollen images were the photos of honey samples, which were taken using a digital camera with a resolution of 5 megapixels connected to the tube of an optical microscope. The honey samples used were prepared according to the Polish standard PN-88/A-77626 (related to the European standard CELEX-32001L0110-PL-TXT). The effectiveness of the proposed method was positively verified for three selected groups of bee pollen-Brassica napus, Helianthus, and Phacelia-containing 35 images. Statistical analysis confirms the ability of the Hjorth descriptors to differentiate the indicated bee pollen groups. Based on the results obtained, there is a significant difference between the bee pollen groups under consideration regarding Activity p<0.00001, Mobility p<0.0001, and Complexity p<0.00001.
Collapse
Affiliation(s)
- Ewaryst Tkacz
- Department of Clinical Engineering, Academy of Silesia, Rolna 43, 40-555 Katowice, Poland;
| | | | - Wojciech Więcławek
- Department of Medical Informatics and Artificial Intelligence, Faculty of Biomedical Engineering, Silesian University of Technology, F.D. Roosevelta 40, 41-800 Zabrze, Poland; (W.W.); (B.M.)
| | | | - Barbara Mika
- Department of Medical Informatics and Artificial Intelligence, Faculty of Biomedical Engineering, Silesian University of Technology, F.D. Roosevelta 40, 41-800 Zabrze, Poland; (W.W.); (B.M.)
| | - Szymon Sieciński
- Department of Clinical Engineering, Academy of Silesia, Rolna 43, 40-555 Katowice, Poland;
- Institute of Medical Informatics, University of Luebeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
5
|
Xue F, Li C, Cheng J. Effects of probiotics fermentation on physicochemical properties of plum (Pruni domesticae semen) seed protein-based gel. Int J Biol Macromol 2024; 277:134361. [PMID: 39097070 DOI: 10.1016/j.ijbiomac.2024.134361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
The plum seed protein isolates (PSPI) were used to prepare a gel by probiotics fermentation. The effects of fermentation time (from 0 to 12 h) on the physicochemical properties of PSPI gel were evaluated. The results showed that PSPI started to form a gel after 6 h of fermentation, as evidenced by a decrease in pH from 6.6 to 5.2, an increase in particle size from 10 μm to 40 μm, appearance of a new peak with retention time of 10 min in gel filtration high-performance liquid chromatography, and formation of aggregation and porous structure observed by fluorescence and scanning electron microscope. The PSPI gel from 9 h of fermentation exhibited the highest viscosity (318 Pa.s), storage modulus (18,000 Pa), water holding capacity (37 %), and gel strength (21.5 g) due to stronger molecular interactions such as hydrogen bond, electrostatic, hydrophobic interaction and disulfide bond. However, increasing fermentation time over 9 h led to disrupture of PSPI gel. Furthermore, the subunit around 15 kDa of PSPI disappeared after fermentation, indicating that the formation of PSPI gel was induced by both acidification and partial hydrolysis. Our results suggest that PSPI can provide an alternative for developing plant-based gel products.
Collapse
Affiliation(s)
- Feng Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China.
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Jianming Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China.
| |
Collapse
|
6
|
Xue F, Li C, Adhikari B. Physicochemical properties of active films of rose essential oil produced using soy protein isolate-polyphenol conjugates for cherry tomato preservation. Food Chem 2024; 452:139614. [PMID: 38744132 DOI: 10.1016/j.foodchem.2024.139614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Soy protein isolate (SPI)-polyphenol conjugates were produced by grafting SPI individually with curcumin, naringenin, and catechin. The resulting conjugates showed better emulsifying properties and were used to develop active films containing rose essential oil. The effect of conjugation on the physicochemical and mechanical properties of these emulsion-based films was evaluated. The results showed that the barrier and mechanical properties of the films were improved when the SPI-polyphenol conjugates were used to emulsify the essential oil; in particular, the SPI-curcumin conjugate showed significant improvement. The improvements on the water vapor and oxygen barrier properties in the films were attributed to the formation of compact structure. Emulsion-based films stabilized by SPI-polyphenol conjugates showed antioxidant and antibacterial activities. They also demonstrated an ability to extend the shelf life of cherry tomatoes, as indicated by better preservation of weight, firmness, and ascorbic acid content.
Collapse
Affiliation(s)
- Feng Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China.
