1
|
Wang Y, Qu H, Xu B, Wu J, Lu K, Liu C, Chen S, Chen M. Expression of FOXA1 Is Associated with the Tumor-Infiltrating M2 Macrophage, Cytotoxic T Lymphocyte, and Effect of Chemotherapy in Bladder Cancer. Urol Int 2023; 107:58-63. [PMID: 34706362 PMCID: PMC9909707 DOI: 10.1159/000519129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 07/21/2021] [Indexed: 01/29/2023]
Abstract
PURPOSE Cisplatin-containing combination chemotherapy has been the standard of care since the late 1980s, but the response rate is <50%. Studies have shown that the efficiency of chemotherapy differs among molecular subtypes of bladder cancer. In this study, we aimed to correlate FOXA1, a marker for differentiation of the basal and luminal subtypes, with tumor immune cell infiltration and the effect of chemotherapy in bladder cancer. MATERIALS AND METHODS Eighty-three patients with bladder cancer treated with chemotherapy were reviewed. Clinicopathological variables for each case were recorded. FOXA1, M2 tumor-associated macrophage (TAM), dendritic cell (DC), and cytotoxic T lymphocyte (CTL) were examined by immunohistochemistry. The relationship between FOXA1, immune cell infiltration, and clinical response to chemotherapy was assessed. RESULTS The overall objective response rate was 34%. The objective response rate for tumors with lower FOXA1 expression was 58% and for tumors with higher FOXA1 expression was 12%. Tumors with infiltrated M2 TAM proportion <3% had a higher objective response rate compared with infiltrated M2 TAM proportion >3% tumors (46% vs. 21%, p = 0.02). Tumors with infiltrated CTL proportion >5% had a higher objective response rate compared with infiltrated CTL proportion <5% tumors (50% vs. 17%, p = 0.002). DCs showed no significant differences. We found that the objective response rate for tumors with lower FOXA1 expression, proportion <3% M2 TAM infiltration, and proportion >5% CTL infiltration is 82%. Lower FOXA1 expression was associated with low M2 TAM infiltration and high CTL infiltration. CONCLUSIONS Thus, we showed that in patients with bladder cancer who received chemotherapy, the higher clinical response rate is associated with low FOXA1 expression, low M2 TAM infiltration, and high CTL infiltration.
Collapse
Affiliation(s)
- Yiduo Wang
- Department of Urology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China, .,Institute of Urology, Surgical Research Center, Southeast University Medical School, Nanjing, China,
| | - Huan Qu
- Health Management Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Bin Xu
- Department of Urology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China,Institute of Urology, Surgical Research Center, Southeast University Medical School, Nanjing, China
| | - Jianping Wu
- Department of Urology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China,Institute of Urology, Surgical Research Center, Southeast University Medical School, Nanjing, China
| | - Kai Lu
- Department of Urology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China,Institute of Urology, Surgical Research Center, Southeast University Medical School, Nanjing, China
| | - Chunhui Liu
- Department of Urology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China,Institute of Urology, Surgical Research Center, Southeast University Medical School, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China,Institute of Urology, Surgical Research Center, Southeast University Medical School, Nanjing, China
| | - Ming Chen
- Department of Urology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China,Institute of Urology, Surgical Research Center, Southeast University Medical School, Nanjing, China,*Ming Chen,
| |
Collapse
|
2
|
Zeber-Lubecka N, Kulecka M, Załęska-Oracka K, Dąbrowska M, Bałabas A, Hennig EE, Szymanek-Szwed M, Mikula M, Jurkiewicz B, Ostrowski J. Gene Expression-Based Functional Differences between the Bladder Body and Trigonal Urothelium in Adolescent Female Patients with Micturition Dysfunction. Biomedicines 2022; 10:biomedicines10061435. [PMID: 35740457 PMCID: PMC9220714 DOI: 10.3390/biomedicines10061435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
The aim of this study is to determine the molecular differences between the urothelial transcriptomes of the bladder body and trigone. The transcriptomes of the bladder body and trigonal epithelia were analyzed by massive sequencing of total epithelial RNA. The profiles of urothelial and urinal microbiomes were assessed by amplicon sequencing of bacterial 16S rRNA genes in 17 adolescent females with pain and micturition dysfunction and control female subjects. The RNA sequencing identified 10,261 differentially expressed genes (DEGs) in the urothelia of the bladder body and trigone, with the top 1000 DEGs at these locations annotated to 36 and 77 of the Reactome-related pathways in the bladder body and trigone, respectively. These pathways represented 11 categories enriched in the bladder body urothelium, including extracellular matrix organization, the neuronal system, and 15 categories enriched in the trigonal epithelium, including RHO GTPase effectors, cornified envelope formation, and neutrophil degranulation. Five bacterial taxa in urine differed significantly in patients and healthy adolescent controls. The evaluation of their transcriptomes indicated that the bladder body and trigonal urothelia were functionally different tissues. The molecular differences between the body and trigonal urothelia responsible for clinical symptoms in adolescents with bladder pain syndrome/interstitial cystitis remain unclear.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Roentgena 5, 02-781 Warsaw, Poland; (N.Z.-L.); (M.K.); (E.E.H.)
- Department of Genetics, Maria Sklodowska-Curie National Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (M.D.); (A.B.); (M.M.)
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Roentgena 5, 02-781 Warsaw, Poland; (N.Z.-L.); (M.K.); (E.E.H.)
- Department of Genetics, Maria Sklodowska-Curie National Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (M.D.); (A.B.); (M.M.)
| | - Katarzyna Załęska-Oracka
- Department of Pediatric Surgery, Children’s Hospital, Centre of Postgraduate Medical Education, Marii Konopnickiej 65, 05-092 Dziekanow Lesny, Poland; (K.Z.-O.); (M.S.-S.)
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (M.D.); (A.B.); (M.M.)
| | - Aneta Bałabas
- Department of Genetics, Maria Sklodowska-Curie National Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (M.D.); (A.B.); (M.M.)
| | - Ewa E. Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Roentgena 5, 02-781 Warsaw, Poland; (N.Z.-L.); (M.K.); (E.E.H.)
- Department of Genetics, Maria Sklodowska-Curie National Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (M.D.); (A.B.); (M.M.)
| | - Magdalena Szymanek-Szwed
- Department of Pediatric Surgery, Children’s Hospital, Centre of Postgraduate Medical Education, Marii Konopnickiej 65, 05-092 Dziekanow Lesny, Poland; (K.Z.-O.); (M.S.-S.)
