1
|
Ishida K, Osakunor DNM, Rossi M, Lamanna OK, Mbanefo EC, Cody JJ, Le L, Hsieh MH. RNA-seq gene expression profiling of the bladder in a mouse model of urogenital schistosomiasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.29.601185. [PMID: 38979184 PMCID: PMC11230422 DOI: 10.1101/2024.06.29.601185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Parasitic flatworms of the Schistosoma genus cause schistosomiasis, which affects over 230 million people. Schistosoma haematobium causes the urogenital form of schistosomiasis (UGS), which can lead to hematuria, fibrosis, and increased risk of secondary infections by bacteria or viruses. UGS is also linked to bladder cancer. To understand the bladder pathology during S. haematobium infection, our group previously developed a mouse model that involves the injection of S. haematobium eggs into the bladder wall. Using this model, we studied changes in epigenetics profile, as well as changes in gene and protein expression in the host bladder tissues. In the current study, we expand upon this work by examining the expression level of both host and parasite genes using RNA sequencing (RNA-seq) in the mouse bladder wall injection model of S. haematobium infection. Methods We used a mouse model of S. haematobium infection in which parasite eggs or vehicle control were injected into the bladder walls of female BALB/c mice. RNA-seq was performed on the RNA isolated from the bladders four days after bladder wall injection. Results/Conclusions RNA-seq analysis of egg- and vehicle control-injected bladders revealed the differential expression of 1025 mouse genes in the egg-injected bladders, including genes associated with cellular infiltration, immune cell chemotaxis, cytokine signaling, and inflammation We also observed the upregulation of immune checkpoint-related genes, which suggests that while the infection causes an inflammatory response, it also dampens the response to avoid excessive inflammation-related damage to the host. Identifying these changes in host signaling and immune responses improves our understanding of the infection and how it may contribute to the development of bladder cancer. Analysis of the differential gene expression of the parasite eggs between bladder-injected versus uninjected eggs revealed 119 S. haematobium genes associated with transcription, intracellular signaling, and metabolism. The analysis of the parasite genes also revealed fewer transcript reads compared to that found in the analysis of mouse genes, highlighting the challenges of studying parasite egg biology in the mouse model of S. haematobium infection.
Collapse
Affiliation(s)
- Kenji Ishida
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia, United States
| | - Derick N M Osakunor
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia, United States
| | - Mario Rossi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Olivia K Lamanna
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia, United States
| | - Evaristus C Mbanefo
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - James J Cody
- Charles River Laboratories, Rockville, Maryland, United States
| | - Loc Le
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Michael H Hsieh
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia, United States
- Department of Urology, The George Washington University, Washington, District of Columbia, United States
| |
Collapse
|
2
|
Abdeltwab RM, Yacoub E, Rashad AH, Shohdy KS. Molecular Basis of Tumorigenesis of Bladder Cancer and Emerging Concepts in Developing Therapeutic Targets. Bladder Cancer 2023; 9:313-322. [PMID: 38994247 PMCID: PMC11165923 DOI: 10.3233/blc-230025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/15/2023] [Indexed: 07/13/2024]
Abstract
BACKGROUND Advanced urothelial carcinoma (UC) is an aggressive disease whose mutagenic processes are yet to be elucidated. Targeted therapies are urgently needed, but the road from bench to bedside is slowly progressing. In this review, we discuss urothelial carcinoma etiology, along with the most recent advances in UC candidate targeted therapies. METHODOLOGY A comprehensive database search was performed. We aimed to review the most recent updates on UC genomics and targeted therapies. Pre-clinical as well as clinical studies were included. RESULTS Our review highlights the advances in understanding the molecular basis of urothelial tumorigenesis, including smoking, chemical parasitic carcinogens, inheritance, and APOBEC3 editing enzymes. We discussed how these factors contributed to the current mutational landscape of UC. Therapeutic options for UC are still very limited. However, several promising therapeutic approaches are in development to leverage our knowledge of molecular targets, such as targeting fibroblast growth factor receptors (FGFR), DNA damage repair pathways, and HER2. CONCLUSIONS Blindly testing targeted therapies based on other cancer data is not sufficient. UC-specific biomarkers are needed to precisely use the appropriate drug for the appropriate population. More efforts to understand UC biology and evolution are urgently needed.
Collapse
Affiliation(s)
| | - Elaria Yacoub
- Department of Clinical Oncology, Cairo University, Cairo, Egypt
| | - Ahmed H. Rashad
- Department of Clinical Oncology, Cairo University, Cairo, Egypt
| | | |
Collapse
|
3
|
Inflammation in Urological Malignancies: The Silent Killer. Int J Mol Sci 2023; 24:ijms24010866. [PMID: 36614308 PMCID: PMC9821648 DOI: 10.3390/ijms24010866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Several studies have investigated the role of inflammation in promoting tumorigenesis and cancer progression. Neoplastic as well as surrounding stromal and inflammatory cells engage in well-orchestrated reciprocal interactions to establish an inflammatory tumor microenvironment. The tumor-associated inflammatory tissue is highly plastic, capable of continuously modifying its phenotypic and functional characteristics. Accumulating evidence suggests that chronic inflammation plays a critical role in the development of urological cancers. Here, we review the origins of inflammation in urothelial, prostatic, renal, testicular, and penile cancers, focusing on the mechanisms that drive tumor initiation, growth, progression, and metastasis. We also discuss how tumor-associated inflammatory tissue may be a diagnostic marker of clinically significant tumor progression risk and the target for future anti-cancer therapies.
Collapse
|
4
|
Mukherjee N, Ji N, Tan X, Lin C, Rios E, Chen C, Huang T, Svatek RS. Bladder tumor ILC1s undergo Th17-like differentiation in human bladder cancer. Cancer Med 2021; 10:7101-7110. [PMID: 34496133 PMCID: PMC8525153 DOI: 10.1002/cam4.4243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Human innate lymphoid cells (hILCs) are lineage-negative immune cells that do not express rearranged adaptive antigen receptors. Natural killer (NK) cells are hILCs that contribute to cancer defense. The role of non-NK hILCs in cancer is unclear. Our study aimed to characterize non-NK hILCs in bladder cancer. EXPERIMENTAL DESIGN Mass cytometry was used to characterize intratumoral non-NK hILCs based on 35 parameters, including receptors, cytokines, and transcription factors from 21 muscle-invasive bladder tumors. Model-based clustering was performed on t-distributed stochastic neighbor embedding (t-SNE) coordinates of hILCs, and the association of hILCs with tumor stage was analyzed. RESULTS Most frequent among intratumoral non-NK hILCs were hILC1s, which were increased in higher compared with lower stage tumors. Intratumoral hILC1s were marked by Th17-like phenotype with high RORγt, IL-17, and IL-22 compared to Th1 differentiation markers, including Tbet, perforin, and IFN-γ. Compared with intratumoral hILC2s and hILC3s, hILC1s also had lower expression of activation markers (NKp30, NKp46, and CD69) and increased expression of exhaustion molecules (PD-1 and Tim3). Unsupervised clustering identified nine clusters of bladder hILCs, which were not defined by the primary hILC subtypes 1-3. hILC1s featured in all the nine clusters indicating that intratumoral hILC1s displayed the highest phenotypic heterogeneity among all hILCs. CONCLUSIONS hILC1s are increased in higher stage tumors among patients with muscle-invasive bladder cancer. These intratumoral hILC1s exhibit an exhausted phenotype and Th17-like differentiation, identifying them as potential targets for immunotherapy.
