1
|
Endoscopic Delivery of Polymers Reduces Delayed Bleeding after Gastric Endoscopic Submucosal Dissection: A Systematic Review and Meta-Analysis. Polymers (Basel) 2022; 14:polym14122387. [PMID: 35745963 PMCID: PMC9227627 DOI: 10.3390/polym14122387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
New endoscopic approaches for the prevention of delayed bleeding (DB) after gastric endoscopic submucosal dissection (ESD) have been reported in recent years, and endoscopic delivery of biodegradable polymers for iatrogenic ulcer hemostasis and coverage has emerged as one of the most promising techniques for post-ESD management. However, the comparative efficacy of these techniques remains uncertain. We performed a systematic search of multiple databases up to May 2022 to identify studies reporting DB rates as outcomes in patients undergoing gastric ESD who were treated with subsequent endoscopic management, including endoscopic closure (clip-based methods and suturing), PGA sheet tissue shielding, and hemostatic powder/gel spray (including polymeric sealants and other adhesives). The risk ratios (RRs) of delayed bleeding in treatment groups and control groups were pooled, and the Bayesian framework was used to perform a network meta-analysis (NMA). Among these studies, 16 head-to-head comparisons that covered 2742 lesions were included in the NMA. Tissue shielding using PGA sheets significantly reduced the risk of DB by nearly two thirds in high-risk patients, while hemostatic spray systems, primarily polymer-based, reduced DB in low-risk patients nine-fold. Researchers should recognize the essential role of polymers in the management of ESD-induced ulcers, and develop and validate clinical application strategies for promising materials.
Collapse
|
2
|
Dixon AR, Jariwala SH, Bilis Z, Loverde JR, Pasquina PF, Alvarez LM. Bridging the gap in peripheral nerve repair with 3D printed and bioprinted conduits. Biomaterials 2018; 186:44-63. [DOI: 10.1016/j.biomaterials.2018.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 01/14/2023]
|
3
|
Fukuda T, Kusuhara H, Nakagoshi T, Isogai N, Sueyoshi Y. A basic fibroblast growth factor slow-release system combined to a biodegradable nerve conduit improves endothelial cell and Schwann cell proliferation: A preliminary study in a rat model. Microsurgery 2018; 38:899-906. [PMID: 30380172 DOI: 10.1002/micr.30387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND A basic fibroblast growth factor (bFGF) slow-release system was combined to a biodegradable nerve conduit with the hypothesis this slow-release system would increase the capacity to promote nerve vascularization and Schwann cell proliferation in a rat model. MATERIALS AND METHODS Slow-release of bFGF was determined using Enzyme-Linked ImmunoSorbent Assay (ELISA). A total of 60 rats were used to create a 10 mm gap in the sciatic nerve. A polyglycolic acid-based nerve conduit was used to bridge the gap, either without or with a bFGF slow-release incorporated around the conduit (n = 30 in each group). At 2 (n = 6), 4 (n = 6), 8 (n = 6), and 20 (n = 12) weeks after surgery, samples were resected and subjected to histological, immunohistochemical, and transmission electron microscopic evaluation for nerve regeneration. RESULTS Continuous release of bFGF was found during the observation period of 2 weeks. After in vivo implantation of the nerve conduit, greater endothelial cell migration and vascularization resulted at 2 weeks (proximal: 20.0 ± 2.0 vs. 12.7 ± 2.1, P = .01, middle: 17.3 ± 3.5 vs. 8.7 ± 3.2, P = .03). Schwann cells showed a trend toward greater proliferation and axonal growth had significant elongation (4.9 ± 1.1 mm vs. 2.8 ± 1.5 mm, P = .04) at 4 weeks after implantation. The number of myelinated nerve fibers, indicating nerve maturation, were increased 20 weeks after implantation (proximal: 83.3 ± 7.5 vs. 53.3 ± 5.5, P = .06, distal: 71.0 ± 12.5 vs. 44.0 ± 11.1, P = .04). CONCLUSIONS These findings suggest that the bFGF slow-release system improves nerve vascularization and Schwann cell proliferation through the biodegradable nerve conduit.