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (M.D.); (A.B.); (M.M.)
| | - Beata Jurkiewicz
- Department of Pediatric Surgery, Children’s Hospital, Centre of Postgraduate Medical Education, Marii Konopnickiej 65, 05-092 Dziekanow Lesny, Poland; (K.Z.-O.); (M.S.-S.)
- Correspondence: (B.J.); (J.O.); Tel.: +48-22-765-7154 (B.J.); +48-22-546-25-75 (J.O.)
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Roentgena 5, 02-781 Warsaw, Poland; (N.Z.-L.); (M.K.); (E.E.H.)
- Department of Genetics, Maria Sklodowska-Curie National Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (M.D.); (A.B.); (M.M.)
- Correspondence: (B.J.); (J.O.); Tel.: +48-22-765-7154 (B.J.); +48-22-546-25-75 (J.O.)
| |
Collapse
|
3
|
Deng H, Tang F, Zhou M, Shan D, Chen X, Cao K. Identification and Validation of N6-Methyladenosine-Related Biomarkers for Bladder Cancer: Implications for Immunotherapy. Front Oncol 2022; 12:820242. [PMID: 35311150 PMCID: PMC8924666 DOI: 10.3389/fonc.2022.820242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
N6-methyladenosine (m6A) has emerged as one of the most important modifications of RNA. Based on the expression of 23 different modes of m6A regulatory factors, we identified three different m6A modification patterns in bladder cancer. The effects of the three different modes of m6A modification on clinicopathological characteristics, immune cell infiltration levels and expression levels of immune checkpoint genes were comprehensively analyzed. In addition, the effects of different modes of m6A modification on the therapeutic efficacy of anti-PD-L1 immunotherapy (atezolizumab) are also discussed. Our results confirm that m6A methylation plays an important role in immune cell recruitment in the tumor microenvironment of bladder cancer, which influences the efficacy of anti-PD-L1 therapy for bladder cancer. We further confirmed the important role of FTO protein in the biological function of bladder cancer cells by performing in vitro experiments. FTO functions as an oncogene in bladder cancer cells, and upon FTO knockdown, the level of m6A enzyme activity in bladder cancer cells was significantly increased, apoptosis was increased, and cell proliferation and cell invasion were reduced. In addition, our study also confirmed that K216H and K216E are probably important targets for regulating FTO. We provide new insights into the regulatory pathways of the immune microenvironment and the methylation function of m6A in bladder cancer, which will help in designing novel diagnostic methods, prognostic tools, and therapeutic targets.
Collapse
Affiliation(s)
- Hongyu Deng
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Faqing Tang
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Dongyong Shan
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xingyu Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Identification of the gene expression changes and gene regulatory aspects in ELF3 mutant bladder cancer. Mol Biol Rep 2022; 49:3135-3147. [PMID: 35199247 DOI: 10.1007/s11033-022-07145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/12/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Recent genome-wide studies revealed the molecular subtypes and mutational landscape of bladder cancer, which is the 10th most common cancer causing many deaths. ELF3 is one of the frequently mutated genes in bladder cancer with 14% alteration rate. It mainly functions as an epithelial transcription factor and its proper function is critical for the urothelium development. However, the impact of ELF3 mutations in bladder cancer is currently unknown. METHODS AND RESULTS In this study, we analysed the gene expression data available for primary bladder cancer and bladder cancer cell lines according to the mutation status of ELF3. Our results show that de-regulated genes common in cell lines and primary tissue are primarily involved in ameboidal type cell migration and cell-cell junction organization. Additionally, we identify that ELF3-mutant cases in primary samples significantly overexpress PIK3C2B and ELF3 and PIK3C2B and ELF3 are significantly co-mutated in many cancer types. Our integrative analysis with existing Hi-C data further revealed the genes proximally located to ELF3, including PIK3C2B to be upregulated in ELF3 mutant cases, potentially as a result of truncated ELF3 protein product and subsequent changes in regulatory interactions. CONCLUSIONS Our results provide important insights about how ELF3 mutation contributes to bladder tumorigenesis and uncover previously unknown dependencies.
Collapse
|
5
|
Ozgun G, Senturk S, Erkek-Ozhan S. Retinoic acid signaling and bladder cancer: Epigenetic deregulation, therapy and beyond. Int J Cancer 2021; 148:2364-2374. [PMID: 33128775 DOI: 10.1002/ijc.33374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
Abstract
Retinoic acid (RA) signaling is a crucial developmental pathway involved in urothelium development, differentiation and regeneration. Deregulation of the RA signaling is highly implicated in several cancers, including bladder cancer, underlying the need to unravel the complete regulatory aspects of the retinoids in bladder tumorigenesis. Given the fact that RA receptors are transcription factors functioning at the chromatin level and act in close cooperation with chromatin modifiers, it is known that retinoids show their efficacy by changing the epigenome. Bladder cancer can be defined as a "disease of chromatin" with mutations identified in the genes involved in chromatin regulation in 80% of the patients. Therefore, a careful examination of the epigenetic backgrounds and the breakdown of the emerging and highly underexplored field of RA dependent regulation of the epigenome is essential to fully understand the retinoid-dependent effects on bladder cancer. With this motivation, in this review, we evaluate the role of RA signaling in bladder cancer with a focus on the regulatory and mutational aspects, emphasizing the deregulatory characteristics in bladder cancer and highlighting the potential treatment opportunities with the RA and derivatives alone or in combination with epigenetic drugs.
Collapse
Affiliation(s)
- Gizem Ozgun
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Izmir, Turkey
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Izmir, Turkey
| | | |
Collapse
|
6
|
Creation of bladder assembloids mimicking tissue regeneration and cancer. Nature 2020; 588:664-669. [PMID: 33328632 DOI: 10.1038/s41586-020-3034-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/13/2020] [Indexed: 12/30/2022]
|
7
|
Vitamin A Rich Diet Diminishes Early Urothelial Carcinogenesis by Altering Retinoic Acid Signaling. Cancers (Basel) 2020; 12:cancers12071712. [PMID: 32605249 PMCID: PMC7407197 DOI: 10.3390/cancers12071712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Urinary bladder cancer is one of the leading malignancies worldwide, with the highest recurrence rates. A diet rich in vitamin A has proven to lower the risk of cancer, yet the molecular mechanisms underlying this effect are unknown. We found that vitamin A decreased urothelial atypia and apoptosis during early bladder carcinogenesis induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Vitamin A did not alter urothelial cell desquamation, differentiation, or proliferation rate. Genes like Wnt5a, involved in retinoic acid signaling, and transcription factors Pparg, Ppara, Rxra, and Hoxa5 were downregulated, while Sox9 and Stra6 were upregulated in early urothelial carcinogenesis. When a vitamin A rich diet was provided during BBN treatment, none of these genes was up- or downregulated; only Lrat and Neurod1 were upregulated. The lecithin retinol acyltransferase (LRAT) enzyme that produces all-trans retinyl esters was translocated from the cytoplasm to the nuclei in urothelial cells as a consequence of BBN treatment regardless of vitamin A rich diet. A vitamin A-rich diet altered retinoic acid signaling, decreased atypia and apoptosis of urothelial cells, and consequently diminished early urothelial carcinogenesis.