Collapse
Affiliation(s)
- Neelam Mukherjee
- Department of UrologyUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Niannian Ji
- Department of UrologyUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Xi Tan
- Department of Molecular MedicineUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Chun‐Lin Lin
- Department of Molecular MedicineUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Emily Rios
- Department of UrologyUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Chun‐Liang Chen
- Department of Molecular MedicineUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Tim Huang
- Department of Molecular MedicineUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Robert S. Svatek
- Department of UrologyUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| |
Collapse
|
5
|
Jain T, Sharma P, Are AC, Vickers SM, Dudeja V. New Insights Into the Cancer-Microbiome-Immune Axis: Decrypting a Decade of Discoveries. Front Immunol 2021; 12:622064. [PMID: 33708214 PMCID: PMC7940198 DOI: 10.3389/fimmu.2021.622064] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
The past decade has witnessed groundbreaking advances in the field of microbiome research. An area where immense implications of the microbiome have been demonstrated is tumor biology. The microbiome affects tumor initiation and progression through direct effects on the tumor cells and indirectly through manipulation of the immune system. It can also determine response to cancer therapies and predict disease progression and survival. Modulation of the microbiome can be harnessed to potentiate the efficacy of immunotherapies and decrease their toxicity. In this review, we comprehensively dissect recent evidence regarding the interaction of the microbiome and anti-tumor immune machinery and outline the critical questions which need to be addressed as we further explore this dynamic colloquy.
Collapse
Affiliation(s)
| | | | | | - Selwyn M. Vickers
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Porras-Silesky C, Mejías-Alpízar MJ, Mora J, Baneth G, Rojas A. Spirocerca lupi Proteomics and Its Role in Cancer Development: An Overview of Spirocercosis-Induced Sarcomas and Revision of Helminth-Induced Carcinomas. Pathogens 2021; 10:pathogens10020124. [PMID: 33530324 PMCID: PMC7911836 DOI: 10.3390/pathogens10020124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Spirocerca lupi is a parasitic nematode of canids that induces a myriad of clinical manifestations in its host and, in 25% of infections, leads to the formation of sarcomas. The description of the protein composition of the excretory and secretory products (Sl-ESP) of S. lupi has shed light on its possible interactions with the host environment, including migration within the host and mechanisms of immunomodulation. Despite this, the process by which S. lupi induces cancer in the dog remains poorly understood, and some hypotheses have arisen regarding these possible mechanisms. In this review, we discuss the role of specific ESP from the carcinogenic helminths Clonorchis sinensis, Opisthorchis viverrini and Schistosoma haematobium in inducing chronic inflammation and cancer in their host’s tissues. The parasitic worms Taenia solium, Echinococcus granulosus, Heterakis gallinarum, Trichuris muris and Strongyloides stercoralis, which have less-characterized mechanisms of cancer induction, are also analyzed. Based on the pathological findings in spirocercosis and the mechanisms by which other parasitic helminths induce cancer, we propose that the sustained inflammatory response in the dog´s tissues produced in response to the release of Sl-ESP homologous to those of other carcinogenic worms may lead to the malignant process in infected dogs.
Collapse
Affiliation(s)
- Catalina Porras-Silesky
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, 11501-2060 San José, Costa Rica; (C.P.-S.); (M.J.M.-A.); (J.M.)
| | - María José Mejías-Alpízar
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, 11501-2060 San José, Costa Rica; (C.P.-S.); (M.J.M.-A.); (J.M.)
| | - Javier Mora
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, 11501-2060 San José, Costa Rica; (C.P.-S.); (M.J.M.-A.); (J.M.)
| | - Gad Baneth
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Alicia Rojas
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, 11501-2060 San José, Costa Rica; (C.P.-S.); (M.J.M.-A.); (J.M.)
- Correspondence: ; Tel.: +506-2511-8644
| |
Collapse
|
7
|
Shang M, Sun H, Wu Y, Gong Y, Tang Z, Meng F, He L, Yu X, Huang Y, Li X. In vivo and in vitro studies using Clonorchis sinensis adult-derived total protein (CsTP) on cellular function and inflammatory effect in mouse and cell model. Parasitol Res 2020; 119:1641-1652. [PMID: 32285266 DOI: 10.1007/s00436-020-06651-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
Clonorchis sinensis (C. sinensis) can induce a food-borne parasitic disease (clonorchiasis). Numerous studies have analyzed functional proteins, immunologic factors, pro-inflammatory cytokines, and cell signaling transduction that promote the development of clonorchiasis. In a previous study, it was shown that C. sinensis adult-derived total protein (CsTP) might be involved in the pathogenesis and development of liver fibrosis via bringing about Th2 immune response. In the present study, further investigation of CsTP on cellular function and inflammatory effect in vitro and in vivo has been elicited. CsTP induced inflammation and autophagy as evidenced by upregulation of TNF-α, IFN-γ, and autophagic markers LC3B and P62. Exposed to CsTP upregulated the antiapoptotic gene Bcl-2 expression, diminished the apoptosis induced by H2O2, but promoted the proliferation and migration of LX-2 cells in proper concentration range. Additionally, the protein levels of p-AKT and p-mTOR were repressed in response to CsTP, suggesting a correlation of blocking the activation of mTOR/AKT signaling pathway. These results revealed that CsTP might exacerbate hepatic pathological changes by regulating cell proliferation, apoptosis, autophagy, and inflammation in the liver and LX-2 cells. Some effects might be partially involved in the mTOR and AKT pathways.
Collapse
Affiliation(s)
- Mei Shang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Hengchang Sun
- Department of Clinical Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yinjuan Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yu Gong
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Zeli Tang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Fangang Meng
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Lei He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China. .,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China. .,Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
8
|
Lérias JR, Paraschoudi G, de Sousa E, Martins J, Condeço C, Figueiredo N, Carvalho C, Dodoo E, Castillo-Martin M, Beltrán A, Ligeiro D, Rao M, Zumla A, Maeurer M. Microbes as Master Immunomodulators: Immunopathology, Cancer and Personalized Immunotherapies. Front Cell Dev Biol 2020; 7:362. [PMID: 32039196 PMCID: PMC6989410 DOI: 10.3389/fcell.2019.00362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
The intricate interplay between the immune system and microbes is an essential part of the physiological homeostasis in health and disease. Immunological recognition of commensal microbes, such as bacterial species resident in the gut or lung as well as dormant viral species, i.e., cytomegalovirus (CMV) or Epstein-Barr virus (EBV), in combination with a balanced immune regulation, is central to achieve immune-protection. Emerging evidence suggests that immune responses primed to guard against commensal microbes may cause unexpected pathological outcomes, e.g., chronic inflammation and/or malignant transformation. Furthermore, translocation of immune cells from one anatomical compartment to another, i.e., the gut-lung axis via the lymphatics or blood has been identified as an important factor in perpetrating systemic inflammation, tissue destruction, as well as modulating host-protective immune responses. We present in this review immune response patterns to pathogenic as well as non-pathogenic microbes and how these immune-recognition profiles affect local immune responses or malignant transformation. We discuss personalized immunological therapies which, directly or indirectly, target host biological pathways modulated by antimicrobial immune responses.
