1
|
Na I, Son Y. Sonochemical oxidation activity in 20-kHz probe-type sonicator systems: The effects of probe positions and vessel sizes. ULTRASONICS SONOCHEMISTRY 2024; 108:106959. [PMID: 38896894 DOI: 10.1016/j.ultsonch.2024.106959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
The 20-kHz probe-type sonicator systems were investigated for the enhancement of the cavitational oxidation activity under various geometric conditions including vertical and horizontal probe positions and vessel sizes/volumes as a following study to our previous study. The sonochemical oxidation activity (mass-based I3- ion generation rate) increased significantly for all vessel size conditions as the probe was placed close to the vessel bottom, owing to the expansion of the sonochemical active zone induced by the reflections of ultrasound at the bottom and the reactor wall. A concentric circular active zone is observed at positions close to the bottom. The highest sonochemical activity was obtained at 1 cm (vertical position) in the 20 cm vessels (input power: 50 %). At the vertical positions of 11 cm to 7 cm, no significant difference in the sonochemical activity was observed for all input power conditions (25, 50, and 75 %) because no meaningful reflections occurred. Higher sonochemical activities were obtained at an input power of 75 % owing to the increased power and strong reflection. The highest cavitational yield considering the energy efficiency was obtained at 6 cm (vertical position) for 75 % of all power and geometric conditions. Horizontal probe position tests showed that the asymmetric formation of the sonochemical active zone could significantly enhance the sonochemical activity. The highest activity was obtained at 1 cm (vertical position) and 2.5 cm (horizontal position) in the 20 cm vessel.
Collapse
Affiliation(s)
- Iseul Na
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Younggyu Son
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
| |
Collapse
|
2
|
Su K, Li B, Wu J, Xin P, Qian S. Joint effects of gas bubbles and solid particles on sonochemical inhibition in sonicated aqueous solutions. ULTRASONICS SONOCHEMISTRY 2023; 101:106717. [PMID: 38086127 PMCID: PMC10726247 DOI: 10.1016/j.ultsonch.2023.106717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Wastewater is a multicomponent and multiphase mixture. Gas bubbles and solid particles in the dispersed phase influence sonochemical efficiency during ultrasonic treatment of wastewater, sometimes unfavorably; however, the influencing factors and mechanisms remain unclear. In this paper, the influence of argon gas bubbles (1.2 mm) and monodisperse silica particles (0.1 mm) on sonochemical effects in an aqueous system using a horn-type reactor (20 kHz) is reported. Triiodide formation decreased with an increase in the volume fraction of either or both phases. The two phases started inhibiting sonoreactions as the total volume fraction approached 3.0-4.0 vol% compared to pure water. The effect of the gas-to-solid ratio is also considered. We propose an acoustic attenuation model, which incorporates the scattering effect of solid particles and the thermal effect of gas bubbles. The agreement between the modeling and experimental results demonstrates that the two phases are jointly responsible for sonochemical inhibition by increasing ultrasound attenuation. This enhances the understanding of sonochemistry in gas-solid-liquid systems and helps regulate gases and solids in sonochemical reactors.
Collapse
Affiliation(s)
- Kunpeng Su
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Binghui Li
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
| | - Jianhua Wu
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China.
| | - Pei Xin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| | - Shangtuo Qian
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| |
Collapse
|
3
|
Jeyaprakash JS, Rajamani M, Bianchi CL, Ashokkumar M, Neppolian B. Highly efficient ultrasound-driven Cu-MOF/ZnWO 4 heterostructure: An efficient visible-light photocatalyst with robust stability for complete degradation of tetracycline. ULTRASONICS SONOCHEMISTRY 2023; 100:106624. [PMID: 37804558 PMCID: PMC10653955 DOI: 10.1016/j.ultsonch.2023.106624] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Metal-organic frameworks (MOFs) are a significant class of porous, crystalline materials composed of metal ions (clusters) and organic ligands. The potential use of copper MOF (Cu-BTC) for the sonophotocatalytic degradation of Tetracycline (TC) antibiotic was investigated in this study. To enhance its catalytic efficiency, S-scheme heterojunction was created by combining Cu-BTC with Zinc tungstate (ZnWO4), employing an ultrasound-assisted hydrothermal method. The results demonstrated that the Cu-BTC/ZnWO4 heterojunction exhibited complete removal of TC within 60 min under simultaneous irradiation of visible light and ultrasound. Interestingly, the sonophotocatalytic degradation of TC using the Cu-BTC/ZnWO4 heterojunction showed superior efficiency (with a synergy index of ∼0.70) compared to individual sonocatalytic and photocatalytic degradation processes using the same heterojunction. This enhancement in sonophotocatalytic activity can be attributed to the formation of an S-scheme heterojunction between Cu-BTC and ZnWO4. Within this heterojunction, electrons migrated from Cu-BTC to ZnWO4, facilitated by the interface between the two materials. Under visible light irradiation, the built-in electric field, band edge bending, and coulomb interaction synergistically inhibited the recombination of electron-hole pairs. Consequently, the accumulated electrons in Cu-BTC and holes in ZnWO4 actively participated in the redox reactions, generating free radicals that effectively attacked the TC molecules. This study offers valuable perspectives on the application of a newly developed S-scheme heterojunction photocatalyst, demonstrating its effectiveness in efficiently eliminating diverse recalcitrant pollutants via sonophotocatalytic degradation.