Collapse
|
8
|
Xu M, Gu M, Zhou J, Da J, Wang Z. Interaction of YAP1 and mTOR promotes bladder cancer progression. Int J Oncol 2020; 56:232-242. [PMID: 31789387 PMCID: PMC6910214 DOI: 10.3892/ijo.2019.4922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Yes‑associated protein 1 (YAP1) and mammalian target of rapamycin (mTOR) signaling pathways have been found to be deregulated in bladder cancer and accelerate the malignant progression of bladder cancer. However, the crosstalk between YAP1 and mTOR and its role in bladder cancer progression remains unclear. The aim of the present study was to investigate this crosstalk and the results revealed that the expression of YAP1 and mTOR was elevated in bladder cancer tissues compared with that in adjacent normal tissues. Knockdown of either mTOR or YAP1 with siRNA transfection significantly repressed the proliferation ability and induced apoptosis of HT‑1376 and J82 bladder cancer cells, particularly when YAP1 and mTOR were downregulated simultaneously. Upregulation of mTOR increased the mRNA and protein levels of YAP1 and enhanced its nuclear accumulation. In turn, YAP1 upregulation increased mTOR expression, reduced its protein degradation and increased its stability. In addition, immunofluorescence and Duolink assays demonstrated that YAP1 and mTOR were co‑localized in the nucleus. Immunoprecipitation assay demonstrated that the YAP1 protein was able to bind to the mTOR protein. Moreover, YAP1 combined with S‑phase kinase‑associated protein 2 (SKP2) and positively regulated its expression. Furthermore, the promotion of cell growth and inhibition of cell apoptosis induced by YAP1 overexpression were abolished when SKP2 was downregulated in HT‑1376 and J82 cells. Taken together, the findings of the present study indicated that the crosstalk between YAP1 and mTOR plays a pivotal role in accelerating the progression of bladder cancer, which may provide new insights into the role of the YAP1/mTOR axis in the occurrence and development of bladder cancer.
Collapse
Affiliation(s)
- Mingxi Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Meng Gu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Juan Zhou
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jun Da
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
9
|
Repression of transcription factor AP-2 alpha by PPARγ reveals a novel transcriptional circuit in basal-squamous bladder cancer. Oncogenesis 2019; 8:69. [PMID: 31772149 PMCID: PMC6879593 DOI: 10.1038/s41389-019-0178-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 11/13/2022] Open
Abstract
The discovery of bladder cancer transcriptional subtypes provides an opportunity to identify high risk patients, and tailor disease management. Recent studies suggest tumor heterogeneity contributes to regional differences in molecular subtype within the tumor, as well as during progression and following treatment. Nonetheless, the transcriptional drivers of the aggressive basal-squamous subtype remain unidentified. As PPARɣ has been repeatedly implicated in the luminal subtype of bladder cancer, we hypothesized inactivation of this transcriptional master regulator during progression results in increased expression of basal-squamous specific transcription factors (TFs) which act to drive aggressive behavior. We initiated a pharmacologic and RNA-seq-based screen to identify PPARɣ-repressed, basal-squamous specific TFs. Hierarchical clustering of RNA-seq data following treatment of three human bladder cancer cells with a PPARɣ agonist identified a number of TFs regulated by PPARɣ activation, several of which are implicated in urothelial and squamous differentiation. One PPARɣ-repressed TF implicated in squamous differentiation identified is Transcription Factor Activating Protein 2 alpha (TFAP2A). We show TFAP2A and its paralog TFAP2C are overexpressed in basal-squamous bladder cancer and in squamous areas of cystectomy samples, and that overexpression is associated with increased lymph node metastasis and distant recurrence, respectively. Biochemical analysis confirmed the ability of PPARɣ activation to repress TFAP2A, while PPARɣ antagonist and PPARɣ siRNA knockdown studies indicate the requirement of a functional receptor. In vivo tissue recombination studies show TFAP2A and TFAP2C promote tumor growth in line with the aggressive nature of basal-squamous bladder cancer. Our findings suggest PPARɣ inactivation, as well as TFAP2A and TFAP2C overexpression cooperate with other TFs to promote the basal-squamous transition during tumor progression.
Collapse
|
10
|
Jack S, Madhivanan K, Ramadesikan S, Subramanian S, Edwards DF, Elzey BD, Dhawan D, McCluskey A, Kischuk EM, Loftis AR, Truex N, Santos M, Lu M, Rabideau A, Pentelute B, Collier J, Kaimakliotis H, Koch M, Ratliff TL, Knapp DW, Aguilar RC. A novel, safe, fast and efficient treatment for Her2-positive and negative bladder cancer utilizing an EGF-anthrax toxin chimera. Int J Cancer 2019; 146:449-460. [PMID: 31584195 DOI: 10.1002/ijc.32719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/10/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022]
Abstract
Bladder cancer is the sixth most common cancer in the United States, and it exhibits an alarming 70% recurrence rate. Thus, the development of more efficient antibladder cancer approaches is a high priority. Accordingly, this work provides the basis for a transformative anticancer strategy that takes advantage of the unique characteristics of the bladder. Unlike mucin-shielded normal bladder cells, cancer cells are exposed to the bladder lumen and overexpress EGFR. Therefore, we used an EGF-conjugated anthrax toxin that after targeting EGFR was internalized and triggered apoptosis in exposed bladder cancer cells. This unique agent presented advantages over other EGF-based technologies and other toxin-derivatives. In contrast to known agents, this EGF-toxin conjugate promoted its own uptake via receptor microclustering even in the presence of Her2 and induced cell death with a LC50 < 1 nM. Furthermore, our data showed that exposures as short as ≈3 min were enough to commit human (T24), mouse (MB49) and canine (primary) bladder cancer cells to apoptosis. Exposure of tumor-free mice and dogs with the agent resulted in no toxicity. In addition, the EGF-toxin was able to eliminate cells from human patient tumor samples. Importantly, the administration of EGF-toxin to dogs with spontaneous bladder cancer, who had failed or were not eligible for other therapies, resulted in ~30% average tumor reduction after one treatment cycle. Because of its in vitro and in vivo high efficiency, fast action (reducing treatment time from hours to minutes) and safety, we propose that this EGF-anthrax toxin conjugate provides the basis for new, transformative approaches against bladder cancer.