Collapse
Affiliation(s)
- Joana R. Lérias
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Eric de Sousa
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - João Martins
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Carolina Condeço
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Nuno Figueiredo
- Digestive Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Carlos Carvalho
- Digestive Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | | | - Antonio Beltrán
- Department of Pathology, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Dário Ligeiro
- Lisbon Centre for Blood and Transplantation, Instituto Português do Sangue e Transplantação, Lisbon, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Alimuddin Zumla
- Division of Infection and Immunity, NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, University College London, London, United Kingdom
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
9
|
Differential responses of epithelial cells from urinary and biliary tract to eggs of Schistosoma haematobium and S. mansoni. Sci Rep 2019; 9:10731. [PMID: 31341177 PMCID: PMC6656753 DOI: 10.1038/s41598-019-46917-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/28/2019] [Indexed: 01/09/2023] Open
Abstract
Chronic urogenital schistosomiasis can lead to squamous cell carcinoma of the bladder. The International Agency for Research on Cancer classifies the infection with S. haematobium as a group 1 carcinogen, a definitive cause of cancer. By contrast, hepatointestinal schistosomiasis due to the chronic infection with S. mansoni or S. japonicum associated with liver periportal fibrosis, does not apparently lead to malignancy. The effects of culturing human epithelial cells, HCV29, established from normal urothelium, and H69, established from cholangiocytes, in the presence of S. haematobium or S. mansoni eggs were investigated. Cell growth of cells co-cultured with schistosome eggs was monitored in real time, and gene expression analysis of oncogenesis, epithelial to mesenchymal transition and apoptosis pathways was undertaken. Schistosome eggs promoted proliferation of the urothelial cells but inhibited growth of cholangiocytes. In addition, the tumor suppressor P53 pathway was significantly downregulated when exposed to schistosome eggs, and downregulation of estrogen receptor was predicted in urothelial cells exposed only to S. haematobium eggs. Overall, cell proliferative responses were influenced by both the tissue origin of the epithelial cells and the schistosome species.
Collapse
|
10
|
Ishida K, Hsieh MH. Understanding Urogenital Schistosomiasis-Related Bladder Cancer: An Update. Front Med (Lausanne) 2018; 5:223. [PMID: 30159314 PMCID: PMC6104441 DOI: 10.3389/fmed.2018.00223] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/20/2018] [Indexed: 12/30/2022] Open
Abstract
Infection with Schistosoma haematobium leads to urogenital schistosomiasis, which has been correlated with the occurrence of bladder cancer. However, mechanisms responsible for this association have not yet been clearly identified. In this short review, we provide an update, highlighting the most recent studies on schistosome-associated bladder cancer, including those that focus on identifying changes in host biology during S. haematobium infection, as well as studies for the identification of potentially pro-carcinogenic parasite molecules, and we offer a discussion on some possible mechanisms driving schistosomal bladder cancer.
Collapse
Affiliation(s)
- Kenji Ishida
- Bladder Immunology Group, Biomedical Research Institute, Rockville, MD, United States
| | - Michael H. Hsieh
- Bladder Immunology Group, Biomedical Research Institute, Rockville, MD, United States
- Department of Urology, The George Washington University, Washington, DC, United States
- Division of Urology, Children's National Medical Center, Washington, DC, United States
| |
Collapse
|
11
|
Corcuera MT, Rodríguez-Bobada C, Zuloaga J, Gómez-Aguado F, Rodríguez-Perez R, Mendizabal Á, González P, Arias-Díaz J, Caballero ML. Exploring tumourigenic potential of the parasite Anisakis: a pilot study. Parasitol Res 2018; 117:3127-3136. [DOI: 10.1007/s00436-018-6008-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 07/04/2018] [Indexed: 11/24/2022]
|
12
|
Sui X, Lei L, Chen L, Xie T, Li X. Inflammatory microenvironment in the initiation and progression of bladder cancer. Oncotarget 2017; 8:93279-93294. [PMID: 29190997 PMCID: PMC5696263 DOI: 10.18632/oncotarget.21565] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence suggests the idea that chronic inflammation may play a critical role in various malignancies including bladder cancer and long-term treatment with non-steroidal anti-inflammatory drugs (NSAIDs) is significantly effective in reducing certain cancer incidence and mortality. However, the molecular mechanisms leading to malignant transformation and the progression of bladder cancer in a chronically inflammatory environment remain largely unknown. In this review, we will describe the role of inflammation in the formation and development of bladder cancer and summarize the possible molecular mechanisms by which chronic inflammation regulates cell immune response, proliferation and metastasis. Understanding the novel function orchestrating inflammation and bladder cancer will hopefully provide us insights into their future clinical significance in preventing bladder carcinogenesis and progression.
Collapse
Affiliation(s)
- Xinbing Sui
- Department of Medical Oncology Holistic Integrative Oncology Institutes and Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Department of Medical Oncology Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Liming Lei
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Liuxi Chen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tian Xie
- Department of Medical Oncology Holistic Integrative Oncology Institutes and Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Department of Medical Oncology Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xue Li
- Departments of Urology and Pathology, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Dematei A, Fernandes R, Soares R, Alves H, Richter J, Botelho MC. Angiogenesis in Schistosoma haematobium-associated urinary bladder cancer. APMIS 2017; 125:1056-1062. [PMID: 28960560 DOI: 10.1111/apm.12756] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022]
Abstract
Schistosoma haematobium, a parasitic flatworm that infects more than 100 million people, mostly in the developing world, is the causative agent of urogenital schistosomiasis, and is associated with a high incidence of squamous cell carcinoma (SCC) of the bladder. During infection, eggs are deposited in the bladder causing an intense inflammatory reaction. Angiogenesis is defined as the formation of new blood vessels from preexisting ones and is recognized as a key event in cell proliferation and carcinogenesis and spread of malignant lesions. A growing amount of evidence points to angiogenesis playing a key role in schistosomiasis-associated bladder cancer. Thus, identifying biomarkers of this process plays an important role in the study of cancer. Here, we review recent findings on the role of angiogenesis in bladder cancer and the growth factors that induce and assist in their development, particularly SCC of the bladder associated to urogenital schistosomiasis.
Collapse
Affiliation(s)
- Anderson Dematei
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| | - Rúben Fernandes
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal.,I3S, Instituto de Investigação e Inovação da Universidade do Porto, Porto, Portugal
| | - Raquel Soares
- I3S, Instituto de Investigação e Inovação da Universidade do Porto, Porto, Portugal.,Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Helena Alves
- Department of Health Promotion and Chronic Diseases, INSA - National Institute of Health Dr. Ricardo Jorge, Porto, Portugal.,Fundação Professor Ernesto Morais, Porto, Portugal
| | - Joachim Richter
- Institute of Tropical Medicine and International Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Monica C Botelho
- I3S, Instituto de Investigação e Inovação da Universidade do Porto, Porto, Portugal.,Department of Health Promotion and Chronic Diseases, INSA - National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
| |
Collapse
|
14
|
Jacqueline C, Tasiemski A, Sorci G, Ujvari B, Maachi F, Missé D, Renaud F, Ewald P, Thomas F, Roche B. Infections and cancer: the "fifty shades of immunity" hypothesis. BMC Cancer 2017; 17:257. [PMID: 28403812 PMCID: PMC5389015 DOI: 10.1186/s12885-017-3234-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/24/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Since the beginning of the twentieth century, infection has emerged as a fundamental aspect of cancer causation with a growing number of pathogens recognized as oncogenic. Meanwhile, oncolytic viruses have also attracted considerable interest as possible agents of tumor destruction. DISCUSSION Lost in the dichotomy between oncogenic and oncolytic agents, the indirect influence of infectious organisms on carcinogenesis has been largely unexplored. We describe the various ways - from functional aspects to evolutionary considerations such as modernity mismatches - by which infectious organisms could interfere with oncogenic processes through immunity. Finally, we discuss how acknowledging these interactions might impact public health approaches and suggest new guidelines for therapeutic and preventive strategies both at individual and population levels. Infectious organisms, that are not oncogenic neither oncolytic, may play a significant role in carcinogenesis, suggesting the need to increase our knowledge about immune interactions between infections and cancer.