Collapse
Affiliation(s)
- Jenson Samraj Jeyaprakash
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Manju Rajamani
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Claudia L Bianchi
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Florence, Italy
| | - Muthupandian Ashokkumar
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bernaurdshaw Neppolian
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India.
| |
Collapse
|
4
|
Lee D, Kang J, Son Y. Effect of violent mixing on sonochemical oxidation activity under various geometric conditions in 28-kHz sonoreactor. ULTRASONICS SONOCHEMISTRY 2023; 101:106659. [PMID: 39491264 PMCID: PMC10630164 DOI: 10.1016/j.ultsonch.2023.106659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
The effects of violent mixing and reactor geometric conditions were investigated using the overhead stirrer and high-speed homogenizer in 28-kHz sonoreactors. The sonochemical oxidation activity was quantified using the KI dosimetry method, and the sonochemical active zone was visually observed using the luminol method. Higher mixing rates resulted in a significant enhancement of the sonochemical oxidation activity, primarily due to a significant change in the sonochemical active zone. When using the overhead stirrer (0-2,000 rpm), the highest activity for 2λ and 3λ occurred at 500 rpm, whereas the highest activity for 4λ was obtained at 250 rpm. For the high-speed homogenizer (0-12,000 rpm), the highest activity was consistently obtained at 3,500 rpm across all liquid height conditions. The impact of mixing position (Top, Mid, and Bot positions) on sonochemical activity was analyzed. The results revealed that the lowest activity was obtained for the bottom position, likely attributed to significant ultrasound attenuation. The reactor size effect was investigated using the high-speed homogenizer in five cylindrical sonoreactors with different diameters (12-27 cm). It was found that very low activity could be observed due to unexpected geometric conditions, and the application of mixing (3,500 rpm in this study) could result in high sonochemical activity regardless of geometric conditions.
Collapse
Affiliation(s)
- Dukyoung Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Jumin Kang
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Younggyu Son
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
| |
Collapse
|
5
|
Lee S, Son Y. Effects of gas saturation and sparging on sonochemical oxidation activity under different liquid level and volume conditions in 300-kHz sonoreactors: Zeroth- and first-order reaction comparison using KI dosimetry and BPA degradation. ULTRASONICS SONOCHEMISTRY 2023; 98:106521. [PMID: 37473616 PMCID: PMC10371822 DOI: 10.1016/j.ultsonch.2023.106521] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
The sonochemical oxidation activity was investigated for gas saturation and gas sparging under various liquid levels and volumes in 300 kHz sonoreactors. The liquid levels and volumes ranged from 5λ (25 mm, 0.47 L) to 50λ (250 mm, 4.30 L) and two gas mixtures, Ar:O2 (75:25) and N2:O2 (75:25), were used. Two types of reaction kinetics were observed to quantitatively analyze the sonochemical oxidation reactions: zero-order (KI dosimetry: C0 = 60.2 mM) and first-order (Bisphenol A (BPA) degradation: C0 = 0.043 mM). The masses of the sonochemical oxidation reactions were calculated and compared rather than the concentrations to more accurately compare the sonochemical oxidation activity under different liquid volume conditions. First, as the liquid level or volume increased for the zero-order reactions, the concentration of I3- ions representing the volume-averaged activity decreased substantially for gas saturation owing to the increase in liquid volume. However, gas sparging substantially enhanced sonochemical oxidation activity, and the mass of I3- ions representing the total activity remained constant as the liquid level increased from 20λ because of the improved liquid mixing and a shift in the sonochemical active zone. Second, as evidenced by the zero-order reactions, the concentration of BPA decreased considerably as the liquid level or volume increased in the first-order reactions. When gas sparging was used, higher reaction constants were obtained for both gas mixtures, ranging from 40λ to 50λ. However, a comparison of the sonochemical oxidation activity in terms of the degraded mass of BPA was inapplicable as the concentration of BPA decreased substantially and a lack of reactants occurred for the lower liquid level and volume conditions as the irradiation time elapsed. Instead, using the first-order reaction constant, a comparison of the required reaction times for a specific removal efficiency (30%, 60%, and 90%) was proposed. Gas sparging can substantially reduce the reaction time required for a liquid level of 40λ or higher.
Collapse
Affiliation(s)
- Seongeun Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Younggyu Son
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
| |
Collapse
|