Collapse
Affiliation(s)
- Sherwin Jack
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Kayalvizhi Madhivanan
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Swetha Ramadesikan
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Sneha Subramanian
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Daniel F Edwards
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Bennett D Elzey
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN.,Department of Urology, Indiana University School of Medicine, Indianapolis, IN
| | - Deepika Dhawan
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN
| | | | - Erin M Kischuk
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN
| | - Alexander R Loftis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | - Nicholas Truex
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | - Michael Santos
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | - Mike Lu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | - Amy Rabideau
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | - Bradley Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA.,Koch Institute MIT, Cambridge, MA.,Broad Institute of Harvard and MIT, Cambridge, MA.,Center for Environmental Health Sciences MIT, Cambridge, MA
| | - John Collier
- Department of Microbiology, Harvard Medical School, Boston, MA
| | | | - Michael Koch
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN
| | - Timothy L Ratliff
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN
| | - Deborah W Knapp
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN
| | - Ruben C Aguilar
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Biological Sciences, Purdue University, West Lafayette, IN
| |
Collapse
|
11
|
Sjödahl G, Jackson CL, Bartlett JM, Siemens DR, Berman DM. Molecular profiling in muscle-invasive bladder cancer: more than the sum of its parts. J Pathol 2019; 247:563-573. [PMID: 30604486 DOI: 10.1002/path.5230] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/17/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022]
Abstract
Bladder cancers are biologically and clinically heterogeneous. Recent large-scale transcriptomic profiling studies focusing on life-threatening muscle-invasive cases have demonstrated a small number of molecularly distinct clusters that largely explain their heterogeneity. Similar to breast cancer, these clusters reflect intrinsic urothelial cell-type differentiation programs, including those with luminal and basal cell characteristics. Also like breast cancer, each cell-based subtype demonstrates a distinct profile with regard to its prognosis and its expression of therapeutic targets. Indeed, a number of studies suggest subtype-specific differential responses to cytotoxic chemotherapy and to therapies that inhibit a number of targets, including growth factors (EGFR, ERBB2, FGFR) and immune checkpoint (PD1, PDL1) inhibitors. Despite burgeoning evidence for important clinical implications, subtyping has yet to enter into routine clinical practice. Here we review the conceptual basis for intrinsic cell subtyping in muscle-invasive bladder cancer and discuss evidence behind proposed clinical uses for subtyping as a prognostic or predictive test. In deliberating barriers to clinical implementation, we review pitfalls associated with transcriptomic profiling and illustrate a simple immunohistochemistry (IHC)-based subtyping algorithm that may serve as a faster, less expensive alternative. Envisioned as a research tool that can easily be translated into routine pathology workflow, IHC-based profiling has the potential to more rapidly establish the utility (or lack thereof) of cell type profiling in clinical practice. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gottfrid Sjödahl
- Division of Urological Research, Department of Translational Medicine, Lund University, Lund, Sweden.,Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Chelsea L Jackson
- Division of Cancer Biology & Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.,Department of Pathology & Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - John Ms Bartlett
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, Ontario, Canada.,Diagnostic Development Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - D Robert Siemens
- Division of Cancer Biology & Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.,Department of Urology, Queen's University, Kingston, Ontario, Canada
| | - David M Berman
- Division of Cancer Biology & Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.,Department of Pathology & Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
12
|
Chen WY, Yang JL, Wu YH, Li LC, Li RF, Chang YT, Dai LH, Wang WC, Chang YJ. IL-33/ST2 axis mediates hyperplasia of intrarenal urothelium in obstructive renal injury. Exp Mol Med 2018; 50:1-11. [PMID: 29674622 PMCID: PMC5938009 DOI: 10.1038/s12276-018-0047-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/20/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022] Open
Abstract
The monolayered intrarenal urothelium covers the renal papilla and ureteropelvic junction (UPJ). In response to increased renal pressure during obstruction or ischemic injuries, intrarenal urothelial cells begin to proliferate and form a multilayered urothelium. Little is known regarding the mechanism and pathophysiological role of urothelium hyperplasia during renal obstruction. In this study, we investigated the expression of interleukin (IL)-33, an IL-1 family cytokine, in kidneys with unilateral ureteral obstruction (UUO)-induced obstructive injury. IL-33 levels in hydronephrotic urine and serum were upregulated 2 days after UUO. The number of ST2-expressing immune cells was increased in the UUO kidney. We found that IL-33 was upregulated in vimentin-positive cells in the cortical and medullar layers and the UPJ stroma. Moreover, IL-33 expression was predominantly induced in multilayered keratin 5-positive urothelial cells in the UPJ. IL-33 was not detected in terminally differentiated superficial umbrella cells expressing uroplakin 3a. In vivo, we confirmed that deficiency of IL33 or its receptor ST2 attenuated UUO-induced hyperplasia of the UPJ urothelium. Deficiency of IL33 attenuated the expression of UUO-induced type 2 inflammatory cytokines and upregulated uroplakins and urothelial differentiation signaling in UPJ tissues. Our results collectively suggest that the IL-33/ST2 axis mediates the activation of innate immune responses and contributes to urothelial hyperplasia by regulating urothelial differentiation in obstructive kidney injury.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Hsiu Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Lung-Chih Li
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ru-Fang Li
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ya-Ting Chang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Lo-Hsin Dai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Wan-Chen Wang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
13
|
Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, Hinoue T, Laird PW, Hoadley KA, Akbani R, Castro MAA, Gibb EA, Kanchi RS, Gordenin DA, Shukla SA, Sanchez-Vega F, Hansel DE, Czerniak BA, Reuter VE, Su X, de Sa Carvalho B, Chagas VS, Mungall KL, Sadeghi S, Pedamallu CS, Lu Y, Klimczak LJ, Zhang J, Choo C, Ojesina AI, Bullman S, Leraas KM, Lichtenberg TM, Wu CJ, Schultz N, Getz G, Meyerson M, Mills GB, McConkey DJ, Weinstein JN, Kwiatkowski DJ, Lerner SP. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 2017; 171:540-556.e25. [PMID: 28988769 PMCID: PMC5687509 DOI: 10.1016/j.cell.2017.09.007] [Citation(s) in RCA: 1486] [Impact Index Per Article: 185.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/30/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022]
Abstract
We report a comprehensive analysis of 412 muscle-invasive bladder cancers characterized by multiple TCGA analytical platforms. Fifty-eight genes were significantly mutated, and the overall mutational load was associated with APOBEC-signature mutagenesis. Clustering by mutation signature identified a high-mutation subset with 75% 5-year survival. mRNA expression clustering refined prior clustering analyses and identified a poor-survival "neuronal" subtype in which the majority of tumors lacked small cell or neuroendocrine histology. Clustering by mRNA, long non-coding RNA (lncRNA), and miRNA expression converged to identify subsets with differential epithelial-mesenchymal transition status, carcinoma in situ scores, histologic features, and survival. Our analyses identified 5 expression subtypes that may stratify response to different treatments.