Collapse
Affiliation(s)
- Camille Jacqueline
- CREEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Aurélie Tasiemski
- Unité d’Evolution, Ecologie et Paléontologie (EEP) Université de Lille 1 CNRS UMR 8198, groupe d’Ecoimmunologie des Annélides, 59655 Villeneuve-d’Ascqd’Ascq, France
| | - Gabriele Sorci
- BiogéoSciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Vic Australia
| | - Fatima Maachi
- Laboratoire de Pathologie Oncologie Digestive, Institut Pasteur 1, Place Abou Kacem Ez-Zahraoui- B.P, 120, Casablanca, Morocco
| | - Dorothée Missé
- CREEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - François Renaud
- CREEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Paul Ewald
- Department of Biology, University of Louisville, Louisville, KY 40292 USA
| | - Frédéric Thomas
- CREEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Benjamin Roche
- CREEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
- International Center for Mathematical and Computational Modeling of Complex Systems (UMI IRD/UPMC UMMISCO), 32 Avenue Henri Varagnat, 93143 Bondy Cedex, France
| |
Collapse
|
15
|
Vale N, Gouveia MJ, Rinaldi G, Santos J, Santos LL, Brindley PJ, da Costa JMC. The role of estradiol metabolism in urogenital schistosomiasis-induced bladder cancer. Tumour Biol 2017; 39:1010428317692247. [PMID: 28345469 DOI: 10.1177/1010428317692247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Urogenital schistosomiasis is a neglected tropical disease that can lead to bladder cancer. How urogenital schistosomiasis induces carcinogenesis remains unclear, although there is evidence that the human blood fluke Schistosoma haematobium, the infectious agent of urogenital schistosomiasis, releases estradiol-like metabolites. These kind of compounds have been implicated in other cancers. Aiming for enhanced understanding of the pathogenesis of the urogenital schistosomiasis-induced bladder cancer, here we review, interpret, and discuss findings of estradiol-like metabolites detected in both the parasite and in the human urine during urogenital schistosomiasis. Moreover, we predict pathways and enzymes that are involved in the production of these metabolites emphasizing their potential effects on the dysregulation of the tumor suppressor gene p53 expression during urogenital schistosomiasis. Enhanced understanding of these potential carcinogens may not only shed light on urogenital schistosomiasis-induced neoplasia of the bladder, but would also facilitate development of interventions and biomarkers for this and other infection-associated cancers at large.
Collapse
Affiliation(s)
- Nuno Vale
- 1 UCIBIO/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Maria J Gouveia
- 1 UCIBIO/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.,2 Center for the Study of Animal Science, ICETA, University of Porto, Porto, Portugal
| | - Gabriel Rinaldi
- 3 Department of Microbiology, Immunology, & Tropical Medicine and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA.,4 The Wellcome Trust Sanger Institute, Cambridge, UK
| | - Júlio Santos
- 5 Clínica da Sagrada Esperança, Luanda, Angola.,6 Experimental Pathology and Therapeutics Group, Research Center of Instituto Português de Oncologia, Porto, Portugal
| | - Lúcio Lara Santos
- 6 Experimental Pathology and Therapeutics Group, Research Center of Instituto Português de Oncologia, Porto, Portugal
| | - Paul J Brindley
- 3 Department of Microbiology, Immunology, & Tropical Medicine and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, USA
| | - José M Correia da Costa
- 2 Center for the Study of Animal Science, ICETA, University of Porto, Porto, Portugal.,7 Department of Infectious Diseases, R&D Unit, National Health Institute Doutor Ricardo Jorge (INSA), Porto, Portugal
| |
Collapse
|
16
|
Brindley PJ, da Costa JMC, Sripa B. Why does infection with some helminths cause cancer? Trends Cancer 2015; 1:174-182. [PMID: 26618199 PMCID: PMC4657143 DOI: 10.1016/j.trecan.2015.08.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/24/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023]
Abstract
Infections with Opisthorchis viverrini, Clonorchis sinensis and Schistosoma haematobium are classified as Group 1 biological carcinogens: definitive causes of cancer. These worms are metazoan eukaryotes, unlike the other Group 1 carcinogens including human papilloma virus, hepatitis C virus, and Helicobacter pylori. By contrast, infections with phylogenetic relatives of these helminths, also trematodes of the phylum Platyhelminthes and major human pathogens, are not carcinogenic. These inconsistencies prompt several questions, including how might these infections cause cancer? And why is infection with only a few helminth species carcinogenic? Here we present an interpretation of mechanisms contributing to the carcinogenicity of these helminth infections, including roles for catechol estrogen- and oxysterol-metabolites of parasite origin as initiators of carcinogenesis.
Collapse
Affiliation(s)
- Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - José M Correia da Costa
- Center for Parasite Biology and Immunology, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; and Center for the Study of Animal Science, CECA/ICETA, University of Porto, Portugal
| | - Banchob Sripa
- Tropical Disease Research Laboratory, Department of Pathology, and Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
17
|
Garcia-Perez JC, Rodríguez-Perez R, Ballestero A, Zuloaga J, Fernandez-Puntero B, Arias-Díaz J, Caballero ML. Previous Exposure to the Fish Parasite Anisakis as a Potential Risk Factor for Gastric or Colon Adenocarcinoma. Medicine (Baltimore) 2015; 94:e1699. [PMID: 26448021 PMCID: PMC4616760 DOI: 10.1097/md.0000000000001699] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Anisakiasis is a global disease caused by consumption of raw or lightly cooked fish contaminated with L3 Anisakis spp. larvae. High rates of parasitization of fish worldwide make Anisakis a serious health hazard. In fact, anisakiasis is a growing disease in countries such as Spain, Italy, and Japan, where consumption of raw/marinated fish is high. Some parasitic infections have been recognized as a causative factor for human cancer. Suggested mechanisms include chronic inflammation elicited by the parasite, and a possible tumorigenic effect from certain parasitic secretions. Anisakis can produce persistent local inflammation and granuloma, and larvae have been incidentally found in gastrointestinal (GI) tumors. Our aim was to discover possible differences in the prevalence of unnoticed or asymptomatic previous Anisakis infection in GI cancer patients compared with healthy individuals. Serum levels of specific antibodies against Anisakis antigens were used as a reliable marker of previous contact with their larvae. Ninety-four participants without a previous history of Anisakis infection were prospectively allocated into 1 of 2 groups: 47 patients with GI cancer and 47 controls. Specific IgE, IgA1, and IgG1 against the Anisakis recombinant antigens Ani s 1, Ani s 5, Ani s 9, and Ani s 10 were determined by an ELISA assay. The ratio of positivity to sIgA1, rAni s 1, or rAni s 5 was significantly higher in the cancer patients than in the controls (38.30% vs 6.38%, P < 0.001) and (42.55% vs 10.64%, P < 0.001, respectively). When disaggregated by type of tumor, the patients with gastric cancer showed a higher proportion of positive results for sIgA1 to rAni s 1 (P < 0.001), whereas a higher proportion of colon cancer patients were shown to be positive for sIgA1 to both rAni s 1 (P < 0.05) and rAni s 5 (P < 0.01). Earlier Anisakis infection might be a risk factor for the development of stomach or colon cancer.