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC 3083, Australia.
| |
Collapse
|
7
|
Peng J, Song X, Yu W, Pan Y, Zhang Y, Jian H, He B. The role and mechanism of cinnamaldehyde in cancer. J Food Drug Anal 2024; 32:140-154. [PMID: 38934689 PMCID: PMC11210466 DOI: 10.38212/2224-6614.3502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/15/2024] [Indexed: 06/28/2024] Open
Abstract
As cancer continues to rise globally, there is growing interest in discovering novel methods for prevention and treatment. Due to the limitations of traditional cancer therapies, there has been a growing emphasis on investigating herbal remedies and exploring their potential synergistic effects when combined with chemotherapy drugs. Cinnamaldehyde, derived from cinnamon, has gained significant attention for its potential role in cancer prevention and treatment. Extensive research has demonstrated that cinnamaldehyde exhibits promising anticancer properties by modulating various cellular processes involved in tumor growth and progression. However, challenges and unanswered questions remain regarding the precise mechanisms for its effective use as an anticancer agent. This article aims to explore the multifaceted effects of cinnamaldehyde on cancer cells and shed light on these existing issues. Cinnamaldehyde has diverse anti-cancer mechanisms, including inducing apoptosis by activating caspases and damaging mitochondrial function, inhibiting tumor angiogenesis, anti-proliferation, anti-inflammatory and antioxidant. In addition, cinnamaldehyde also acts as a reactive oxygen species scavenger, reducing oxidative stress and preventing DNA damage and genomic instability. This article emphasizes the promising therapeutic potential of cinnamaldehyde in cancer treatment and underscores the need for future research to unlock novel mechanisms and strategies for combating cancer. By providing valuable insights into the role and mechanism of cinnamaldehyde in cancer, this comprehensive understanding paves the way for its potential as a novel therapeutic agent. Overall, cinnamaldehyde holds great promise as an anticancer agent, and its comprehensive exploration in this article highlights its potential as a valuable addition to cancer treatment options.
Collapse
Affiliation(s)
- Jiahua Peng
- Department of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Institute of Obstetrics and Gynecology, Nanchang, Jiangxi,
China
| | - Xin Song
- Department of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Institute of Obstetrics and Gynecology, Nanchang, Jiangxi,
China
| | - Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi,
China
| | - Yuhan Pan
- School of Finance, Shanghai University of Finance and Economics, Shanghai,
China
| | - Yufei Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi,
China
| | - Hui Jian
- Department of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Institute of Obstetrics and Gynecology, Nanchang, Jiangxi,
China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi,
China
| |
Collapse
|
8
|
Xiong W, Kumar G, Zhang B, Dhital S. Sonication-mediated modulation of macronutrient structure and digestibility in chickpea. ULTRASONICS SONOCHEMISTRY 2024; 106:106904. [PMID: 38749102 PMCID: PMC11109878 DOI: 10.1016/j.ultsonch.2024.106904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Ultrasound processing is an emerging green technology that has the potential for wider application in the food processing industry. While the effects of ultrasonication on isolated macromolecules such as protein and starch have been reported, the effects of physical barriers on sonication on these macro-molecules, for example inside whole seed, tissue or cotyledon cells, have mostly been overlooked. Intact chickpea cells were subjected to sonication with different ultrasound processing times, and the effects of sonication on the starch and protein structure and digestibility were studied. The digestibility of these macronutrients significantly increased with the extension of processing time, which, however was not due to the molecular degradation of starch or protein but related to damage to cell wall macro-structure with increasing sonication time, leading to enhanced enzyme accessibility. Through this study, it is demonstrated that ultrasound processing has least effect on whole food structure, for example, whole seeds but can modulate the nutrient bioavailability without changing the properties of the macronutrients in seed fractions e.g. intact cells, offering new scientific knowledge on effect of ultrasound in whole foods at various length scales.