Collapse
Affiliation(s)
- Tomokazu Fukuda
- Department of Plastic Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hirohisa Kusuhara
- Department of Plastic Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takuya Nakagoshi
- Department of Plastic Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Noritaka Isogai
- Department of Plastic Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yu Sueyoshi
- Department of Plastic Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
4
|
Tsujimoto G, Sunada K, Nakamura T. Effect of cervical sympathetic ganglionectomy on facial nerve reconstruction using polyglycolic acid-collagen tubes. Brain Res 2017; 1669:79-88. [DOI: 10.1016/j.brainres.2017.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 01/21/2023]
|
5
|
Fukuda H, Yamaguchi N, Isomoto H, Matsushima K, Minami H, Akazawa Y, Ohnita K, Takeshima F, Shikuwa S, Nakao K. Polyglycolic Acid Felt Sealing Method for Prevention of Bleeding Related to Endoscopic Submucosal Dissection in Patients Taking Antithrombotic Agents. Gastroenterol Res Pract 2016; 2016:1457357. [PMID: 27022390 PMCID: PMC4789064 DOI: 10.1155/2016/1457357] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/22/2016] [Accepted: 02/02/2016] [Indexed: 12/17/2022] Open
Abstract
Background and Study Aims. When performing endoscopic submucosal dissection (ESD) for patients on antithrombotic agents, the frequency of delayed bleeding is expected to increase. The endoscopic polyglycolic acid (PGA) felt and fibrin glue sealing method could be a new method for prevention of delayed bleeding. Patients and Methods. The safety and efficacy of the endoscopic tissue sealing method with PGA sheets and fibrin glue for the prevention of post-ESD bleeding were examined in 104 patients taking antithrombotic agents. During the study period, 70 patients taking antithrombotic agents did not undergo the sealing method, 36 patients discontinued antithrombotic agents, and 724 patients had not received antithrombotic therapy. Results. Delayed bleeding rates were 3.8% (4/104) in the sealing group, 12.9% (9/70) in the nonsealing group, 8.3% (3/36) in the discontinuation group, and 4.6% (33/724) in the nonantithrombotic therapy group. Thus, the delayed bleeding rate was significantly lower in the sealing group than in the nonsealing group and comparable to that in the nonantithrombotic therapy group. Conclusions. This PGA felt and fibrin glue sealing method might become a promising post-ESD bleeding prevention method in patients taking antithrombotic agents (UMIN000013990, UMIN000013993).
Collapse
Affiliation(s)
- Hiroko Fukuda
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
- Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Naoyuki Yamaguchi
- Department of Endoscopy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Hajime Isomoto
- Division of Medicine and Clinical Science, Tottori University Faculty of Medicine, 36-1 Nishimachi, Yonago, Tottori 683-8504, Japan
| | - Kayoko Matsushima
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Hitomi Minami
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Yuko Akazawa
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Ken Ohnita
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Fuminao Takeshima
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Saburo Shikuwa
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| |
Collapse
|
6
|
Park SY, Ki CS, Park YH, Lee KG, Kang SW, Kweon HY, Kim HJ. Functional recovery guided by an electrospun silk fibroin conduit after sciatic nerve injury in rats. J Tissue Eng Regen Med 2012; 9:66-76. [DOI: 10.1002/term.1615] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 05/15/2012] [Accepted: 08/25/2012] [Indexed: 12/31/2022]
Affiliation(s)
- Sook Young Park
- Department of Dental Anesthesiology and Dental Research Institute, School of Dentistry; Seoul National University; Seoul 110-768 Republic of Korea
| | - Chang Seok Ki
- Cosmetics and Personal Care Research Institute; Amorepacific Corporation R&D Center; Yongin 446-729 Republic of Korea
| | - Young Hwan Park
- Department of Biosystems and Biomaterials Science and Engineering; Seoul National University; Seoul 151-921 Republic of Korea
| | - Kwang Gill Lee
- Rural Development Administration; National Academy of Agricultural Science; Suwon Republic of Korea
| | - Seok Woo Kang
- Rural Development Administration; National Academy of Agricultural Science; Suwon Republic of Korea
| | - Hae Yong Kweon
- Rural Development Administration; National Academy of Agricultural Science; Suwon Republic of Korea
| | - Hyun Jeong Kim
- Department of Dental Anesthesiology and Dental Research Institute, School of Dentistry; Seoul National University; Seoul 110-768 Republic of Korea
| |
Collapse
|
7
|
Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 2010; 93:204-30. [PMID: 21130136 DOI: 10.1016/j.pneurobio.2010.11.002] [Citation(s) in RCA: 419] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/02/2010] [Accepted: 11/23/2010] [Indexed: 01/01/2023]
Abstract
Surgical repair of severe peripheral nerve injuries represents not only a pressing medical need, but also a great clinical challenge. Autologous nerve grafting remains a golden standard for bridging an extended gap in transected nerves. The formidable limitations related to this approach, however, have evoked the development of tissue engineered nerve grafts as a promising alternative to autologous nerve grafts. A tissue engineered nerve graft is typically constructed through a combination of a neural scaffold and a variety of cellular and molecular components. The initial and basic structure of the neural scaffold that serves to provide mechanical guidance and optimal environment for nerve regeneration was a single hollow nerve guidance conduit. Later there have been several improvements to the basic structure, especially introduction of physical fillers into the lumen of a hollow nerve guidance conduit. Up to now, a diverse array of biomaterials, either of natural or of synthetic origin, together with well-defined fabrication techniques, has been employed to prepare neural scaffolds with different structures and properties. Meanwhile different types of support cells and/or growth factors have been incorporated into the neural scaffold, producing unique biochemical effects on nerve regeneration and function restoration. This review attempts to summarize different nerve grafts used for peripheral nerve repair, to highlight various basic components of tissue engineered nerve grafts in terms of their structures, features, and nerve regeneration-promoting actions, and finally to discuss current clinical applications and future perspectives of tissue engineered nerve grafts.
Collapse
Affiliation(s)
- Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, JS 226001, PR China.
| | | | | | | |
Collapse
|