Collapse
Affiliation(s)
- Juan Carlos Garcia-Perez
- From the Department of Surgery, Hospital Ramón y Cajal (JCG-P, AB), La Paz University Hospital Institute for Health Research (IdiPAZ) (RR-P), Department of Surgery, Complutense University, Hospital Clínico San Carlos (JZ, JA-D), Department of Clinical Laboratory, La Paz University Hospital (BF-P); and Department of Allergy, La Paz University Hospital, Institute for Health Research (IdiPAZ), Madrid, Spain (MLC)
| | | | | | | | | | | | | |
Collapse
|
18
|
Nesi G, Nobili S, Cai T, Caini S, Santi R. Chronic inflammation in urothelial bladder cancer. Virchows Arch 2015; 467:623-633. [PMID: 26263854 DOI: 10.1007/s00428-015-1820-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/17/2015] [Accepted: 07/28/2015] [Indexed: 01/25/2023]
Abstract
The association between inflammation and cancer has been pointed out in epidemiological and clinical studies, revealing how chronic inflammation may contribute to carcinogenesis in various malignancies. However, the molecular events leading to malignant transformation in a chronically inflamed environment are not fully understood. In urothelial carcinoma of the urinary bladder, inflammation plays a dual role. On the one hand, chronic inflammation is a well-established risk factor for the development of bladder cancer (BC), as seen in Schistosoma haematobium infection. On the other, intravesical therapy by bacillus Calmette-Guérin (BCG), which induces inflammation, offers protection against cancer recurrence. The large variety of pro-inflammatory mediators expressed by BC and immune cells binds to specific receptors which control signalling pathways. These activate transcription of a plethora of downstream factors. This review summarizes recent data regarding inflammation and urothelial carcinoma, with special emphasis on the role the inflammatory response plays in BC recurrence risk and progression.
Collapse
Affiliation(s)
- Gabriella Nesi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy.
| | - Stefania Nobili
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Tommaso Cai
- Department of Urology, Santa Chiara Regional Hospital, Largo Medaglie d'Oro 9, 50011, Trento, Italy
| | - Saverio Caini
- Unit of Molecular and Nutritional Epidemiology, Institute for Cancer Research and Prevention (ISPO), Via delle Oblate 2, 50139, Florence, Italy
| | - Raffaella Santi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| |
Collapse
|
19
|
Othman AA, Soliman RH. Schistosomiasis in Egypt: A never-ending story? Acta Trop 2015; 148:179-90. [PMID: 25959770 DOI: 10.1016/j.actatropica.2015.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/12/2015] [Accepted: 04/17/2015] [Indexed: 01/13/2023]
Abstract
Schistosomiasis has plagued the Egyptian population since the antiquity. The disease is still a public health problem in Egypt, despite the tendency of being overlooked. In the first part of this review, the past and current trends of schistosomiasis in Egypt are reviewed, including history, epidemiology, morbidity, therapy, and control of the disease. Most of these aspects are more or less relevant to other schistosome-endemic regions all over the world. As only one drug is currently available for individual treatment and preventive mass chemotherapy, the quest for complementary measures is urgently warranted. Indeed, one promising approach is the discovery of a vaccine. Herein, we point out the efforts of the Egyptian scientists to develop an efficacious and affordable vaccine against schistosomiasis - a step forward in the battle of elimination of Schistosoma infection. Based on the candidate vaccine antigens, four types of vaccine formulations are discussed: purified antigen vaccines, DNA constructs, attenuated cercariae, and excretory-secretory antigen vaccines. Finally, this review provides insights into this ancient seemingly long-lasting parasitic disease.
Collapse
|
20
|
Milowich D, Le Mercier M, De Neve N, Sandras F, Roumeguere T, Decaestecker C, Salmon I, Rorive S. Diagnostic value of the UCA1 test for bladder cancer detection: a clinical study. SPRINGERPLUS 2015; 4:349. [PMID: 26191476 PMCID: PMC4502048 DOI: 10.1186/s40064-015-1092-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/09/2015] [Indexed: 01/03/2023]
Abstract
Purpose To evaluate the efficiency of the UCA1 test as a diagnostic tool for the detection of bladder cancer. Methods Between October 2009 and December 2011 the UCA1 test was performed on collected urine samples from 162 patients divided into screening and follow-up groups, based on the absence or presence of prior bladder cancer. The test performance was then evaluated in each group and compared to cystoscopy and urinary cytology. Results The overall sensitivity, specificity and positive and negative predictive values for the UCA1 test were 70, 70.7, 75.6 and 64.5%, respectively. We observed no difference in performance for tumours of higher grade or stage, but sensitivity was increased in the screening population compared to patients under follow-up (83.9 vs. 59%). The UCA1 test successfully detected all 7 cases of isolated carcinoma in situ and was more sensitive in this particular setting than cystoscopy or urinary cytology. Conclusion The efficiency of the UCA1 test for the detection of primary and recurring bladder cancer in our study was lower than previously reported. We confirmed the role of UCA1 as a possible adjunct to cystoscopy and cytology when a primary bladder cancer is suspected, but its role in the follow-up of recurring tumours remains limited. Further studies are needed to investigate the role of the UCA1 test in the early detection of carcinoma in situ lesions.
Collapse
Affiliation(s)
- Dina Milowich
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium ; Department of Pathology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Marie Le Mercier
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Nancy De Neve
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Flavienne Sandras
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Thierry Roumeguere
- Department of Urology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Christine Decaestecker
- Laboratory of Image Synthesis and Analysis (LISA), Brussels School of Engineering/École Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium ; DIAPath, Center for Microscopy and Molecular Imaging (CMMI), Académie Universitaire Wallonie-Bruxelles, Gosselies, Belgium
| | - Isabelle Salmon
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium ; DIAPath, Center for Microscopy and Molecular Imaging (CMMI), Académie Universitaire Wallonie-Bruxelles, Gosselies, Belgium
| | - Sandrine Rorive
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium ; DIAPath, Center for Microscopy and Molecular Imaging (CMMI), Académie Universitaire Wallonie-Bruxelles, Gosselies, Belgium
| |
Collapse
|
21
|
Koonrungsesomboon N, Wadagni AC, Mbanefo EC. Molecular markers and Schistosoma-associated bladder carcinoma: A systematic review and meta-analysis. Cancer Epidemiol 2015; 39:487-96. [PMID: 26162479 DOI: 10.1016/j.canep.2015.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/20/2015] [Accepted: 06/22/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Molecular mechanisms and pathogenesis of schistosomal-associated bladder cancer (SABC), one of the most common malignancies in Africa and parts of the Middle East, is still unclear. Identification of host molecular markers involved in schistosomal related bladder carcinogenesis is of value in prediction of high-risk group, early detection and timely intervention. METHODS PubMed, Scopus, Google Scholar, Cochrane Library and African Journals Online databases were systematically searched and reviewed. A total of 63 articles reporting 41 host molecular factors were included in the meta-analysis. RESULTS Pooled odds ratio demonstrated associations of p53 expression, telomerase activity and sFas with SABC as compared to other schistosomal patients (p53 expression: OR=9.46, 95%CI=1.14-78.55, p=0.04; telomerase by TERT: OR=37.38, 95%CI=4.17-334.85, p=0.001; telomerase by TRAP: OR=10.36, 95%CI=6.08-17.64, p<0.00001; sFas: OR=34.37, 95%CI=3.32-355.51, p=0.003). In comparison to bladder cancers of other etiology, positive associations were found between SABC and p15 deletion, p16 deletion, telomerase activity and sFas (p15 deletion: OR=4.20, 95%CI=2.58-6.82, p<0.00001; p16 deletion: OR=4.93, 95%CI=2.52-9.65, p<0.00001; telomerase by TERT: OR=3.01, 95%CI=1.51-5.97, p=0.002; telomerase by TRAP: OR=2.66, 95%CI=1.18-6.01, p=0.02; sFas: OR=4.50, 95%CI=1.78-11.40, p=0.001). Other identified associations were reported by few numbers of studies to enable reliable interpretation. CONCLUSIONS Variations in gene expression or genomic alterations of some molecular markers in SABC as compared to non-SABC or other schistosomal patients were identified. These suggest minute differences in the pathogenesis and physiological profile of SABC, in relation to non-SABC.