Collapse
Affiliation(s)
- A Gordon Robertson
- Canada's Michael Smith Genome Sciences Center, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Jaegil Kim
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hikmat Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joaquim Bellmunt
- PSMAR-IMIM Lab, Bladder Cancer Center, Department of Medicine, Dana-Farber Cancer Institute and Harvard University, Boston, MA 02215, USA
| | - Guangwu Guo
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard University, Boston, MA 02115, USA
| | - Andrew D Cherniack
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Toshinori Hinoue
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Peter W Laird
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Katherine A Hoadley
- Department of Genetics, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mauro A A Castro
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná Polytechnic Center, Curitiba, PR CEP 80.060-000, Brazil
| | - Ewan A Gibb
- Canada's Michael Smith Genome Sciences Center, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Rupa S Kanchi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Sachet A Shukla
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard University, Boston, MA 02115, USA
| | - Francisco Sanchez-Vega
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Donna E Hansel
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bogdan A Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Victor E Reuter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benilton de Sa Carvalho
- Biostatistics and Computational Biology Laboratory, Department of Statistics, University of Campinas, São Paulo, 13.083-859, Brazil
| | - Vinicius S Chagas
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná Polytechnic Center, Curitiba, PR CEP 80.060-000, Brazil
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Center, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Sara Sadeghi
- Canada's Michael Smith Genome Sciences Center, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | | | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Jiexin Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Caleb Choo
- Canada's Michael Smith Genome Sciences Center, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Akinyemi I Ojesina
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Susan Bullman
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kristen M Leraas
- Biospecimen Core Resource, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Tara M Lichtenberg
- Biospecimen Core Resource, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholaus Schultz
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gad Getz
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew Meyerson
- Pathology and Medical Oncology, Dana-Farber Cancer Institute and Harvard University, Boston, MA 02115, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David J McConkey
- Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA.
| | - David J Kwiatkowski
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Seth P Lerner
- Scott Department of Urology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Flaig TW, Kamat AM, Hansel D, Ingersoll MA, Barton Grossman H, Mendelsohn C, DeGraff D, Liao JC, Taylor JA. Proceedings of the 3rd Annual Albert Institute for Bladder Cancer Research Symposium. Bladder Cancer 2017; 3:211-223. [PMID: 28824949 PMCID: PMC5545918 DOI: 10.3233/blc-170111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Third Annual Albert Institute Bladder Symposium was held on September 8–10th, 2016, in Denver Colorado. Participants discussed several critical topics in the field of bladder cancer: 1) Best practices for tissue analysis and use to optimize correlative studies, 2) Modeling bladder cancer to facilitate understanding and innovation, 3) Targeted therapies for bladder cancer, 4) Tumor phylogeny in bladder cancer, 5) New Innovations in bladder cancer diagnostics. Our understanding of and approach to treating urothelial carcinoma is undergoing rapid advancement. Preclinical models of bladder cancer have been leveraged to increase our basic and mechanistic understanding of the disease. With the approval of immune checkpoint inhibitors for the treatment of advanced urothelial carcinoma, the treatment approach for these patients has quickly changed. In this light, molecularly-defined subtypes of bladder cancer and appropriate pre-clinical models are now essential to the further advancement and appropriate application of these therapeutic improvements. The optimal collection and processing of clinical urothelial carcinoma tissues samples will also be critical in the development of predictive biomarkers for therapeutic selection. Technological advances in other areas including optimal imaging technologies and micro/nanotechnologies are being applied to bladder cancer, especially in the localized setting, and hold the potential for translational impact in the treatment of bladder cancer patients. Taken together, advances in several basic science and clinical areas are now converging in bladder cancer. These developments hold the promise of shaping and improving the clinical care of those with the disease.
Collapse
Affiliation(s)
- Thomas W Flaig
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Ashish M Kamat
- Department of Urology, MD Anderson Cancer Center, Houston, TX, USA
| | - Donna Hansel
- Department of Pathology, University ofCalifornia San Diego, San Diego, CA, USA
| | | | | | - Cathy Mendelsohn
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - David DeGraff
- Department of Pathology, Penn State University, Hershey, PA, USA
| | - Joseph C Liao
- Department of Urology, Stanford University, Stanford, CA, USA
| | - John A Taylor
- University of Kansas, Department of Urology, Kansas City, KS, USA
| |
Collapse
|
15
|
Balsara ZR, Li X. Sleeping beauty: awakening urothelium from its slumber. Am J Physiol Renal Physiol 2017; 312:F732-F743. [PMID: 28122714 PMCID: PMC5407074 DOI: 10.1152/ajprenal.00337.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 12/18/2022] Open
Abstract
The bladder urothelium is essentially quiescent but regenerates readily upon injury. The process of urothelial regeneration harkens back to the process of urothelial development whereby urothelial stem/progenitor cells must proliferate and terminally differentiate to establish all three urothelial layers. How the urothelium regulates the level of proliferation and the timing of differentiation to ensure the precise degree of regeneration is of significant interest in the field. Without a carefully-orchestrated process, urothelial regeneration may be inadequate, thereby exposing the host to toxins or pathogens. Alternatively, regeneration may be excessive, thereby setting the stage for tumor development. This review describes our current understanding of urothelial regeneration. The current controversies surrounding the identity and location of urothelial progenitor cells that mediate urothelial regeneration are discussed and evidence for each model is provided. We emphasize the factors that have been shown to be crucial for urothelial regeneration, including local growth factors that stimulate repair, and epithelial-mesenchymal cross talk, which ensures feedback regulation. Also highlighted is the emerging concept of epigenetic regulation of urothelial regeneration, which additionally fine tunes the process through transcriptional regulation of cell cycle genes and growth and differentiation factors. Finally, we emphasize how several of these pathways and/or programs are often dysregulated during malignant transformation, further corroborating their importance in directing normal urothelial regeneration. Together, evidence in the field suggests that any attempt to exploit regenerative programs for the purposes of enhanced urothelial repair or replacement must take into account this delicate balance.