Collapse
Affiliation(s)
- Weiyan Xiong
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Gaurav Kumar
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Bin Zhang
- School of Food Science and Engineering, Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China
| | - Sushil Dhital
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
9
|
Li J, Wang W, Xu W, Deng Y, Lv R, Zhou J, Liu D. Evaluation of multiscale mechanisms of ultrasound-assisted extraction from porous plant materials: Experiment and modeling on this intensified process. Food Res Int 2024; 182:114034. [PMID: 38519197 DOI: 10.1016/j.foodres.2024.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 03/24/2024]
Abstract
Ultrasound-assisted extraction (UAE) is an intensified mass transfer process, which can utilize natural resources effectively, but still lacks detailed mechanisms for multiscale effects. This study investigates the mass transfer mechanisms of UAE combined with material's pore structure at multiscale. Porous material was prepared by roasting green coffee beans (GCB) at 120 °C (RCB120) and 180 °C (RCB180), and their UAE efficiency for phytochemicals (caffeine, trigonelline, chlorogenic acid, caffeic acid) were evaluated by experiment and modeling. Besides, the physicochemical properties, mass transfer kinetics, and multi-physical field simulation were studied. Results indicated that positive synergy effects on extraction existed between ultrasound and material's pore structure. Higher mass transfer coefficients of UAE (GCB 0.16 min-1, RCB120 0.38 min-1, RCB180 0.46 min-1) was achieved with higher total porosity (4.47 %, 9.17 %, 13.52 %) and connected porosity (0 %, 3.79 %, 5.98 %). Moreover, simulation results revealed that micro acoustic streaming and pressure difference around particles were the main driving force for enhancing mass transfer, and the velocity (0.29-0.36 m/s) increased with power density (0.64-1.01 W/mL). The microscale model proved that increased yield from UAE-RCB was attributed to internal convection diffusion within particles. This study exploited a novel benefit of ultrasound on extraction and inspired its future application in non-thermal food processing.
Collapse
Affiliation(s)
- Jiaheng Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; The Collaborative Innovation Center for Intelligent Production Equipment of Characteristic Forest Fruits in Hilly and Mountainous Areas of Zhejiang Province, Hangzhou 311300, China
| | - Weidong Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yong Deng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ruiling Lv
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Jianwei Zhou
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; School of Mechatronics and Energy Engineering, NingboTech University, Ningbo 315100, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Food Laboratory of Zhongyuan, Luohe 462044, China; The Collaborative Innovation Center for Intelligent Production Equipment of Characteristic Forest Fruits in Hilly and Mountainous Areas of Zhejiang Province, Hangzhou 311300, China.
| |
Collapse
|
10
|
Kacemi R, Campos MG. Translational Research on Bee Pollen as a Source of Nutrients: A Scoping Review from Bench to Real World. Nutrients 2023; 15:nu15102413. [PMID: 37242296 DOI: 10.3390/nu15102413] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The emphasis on healthy nutrition is gaining a forefront place in current biomedical sciences. Nutritional deficiencies and imbalances have been widely demonstrated to be involved in the genesis and development of many world-scale public health burdens, such as metabolic and cardiovascular diseases. In recent years, bee pollen is emerging as a scientifically validated candidate, which can help diminish conditions through nutritional interventions. This matrix is being extensively studied, and has proven to be a very rich and well-balanced nutrient pool. In this work, we reviewed the available evidence on the interest in bee pollen as a nutrient source. We mainly focused on bee pollen richness in nutrients and its possible roles in the main pathophysiological processes that are directly linked to nutritional imbalances. This scoping review analyzed scientific works published in the last four years, focusing on the clearest inferences and perspectives to translate cumulated experimental and preclinical evidence into clinically relevant insights. The promising uses of bee pollen for malnutrition, digestive health, metabolic disorders, and other bioactivities which could be helpful to readjust homeostasis (as it is also true in the case of anti-inflammatory or anti-oxidant needs), as well as the benefits on cardiovascular diseases, were identified. The current knowledge gaps were identified, along with the practical challenges that hinder the establishment and fructification of these uses. A complete data collection made with a major range of botanical species allows more robust clinical information.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G Campos
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313), Faculty of Science and Technology, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|
11
|
Flores‐Jiménez NT, Ulloa JA, Urías‐Silvas JE, Hidalgo‐Millán A. Modification of rheological properties of animal and vegetable proteins treated with high‐intensity ultrasound: A review. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Affiliation(s)
| | - José Armando Ulloa
- Posgrado en Ciencias Biológico Agropecuarias Universidad Autónoma de Nayarit Nayarit México
- Centro de Tecnología de Alimentos Universidad Autónoma de Nayarit Nayarit México
| | - Judith Esmeralda Urías‐Silvas
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C. Tecnología Alimentaria. Unidad Zapopan Jalisco México
| | - Antonio Hidalgo‐Millán
- Unidad Académica de Ciencias e Ingenierías Universidad Autónoma de Nayarit Nayarit México
| |
Collapse
|
12
|
Liu X, Xue F, Adhikari B. Production of hemp protein isolate-polyphenol conjugates through ultrasound and alkali treatment methods and their characterization. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|