Collapse
Affiliation(s)
- Nut Koonrungsesomboon
- Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, 852-8523, Japan.
| | - Anita Carolle Wadagni
- Centre for Buruli Ulcer Screening and Treatment, Ministry of Health, Cotonou, BP 03, Allada, Benin.
| | - Evaristus Chibunna Mbanefo
- Department of Parasitology and Entomology, Faculty of Bioscience, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Nigeria; Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, 852-8523, Japan.
| |
Collapse
|
22
|
Estrogen-like metabolites and DNA-adducts in urogenital schistosomiasis-associated bladder cancer. Cancer Lett 2015; 359:226-32. [PMID: 25615421 DOI: 10.1016/j.canlet.2015.01.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/08/2015] [Accepted: 01/14/2015] [Indexed: 01/26/2023]
Abstract
An estrogen-DNA adduct mediated pathway may be involved in the pathogenesis of the squamous cell carcinoma of the bladder associated with infection with the blood fluke Schistosoma haematobium. Extracts from developmental stages of S. haematobium, including eggs, induce tumor-like phenotypes in cultured cells. In addition, estrogen-derived, reactive metabolites occur in this pathogen and in sera of infected persons. Liquid chromatography-mass spectrometry analysis was performed on urine from 40 Angolans diagnosed with urogenital schistosomiasis (UGS), half of who also presented UGS-associated squamous cell carcinoma and/or urothelial cell carcinoma. The analysis revealed numerous estrogen-like metabolites, including seven specifically identified in UGS cases, but not reported in the database of metabolites in urine of healthy humans. These schistosome infection-associated metabolites included catechol estrogen quinones (CEQ) and CEQ-DNA-adducts, two of which had been identified previously in S. haematobium. In addition, novel metabolites derived directly from 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG) were identified in urine of all 40 cases of UGS. These metabolites can be expected to provide deeper insights into the carcinogenesis UGS-induced bladder cancer, and as biomarkers for diagnosis and/or prognosis of this neglected tropical disease-linked cancer.
Collapse
|
23
|
Correia da Costa JM, Vale N, Gouveia MJ, Botelho MC, Sripa B, Santos LL, Santos JH, Rinaldi G, Brindley PJ. Schistosome and liver fluke derived catechol-estrogens and helminth associated cancers. Front Genet 2014; 5:444. [PMID: 25566326 PMCID: PMC4274992 DOI: 10.3389/fgene.2014.00444] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022] Open
Abstract
Infection with helminth parasites remains a persistent public health problem in developing countries. Three of these pathogens, the liver flukes Clonorchis sinensis, Opisthorchis viverrini and the blood fluke Schistosoma haematobium, are of particular concern due to their classification as Group 1 carcinogens: infection with these worms is carcinogenic. Using liquid chromatography-mass spectrometry (LC-MS/MS) approaches, we identified steroid hormone like (e.g., oxysterol-like, catechol estrogen quinone-like, etc.) metabolites and related DNA-adducts, apparently of parasite origin, in developmental stages including eggs of S. haematobium, in urine of people with urogenital schistosomiasis, and in the adult stage of O. viverrini. Since these kinds of sterol derivatives are metabolized to active quinones that can modify DNA, which in other contexts can lead to breast and other cancers, helminth parasite associated sterols might induce tumor-like phenotypes in the target cells susceptible to helminth parasite associated cancers, i.e., urothelial cells of the bladder in the case of urogenital schistosomiasis and the bile duct epithelia or cholangiocytes, in the case of O. viverrini and C. sinensis. Indeed we postulate that helminth induced cancers originate from parasite estrogen-host epithelial/urothelial cell chromosomal DNA adducts, and here we review recent findings that support this conjecture.
Collapse
Affiliation(s)
- José M Correia da Costa
- Center for Parasite Biology and Immunology, National Health Institute Doutor Ricardo Jorge Porto, Portugal ; Center for the Study of Animal Science, Instituto de Ciências e Tecnologias Agrárias e Agroalimentares, University of Porto Porto, Portugal
| | - Nuno Vale
- Department of Chemistry and Biochemistry, Centro de Investigação em Química, University of Porto Porto, Portugal
| | - Maria J Gouveia
- Center for the Study of Animal Science, Instituto de Ciências e Tecnologias Agrárias e Agroalimentares, University of Porto Porto, Portugal ; Department of Chemistry and Biochemistry, Centro de Investigação em Química, University of Porto Porto, Portugal
| | - Mónica C Botelho
- Department of Health Promotion and Chronic Diseases, National Health Institute Doutor Ricardo Jorge Porto, Portugal
| | - Banchob Sripa
- Tropical Disease Research Laboratory, Liver Fluke and Cholangiocarcinoma Research Center, Department of Pathology, Faculty of Medicine, Khon Kaen University Khon Kaen, Thailand
| | - Lúcio L Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute for Oncology of Porto Porto, Portugal
| | - Júlio H Santos
- Center for the Study of Animal Science, Instituto de Ciências e Tecnologias Agrárias e Agroalimentares, University of Porto Porto, Portugal ; Experimental Pathology and Therapeutics Group, Portuguese Institute for Oncology of Porto Porto, Portugal
| | - Gabriel Rinaldi
- Research Center for Neglected Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University Washington, DC, USA
| | - Paul J Brindley
- Research Center for Neglected Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University Washington, DC, USA
| |
Collapse
|
24
|
Santos J, Fernandes E, Ferreira JA, Lima L, Tavares A, Peixoto A, Parreira B, Correia da Costa JM, Brindley PJ, Lopes C, Santos LL. P53 and cancer-associated sialylated glycans are surrogate markers of cancerization of the bladder associated with Schistosoma haematobium infection. PLoS Negl Trop Dis 2014; 8:e3329. [PMID: 25502795 PMCID: PMC4263606 DOI: 10.1371/journal.pntd.0003329] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/08/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Bladder cancer is a significant health problem in rural areas of Africa and the Middle East where Schistosoma haematobium is prevalent, supporting an association between malignant transformation and infection by this blood fluke. Nevertheless, the molecular mechanisms linking these events are poorly understood. Bladder cancers in infected populations are generally diagnosed at a late stage since there is a lack of non-invasive diagnostic tools, hence enforcing the need for early carcinogenesis markers. METHODOLOGY/PRINCIPAL FINDINGS Forty-three formalin-fixed paraffin-embedded bladder biopsies of S. haematobium-infected patients, consisting of bladder tumours, tumour adjacent mucosa and pre-malignant/malignant urothelial lesions, were screened for bladder cancer biomarkers. These included the oncoprotein p53, the tumour proliferation rate (Ki-67>17%), cell-surface cancer-associated glycan sialyl-Tn (sTn) and sialyl-Lewisa/x (sLea/sLex), involved in immune escape and metastasis. Bladder tumours of non-S. haematobium etiology and normal urothelium were used as controls. S. haematobium-associated benign/pre-malignant lesions present alterations in p53 and sLex that were also found in bladder tumors. Similar results were observed in non-S. haematobium associated tumours, irrespectively of their histological nature, denoting some common molecular pathways. In addition, most benign/pre-malignant lesions also expressed sLea. However, proliferative phenotypes were more prevalent in lesions adjacent to bladder tumors while sLea was characteristic of sole benign/pre-malignant lesions, suggesting it may be a biomarker of early carcionogenesis associated with the parasite. A correlation was observed between the frequency of the biomarkers in the tumor and adjacent mucosa, with the exception of Ki-67. Most S. haematobium eggs embedded in the urothelium were also positive for sLea and sLex. Reinforcing the pathologic nature of the studied biomarkers, none was observed in the healthy urothelium. CONCLUSION/SIGNIFICANCE This preliminary study suggests that p53 and sialylated glycans are surrogate biomarkers of bladder cancerization associated with S. haematobium, highlighting a missing link between infection and cancer development. Eggs of S. haematobium express sLea and sLex antigens in mimicry of human leukocytes glycosylation, which may play a role in the colonization and disease dissemination. These observations may help the early identification of infected patients at a higher risk of developing bladder cancer and guide the future development of non-invasive diagnostic tests.