Collapse
Affiliation(s)
- Zarine R Balsara
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; and
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xue Li
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; and
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Sjödahl G, Eriksson P, Liedberg F, Höglund M. Molecular classification of urothelial carcinoma: global mRNA classification versus tumour-cell phenotype classification. J Pathol 2017; 242:113-125. [PMID: 28195647 PMCID: PMC5413843 DOI: 10.1002/path.4886] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/12/2017] [Accepted: 02/07/2017] [Indexed: 12/17/2022]
Abstract
Global mRNA expression analysis is efficient for phenotypic profiling of tumours, and has been used to define molecular subtypes for almost every major tumour type. A key limitation is that most tumours are communities of both tumour and non‐tumour cells. This problem is particularly pertinent for analysis of advanced invasive tumours, which are known to induce major changes and responses in both the tumour and the surrounding tissue. To identify bladder cancer tumour‐cell phenotypes and compare classification by tumour‐cell phenotype with classification by global gene expression analysis, we analysed 307 advanced bladder cancers (cystectomized) both by genome gene expression analysis and by immunohistochemistry with antibodies for 28 proteins. According to systematic analysis of gene and protein expression data, focusing on key molecular processes, we describe five tumour‐cell phenotypes of advanced urothelial carcinoma: urothelial‐like, genomically unstable, basal/SCC‐like, mesenchymal‐like, and small‐cell/neuroendocrine‐like. We provide molecular pathological definitions for each subtype. Tumours expressing urothelial differentiation factors show inconsistent and abnormal protein expression of terminal differentiation markers, suggesting pseudo‐differentiation. Cancers with different tumour‐cell phenotypes may co‐cluster (converge), and cases with identical tumour‐cell phenotypes may cluster apart (diverge), in global mRNA analyses. This divergence/convergence suggests that broad global commonalities related to the invasive process may exist between muscle‐invasive tumours regardless of specific tumour‐cell phenotype. Hence, there is a systematic disagreement in subtype classification determined by global mRNA profiling and by immunohistochemical profiling at the tumour‐cell level. We suggest that a combination of molecular pathology (tumour‐cell phenotype) and global mRNA profiling (context) is required for adequate subtype classification of muscle‐invasive bladder cancer. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Gottfrid Sjödahl
- Division of Urological Research, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Pontus Eriksson
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Fredrik Liedberg
- Division of Urological Research, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Mattias Höglund
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Abstract
Genomic and transcriptional studies have identified discrete molecular subtypes of bladder cancer. These observations could be the starting point to identify new treatments. Several members of the forkhead box (FOX) superfamily of transcription factors have been found to be differentially expressed in the different bladder cancer subtypes. In addition, the FOXA protein family are key regulators of embryonic bladder development and patterning. Both experimental and clinical data support a role for FOXA1 and FOXA2 in urothelial carcinoma. FOXA1 is expressed in embryonic and adult urothelium and its expression is altered in urothelial carcinomas and across disparate molecular bladder cancer subtypes. FOXA2 is normally absent from the adult urothelium, but developmental studies identified FOXA2 as a marker of a transient urothelial progenitor cell population during bladder development. Studies also implicate FOXA2 in bladder cancer and several other FOX proteins might be involved in development and/or progression of this disease; for example, FOXA1 and FOXO3A have been associated with clinical patient outcomes. Future studies should investigate to what extent and by which mechanisms FOX proteins might be directly involved in bladder cancer pathogenesis and treatment responses.
Collapse
|
18
|
Kopsiaftis S, Sullivan KL, Garg I, Taylor JA, Claffey KP. AMPKα2 Regulates Bladder Cancer Growth through SKP2-Mediated Degradation of p27. Mol Cancer Res 2016; 14:1182-1194. [PMID: 27638620 DOI: 10.1158/1541-7786.mcr-16-0111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/12/2016] [Accepted: 08/29/2016] [Indexed: 12/11/2022]
Abstract
AMP-activated protein kinase (AMPK) is the central metabolic regulator of the cell and controls energy consumption based upon nutrient availability. Due to its role in energy regulation, AMPK has been implicated as a barrier for cancer progression and is suppressed in multiple cancers. To examine whether AMPK regulates bladder cancer cell growth, HTB2 and HT1376 bladder cells were treated with an AMPK activator, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). AICAR treatment reduced proliferation and induced the expression of p27Kip1 (CDKN1B), which was mediated through an mTOR-dependent mechanism. Interestingly, AMPKα2 knockdown resulted in reduced p27 levels, whereas AMPKα1 suppression did not. To further determine the exact mechanism by which AMPKa2 regulates p27, HTB2 and HT1376 cells were transduced with an shRNA targeting AMPKα2. Stable knockdown of AMPKα2 resulted in increased proliferation and decreased p27 protein. The reduced p27 protein was determined to be dependent upon SKP2. Additionally, loss of AMPKα2 in a xenograft and a chemical carcinogen model of bladder cancer resulted in larger tumors with less p27 protein and high SKP2 levels. Consistent with the regulation observed in the bladder cancer model systems, a comprehensive survey of human primary bladder cancer clinical specimens revealed low levels of AMPKα2 and p27 and high levels of SKP2. IMPLICATIONS These results highlight the contribution of AMPKα2 as a mechanism for controlling bladder cancer growth by regulating proliferation through mTOR suppression and induction of p27 protein levels, thus indicating how AMPKα2 loss may contribute to tumorigenesis. Mol Cancer Res; 14(12); 1182-94. ©2016 AACR.