Collapse
Affiliation(s)
- Júlio Santos
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
- Clínica Sagrada Esperança, Luanda, Angola
| | - Elisabete Fernandes
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
- Grupo de Investigação em Cancro Digestivo (GICD), Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
- Department of Chemistry of the University of Aveiro, Aveiro, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
- Research Department, LPCC-Portuguese League Against Cancer (NRNorte), Porto, Portugal
- Núcleo de Investigação em Farmácia – Centro de Investigação em Saúde e Ambiente (CISA), School of Allied Health Sciences – Polytechnic Institute of Porto, Porto, Portugal
| | - Ana Tavares
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
- Department of Pathology, Portuguese Institute for Oncology of Porto, Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
| | - Beatriz Parreira
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
| | - José Manuel Correia da Costa
- Center for the Study of Animal Science (ICETA), University of Porto, Porto, Portugal
- INSA, National Institute of Health, Porto, Portugal
| | - Paul J. Brindley
- Research Center for Neglected Diseases of Poverty- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, D.C., United States of America
| | - Carlos Lopes
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Lúcio L. Santos
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
- Health School of University of Fernando Pessoa, Porto, Portugal
- Department of Surgical Oncology, Portuguese Institute for Oncology, Porto, Portugal
- National Cancer Center, Luanda, Angol
| |
Collapse
|
25
|
Rausch S, Gaisa N, Youssef RF, Lotan Y, Stenzl A, Kälble T. [Squamous cell lesions of the urinary bladder]. Urologe A 2014; 53:368, 370-4. [PMID: 24549798 DOI: 10.1007/s00120-013-3406-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Squamous cell carcinoma (SCC) and transitional carcinoma with squamous differentiation (SCC/TCC) are rare in western countries. Chronic inflammation and irritation of the urothelium are common risk factors for the development of SCC and TCC/SCC. Tumour biology of squamous cell cancer and precancerous squamous lesions is different from transitional cell cancer (TCC). Recent advances in molecular analysis of benign and malignant squamous cell lesions indicate that they are closely associated and might lead to improved bladder cancer subclassification in the future. AIM At present, the clinical management and therapy of SCC remains challenging, as scientific evidence based on prospective clinical trials is not available. We performed an analysis of available literature on natural history, treatment, and prognosis of SCC, SCC/TCC and metaplastic lesions. Furthermore, recent findings in molecular cancer biology are discussed with a focus on their relevance for SCC carcinogenesis.
Collapse
Affiliation(s)
- S Rausch
- Urologische Universitätsklinik Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Deutschland,
| | | | | | | | | | | |
Collapse
|
26
|
Degoricija M, Situm M, Korać J, Miljković A, Matić K, Paradžik M, Marinović Terzić I, Jerončić A, Tomić S, Terzić J. High NF-κB and STAT3 activity in human urothelial carcinoma: a pilot study. World J Urol 2014; 32:1469-75. [PMID: 24448750 DOI: 10.1007/s00345-014-1237-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/06/2014] [Indexed: 01/23/2023] Open
Abstract
PURPOSE Given that the tumor-promoting inflammation has been previously established in squamous cell carcinoma of the bladder but its contribution to development of urothelial carcinoma (UC) still remains elusive, our aim was to study changes in expression and activity of inflammation-mediating NF-κB and STAT3 transcription factors in human urothelial bladder carcinoma as well as expression of their target genes cyclin D1, VEGFA and TGFβ1. METHODS Gene expression of STAT3, NF-κB, TGFβ1, cyclin D1 and VEGFA was measured by quantitative real-time polymerase chain reaction in both tumor and healthy bladder tissue from 36 patients with UC of the bladder. Activation of STAT3 and NF-κB was assessed with immunohistochemistry and immunoblot. RESULTS Urothelial bladder carcinoma displayed elevated expression as well as activation of NF-κB (P = 5.38e-10) and STAT3 (P = 0.002) transcription factors. Furthermore, elevated level of expression was observed for cyclin D1, VEGFA and TGFβ1 (P = 9.71e-09, P = 9.71e-09, P = 5.38e-10). Preliminary statistical analysis indicated that the level of upregulation of STAT3 or NF-κB was probably not dependent upon the grade (P = 0.984 and 0.803, respectively) and invasiveness of the tumor (0.399 and 0.949), nor to the gender (0.780 and 0.536) and age (0.660 and 0.816) of the patients. CONCLUSIONS NF-κB and STAT3 signaling pathways, as main inflammatory mediators, are found to be activated in urothelial bladder carcinoma indicating that chronic inflammatory processes are accompanying development of this tumor type. Future studies will have to determine possible causative role of inflammatory processes in development of urothelial bladder carcinomas.
Collapse
Affiliation(s)
- Marina Degoricija
- Department of Immunology, School of Medicine, University of Split, Šoltanska 2, 21000, Split, Croatia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Khaled H. Schistosomiasis and cancer in egypt: review. J Adv Res 2013; 4:461-6. [PMID: 25685453 PMCID: PMC4293882 DOI: 10.1016/j.jare.2013.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 11/29/2022] Open
Abstract
Schistosomiasis is not known to be associated with any malignant disease other than bladder cancer. Bladder cancer is still the most common malignant tumor among males in Egypt and some African and Middle East countries. However, the frequency rate of bladder cancer has declined significantly during the last 25 years. This drop is mainly related to the control of Schistosomiasis. Many studies have elucidated the pathogenic events of Schistosomal-related bladder cancer with a suggested theory of pathogenesis. Furthermore, the disease presents with a distinct clinicopathologic profile that is quite different from bladder cancer elsewhere with younger age at presentation, more male predominance, more invasive stages, and occurrence of squamous cell carcinoma pathologic subtype. However, recent data suggest that this profile has been dramatically changed over the past 25 years leading to minimization of the differences between its features in Egypt and that in Western countries. Management of muscle-invasive localized disease is mainly surgery with 5-year survival rates of 30-50%. Although still a debatable issue, adjuvant and neoadjuvant chemotherapy and radiotherapy have improved treatment outcomes including survival and bladder preservation rates in most studies. This controversy emphasizes the need of individualized treatment options based on a prognostic index or other factors that can define the higher risk groups where more aggressive therapy is needed. The treatment for locally advanced and/or metastatic disease has passed through a series of clinical trials since 1970s. These phase II and III trials have included the use of single agent and combination of chemotherapy and radiotherapy regimens. The current standard of systemic chemotherapy of generally fit patients is now the gemcitabine-cisplatin combination. In conclusion, a changing pattern of bladder cancer in Egypt is clearly observed. This is mainly due to the success in the control of Schistosomiasis. It may also be due to increased exposure to other etiologic factors that include smoking, pesticides, and/or other causative agents. This change will ultimately affect disease management.