Collapse
Affiliation(s)
- Stavros Kopsiaftis
- Center for Vascular Biology, University of Connecticut Health Center, Farmington Connecticut.,Department of Cell Biology, University of Connecticut Health Center, Farmington Connecticut
| | - Katie L Sullivan
- Center for Vascular Biology, University of Connecticut Health Center, Farmington Connecticut.,Department of Cell Biology, University of Connecticut Health Center, Farmington Connecticut
| | - Isha Garg
- Center for Vascular Biology, University of Connecticut Health Center, Farmington Connecticut.,Department of Cell Biology, University of Connecticut Health Center, Farmington Connecticut
| | - John A Taylor
- Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Kevin P Claffey
- Center for Vascular Biology, University of Connecticut Health Center, Farmington Connecticut. .,Department of Cell Biology, University of Connecticut Health Center, Farmington Connecticut.,Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington Connecticut
| |
Collapse
|
19
|
Teschendorff AE, Zheng SC, Feber A, Yang Z, Beck S, Widschwendter M. The multi-omic landscape of transcription factor inactivation in cancer. Genome Med 2016; 8:89. [PMID: 27562343 PMCID: PMC4997779 DOI: 10.1186/s13073-016-0342-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/05/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hypermethylation of transcription factor promoters bivalently marked in stem cells is a cancer hallmark. However, the biological significance of this observation for carcinogenesis is unclear given that most of these transcription factors are not expressed in any given normal tissue. METHODS We analysed the dynamics of gene expression between human embryonic stem cells, fetal and adult normal tissue, as well as six different matching cancer types. In addition, we performed an integrative multi-omic analysis of matched DNA methylation, copy number, mutational and transcriptomic data for these six cancer types. RESULTS We here demonstrate that bivalently and PRC2 marked transcription factors highly expressed in a normal tissue are more likely to be silenced in the corresponding tumour type compared with non-housekeeping genes that are also highly expressed in the same normal tissue. Integrative multi-omic analysis of matched DNA methylation, copy number, mutational and transcriptomic data for six different matching cancer types reveals that in-cis promoter hypermethylation, and not in-cis genomic loss or genetic mutation, emerges as the predominant mechanism associated with silencing of these transcription factors in cancer. However, we also observe that some silenced bivalently/PRC2 marked transcription factors are more prone to copy number loss than promoter hypermethylation, pointing towards distinct, mutually exclusive inactivation patterns. CONCLUSIONS These data provide statistical evidence that inactivation of cell fate-specifying transcription factors in cancer is an important step in carcinogenesis and that it occurs predominantly through a mechanism associated with promoter hypermethylation.
Collapse
Affiliation(s)
- Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai Institute for Biological Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
- Statistical Cancer Genomics, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
- Department of Women's Cancer, University College London, 74 Huntley Street, London, WC1E 6BT, UK.
| | - Shijie C Zheng
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai Institute for Biological Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Andy Feber
- Medical Genomics, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Zhen Yang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai Institute for Biological Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Stephan Beck
- Medical Genomics, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Martin Widschwendter
- Department of Women's Cancer, University College London, 74 Huntley Street, London, WC1E 6BT, UK
| |
Collapse
|
20
|
Raman JD, Warrick JI, Caruso C, Yang Z, Shuman L, Bruggeman RD, Shariat S, Karam JA, Wood C, Weizer AZ, Remzi M, Haitel A, Bensalah K, Rioux-Leclerq N, Bolenz C, Roscigno M, Krabbe LM, Kapur P, Lotan Y, Margulis V, DeGraff DJ. Altered Expression of the Transcription Factor Forkhead Box A1 (FOXA1) Is Associated With Poor Prognosis in Urothelial Carcinoma of the Upper Urinary Tract. Urology 2016; 94:314.e1-7. [DOI: 10.1016/j.urology.2016.05.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/26/2016] [Accepted: 05/14/2016] [Indexed: 02/08/2023]
|
21
|
Chantre-Justino M, Alves G, Britto C, Cardoso A, Scherrer L, Moreira ADS, Quirino R, Ornellas A, Leitão A, Lage C. Impact of reduced levels of APE1 transcripts on the survival of patients with urothelial carcinoma of the bladder. Oncol Rep 2015; 34:1667-74. [PMID: 26238022 PMCID: PMC4564093 DOI: 10.3892/or.2015.4151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/24/2015] [Indexed: 12/24/2022] Open
Abstract
Molecular evidence indicates that alterations in genes involved in the maintenance of genome stability may be related to susceptibility to bladder carcinoma. Our goal was to evaluate the prognostic role of base excision repair (BER) genes in a cohort of patients diagnosed with primary urothelial carcinoma of the bladder (UCB). The levels of all APE1, XRCC1 and POLB transcripts were detected by quantitative real-time PCR (qPCR) technique in tumor samples from 52 patients undergoing transurethral resection (TUR) for primary UCB at the Department of Urology, Brazilian National Cancer Institute, Rio de Janeiro. Increased levels of APE1, XRCC1 and POLB transcripts were significantly associated with high-grade tumors when compared to these levels in low-grade tumors (p<0.01) and could be attributed to different mechanisms of transcriptional regulation as a response to tumorigenesis and oxidative stress. By analyzing the collected data in the present study, regardless of pathological grade or stage, univariate analysis revealed that the reduced levels of APE1 transcripts were significantly associated with cancer-specific mortality (p=0.032). Furthermore, the variant genotype (TG/GG) of the APE1 T1349G polymorphism was observed in 75% of a subset of patients who concomitantly experienced reduced levels of the APE1 transcript and death and/or recurrence events. Taken together, our data reinforce the idea that human DNA repair mechanisms must be finely regulated in order to avoid instability leading to tumorigenesis and poor clinical outcomes in UCB patients.
Collapse
Affiliation(s)
- Mariana Chantre-Justino
- Carlos Chagas Filho Institute of Biophysics, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Gilda Alves
- Research Coordination, National Institute of Cancer (INCA), Rio de Janeiro, Brazil
| | - Constança Britto
- Molecular Biology and Endemic Diseases Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Angélica Cardoso
- Molecular Biology and Endemic Diseases Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Luciano Scherrer
- Brazilian Society of Clinical Oncology, Belo Horizonte, Minas Gerais, Brazil
| | | | - Raul Quirino
- Department of Urology, National Institute of Cancer, Rio de Janeiro, Brazil
| | - Antonio Ornellas
- Department of Urology, National Institute of Cancer, Rio de Janeiro, Brazil
| | - Alvaro Leitão
- Carlos Chagas Filho Institute of Biophysics, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Claudia Lage
- Carlos Chagas Filho Institute of Biophysics, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Aine M, Eriksson P, Liedberg F, Sjödahl G, Höglund M. Biological determinants of bladder cancer gene expression subtypes. Sci Rep 2015; 5:10957. [PMID: 26051783 PMCID: PMC4650643 DOI: 10.1038/srep10957] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/07/2015] [Indexed: 11/09/2022] Open
Abstract
Molecular stratification of tumors by gene expression profiling has been applied to a large number of human malignancies and holds great promise for personalized treatment. Comprehensive classification schemes for urothelial carcinoma have been proposed by three separate groups but have not previously been evaluated simultaneously in independent data. Here we map the interrelations between the proposed molecular subtypes onto the intrinsic structure of a rich independent dataset and show that subtype stratification within each scheme can be explained in terms of a set of common underlying biological processes. We highlight novel biological and genomic drivers of urothelial carcinoma molecular subtypes and show that tumors carrying genomic aberrations characteristic of distinct molecular pathways converge on a common top level phenotype corresponding to the two major molecular subtypes of non-muscle invasive disease.