Collapse
Affiliation(s)
- Hussein Khaled
- Medical Oncology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| |
Collapse
|
28
|
Oikonomopoulou K, Brinc D, Kyriacou K, Diamandis EP. Infection and cancer: revaluation of the hygiene hypothesis. Clin Cancer Res 2013; 19:2834-41. [PMID: 23536438 DOI: 10.1158/1078-0432.ccr-12-3661] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several studies have shown that persistent infections and inflammation can favor carcinogenesis. At the same time, certain types of pathogens and antitumor immune responses can decrease the risk of tumorigenesis or lead to cancer regression. Infectious agents and their products can orchestrate a wide range of host immune responses, through which they may positively or negatively modulate cancer development and/or progression. The factors that direct this dichotomous influence of infection-mediated immunity on carcinogenesis are not well understood. Even though not universal, several previous reports have investigated the inverse link of pathogen-induced "benign" inflammation to carcinogenesis and various other pathologies, ranging from autoimmune diseases to allergy and cancer. Several models and ideas are discussed in this review, including the impact of decreased exposure to pathogens, as well as the influence of pathogen load, the timing of infection, and the type of instigated immune response on carcinogenesis. These phenomena should guide future investigations into identifying novel targets within the microbial and host proteome, which will assist in the development of cancer therapeutics and vaccine remedies, analogous to earlier efforts based on helminthic components for the prevention and/or treatment of several pathologies.
Collapse
Affiliation(s)
- Katerina Oikonomopoulou
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
29
|
Rausch S, Lotan Y, Youssef RF. Squamous cell carcinogenesis and squamous cell carcinoma of the urinary bladder: a contemporary review with focus on nonbilharzial squamous cell carcinoma. Urol Oncol 2013; 32:32.e11-6. [PMID: 23433891 DOI: 10.1016/j.urolonc.2012.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/20/2012] [Accepted: 11/27/2012] [Indexed: 11/17/2022]
Abstract
Bladder squamous cell carcinoma, squamous metaplasia, and transitional cell carcinoma with squamous differentiation are infrequent findings in Western countries. A common risk factor for their development consists of chronic bladder irritation and inflammation. The prognostic and clinical relevance and natural history of squamous cell lesions has been under investigation, revealing individual premalignant characteristics. Recent developments in molecular characterization of squamous alterations of the urinary tract indicate pathogenetic similarities and interrelations and might lead to more precise tumor classification and risk stratification in the future. Nevertheless, current clinical management of patients with premalignant and malignant bladder squamous cell lesions remains challenging, as high evidence level studies are not available and prognosis of invasive squamous carcinoma is poor. Our review summarizes the available data on clinical presentation, treatment, and outcome of bladder squamous cell carcinoma, metaplastic lesions, and transitional cell carcinoma with squamous differentiation and discusses implementable current advances in the understanding of bladder cancer tumorigenesis.
Collapse
Affiliation(s)
- Steffen Rausch
- Department of Urology, Klinikum Fulda gAG, Fulda, Germany.
| | - Yair Lotan
- Department of Urology, University of Texas, Southwestern Medical Center, Dallas, TX
| | - Ramy F Youssef
- Department of Urology, University of Texas, Southwestern Medical Center, Dallas, TX
| |
Collapse
|
30
|
Botelho MC, Vale N, Gouveia MJ, Rinaldi G, Santos J, Santos LL, Gomes P, Brindley PJ, Correia da Costa JM. Tumour-like phenotypes in urothelial cells after exposure to antigens from eggs of Schistosoma haematobium: an oestrogen-DNA adducts mediated pathway? Int J Parasitol 2012; 43:17-26. [PMID: 23260770 DOI: 10.1016/j.ijpara.2012.10.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
Chronic infection with the blood fluke, Schistosoma haematobium, is associated with squamous cell carcinoma of the bladder. Previously, it has been shown that soluble extracts of mixed sex adult S. haematobium worms (SWAP) are tumourigenic, both in vitro and in vivo. In addition, oestrogen-related molecules in SWAP of S. haematobium down-regulate oestrogen receptors (ERs) alpha and beta in oestrogen responsive cells. Moreover, schistosome oestrogens occur in sera of persons with schistosomiasis haematobia and repress transcription of ERs in urothelial cells. Given that eggs of S. haematobium are the developmental stage directly responsible for urogenital disease during schistosomiasis haematobia, we suspected that soluble antigens from S. haematobium eggs exhibit similar or more potent tumorigenic capacity. Here we investigated the tumorigenic potential of soluble egg antigens (Sh-SEA) of S. haematobium and the endocrine system in favouring parasitism by schistosomes. The findings confirmed that 6.25μg/ml of Sh-SEA was enough to stimulate cell proliferation, reduce apoptosis and increase oxidative stress of Sh-SEA-exposed urothelial cells. In addition, genotoxic effects of Sh-SEA on these cells were determined by using alkaline single-cell gel electrophoresis (Comet). Furthermore, Liquid Chromatography Diode Array Detection Electron Spray Ionisation Mass Spectrometry indicated the presence of catechol-oestrogens in S. haematobium SEA. A prospective oestrogen-DNA adduct mediated pathway in S. haematobium egg induced bladder cancer is also discussed.
Collapse
Affiliation(s)
- Mónica C Botelho
- Center for the Study of Animal Science, ICETA, University of Porto, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Roperto S, Di Guardo G, Leonardi L, Pagnini U, Manco E, Paciello O, Esposito I, Borzacchiello G, Russo V, Maiolino P, Roperto F. Bacterial isolates from the urine of cattle affected by urothelial tumors of the urinary bladder. Res Vet Sci 2012; 93:1361-6. [PMID: 22819732 DOI: 10.1016/j.rvsc.2012.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 12/12/2022]
Abstract
Microbiological investigations were performed on urine samples from 108 cows affected by urothelial tumors of the urinary bladder. Bacteria, frequently of mixed population, were isolated from 100 animals. Gram-positive bacteria prevailed, with Staphylococcus spp. and Bacillus spp. being the most common. Escherichia coli and Acinetobacter spp. were the most frequently recovered Gram-negative bacteria. E5 oncoprotein was detected in 86 of the 108 urothelial tumors under study. In the majority of cases, bacterial agents and BPV-2 E5 were simultaneously detected. A marked down-regulation of Tamm-Horsfall protein was also observed in the examined cases. In addition, the p65 subunit of the nuclear factor-κB (NF-κB) transcription factor appeared to be overexpressed. In all cases, a mild to severe chronic inflammation was evident in the stroma of urinary bladder tumors. Bacterial components may play a role in the activation of the NF-κB and might cause chronic inflammation resulting in an impaired ability to clear BPV-2 infection, thus cooperating with the virus in cancer development. As in man, therefore, bacteria could play both a direct and an indirect role in bovine bladder carcinogenesis.
Collapse
Affiliation(s)
- Sante Roperto
- Department of Pathology and Animal Health, Division of Infectious Diseases, Faculty of Veterinary Medicine, University of Naples Federico II, Via Delpino, 1-80137 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|