Collapse
Affiliation(s)
- Mattias Aine
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Pontus Eriksson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Fredrik Liedberg
- Division of Urological Research, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Gottfrid Sjödahl
- Division of Urological Research, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Mattias Höglund
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Eriksson P, Aine M, Veerla S, Liedberg F, Sjödahl G, Höglund M. Molecular subtypes of urothelial carcinoma are defined by specific gene regulatory systems. BMC Med Genomics 2015; 8:25. [PMID: 26008846 PMCID: PMC4446831 DOI: 10.1186/s12920-015-0101-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/20/2015] [Indexed: 12/13/2022] Open
Abstract
Background Molecular stratification of bladder cancer has revealed gene signatures differentially expressed across tumor subtypes. While these signatures provide important insights into subtype biology, the transcriptional regulation that governs these signatures is not well characterized. Methods In this study, we use publically available ChIP-Seq data on regulatory factor binding in order to link transcription factors to gene signatures defining molecular subtypes of urothelial carcinoma. Results We identify PPARG and STAT3, as well as ADIRF, a novel regulator of fatty acid metabolism, as putative mediators of the SCC-like phenotype. We link the PLK1-FOXM1 axis to the rapidly proliferating Genomically Unstable and SCC-like subtypes and show that differentiation programs involving PPARG/RXRA, FOXA1/GATA3 and HOXA/HOXB are differentially expressed in UC molecular subtypes. We show that gene signatures and regulatory systems defined in urothelial carcinoma operate in breast cancer in a subtype specific manner, suggesting similarities at the gene regulatory level of these two tumor types. Conclusions At the gene regulatory level Urobasal, Genomically Unstable and SCC-like tumors represents three fundamentally different tumor types. Urobasal tumors maintain an apparent urothelial differentiation axis composed of PPARG/RXRA, FOXA1/GATA3 and anterior HOXA and HOXB genes. Genomically Unstable and SCC-like tumors differ from Urobasal tumors by a strong increase of proliferative activity through the PLK1-FOXM1 axis operating in both subtypes. However, whereas SCC-like tumors evade urothelial differentiation by a block in differentiation through strong downregulation of PPARG/RXRA, FOXA1/GATA3, our data indicates that Genomically Unstable tumors evade differentiation in a more dynamic manner. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0101-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pontus Eriksson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Skåne, SE-223 81, Sweden.
| | - Mattias Aine
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Skåne, SE-223 81, Sweden.
| | - Srinivas Veerla
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Skåne, SE-223 81, Sweden.
| | - Fredrik Liedberg
- Division of Urological Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Skåne, SE-205 02, Sweden.
| | - Gottfrid Sjödahl
- Division of Urological Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Skåne, SE-205 02, Sweden.
| | - Mattias Höglund
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Skåne, SE-223 81, Sweden.
| |
Collapse
|
24
|
Bouhout S, Chabaud S, Bolduc S. Organ-specific matrix self-assembled by mesenchymal cells improves the normal urothelial differentiation in vitro. World J Urol 2015; 34:121-30. [PMID: 26008115 DOI: 10.1007/s00345-015-1596-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/16/2015] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Enterocystoplasty is the gold standard to perform bladder reconstruction. Since this technique has a high morbidity rate, several matrix scaffolds have been proposed to support the urothelial maturation. Unfortunately, epithelial cells failed to fully integrate the cell-matrix interactions and therefore appropriate signalling pathways of normal differentiation. Based on these observations, we proposed to culture bladder urothelial cells (BUC) onto a matrix self-assembled by bladder mesenchymal cells (BMC), to form a vesical model (VM). METHODS Different serum proportions were assessed to obtain a manipulable matrix deposited by BMC. The BUC were then seeded onto the BMC's matrix to evolve in a three-dimensional culture. Haematoxylin-eosin staining, immunolabeling, scanning electron microscopy, western blot and matrix metalloproteinases analysis were performed for the VM characterization. RESULTS We were able to obtain an original matrix made of collagen-I and presenting specific organization. Matrix remodelling was observed and led to a cellular compartmentalization. The reconstructed urothelium developed in a pseudostratified arrangement, displaying an adequate cellular polarity and apical membrane remodelling of superficial cells. Like native bladder, cytokeratin 14 immunolabeling was not observed in our VM, which indicate the conformity of the development sequence taken by BUC under the influence of the BMC's matrix. CONCLUSION Thus, it was possible to elaborate a VM without the use of exogenous matrices. The particular characteristics of the BMC's matrix permitted the development of an urothelium that shared the phenotype of native tissue. The autologous character of our VM, and its appropriate urothelial maturation, could potentially promote a better integration after grafting.
Collapse
Affiliation(s)
- S Bouhout
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX Faculté de médecine, Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada.
| | - S Chabaud
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX Faculté de médecine, Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
| | - S Bolduc
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX Faculté de médecine, Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
| |
Collapse
|
25
|
Sverrisson EF, Zens MS, Fei DL, Andrews A, Schned A, Robbins D, Kelsey KT, Li H, DiRenzo J, Karagas MR, Seigne JD. Clinicopathological correlates of Gli1 expression in a population-based cohort of patients with newly diagnosed bladder cancer. Urol Oncol 2014; 32:539-45. [PMID: 24856810 PMCID: PMC4243987 DOI: 10.1016/j.urolonc.2014.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/01/2014] [Accepted: 03/03/2014] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Dysregulation of the hedgehog signaling pathway has been linked to the development and progression of a variety of different human tumors including cancers of the skin, brain, colon, prostate, blood, and pancreas. We assessed the clinicopathological factors that are potentially related to expression of Gli1, the transcription factor that is thought to be the most reliable marker of hedgehog pathway activation in bladder cancer. METHODS Bladder cancer cases were identified from the New Hampshire State Cancer Registry as histologically confirmed primary bladder cancer diagnosed between January 1, 2002, and July 31, 2004. Immunohistochemical analysis was performed on a tissue microarray to detect Gli1 and p53 expression in these bladder tumors. We computed odds ratios (ORs) and their 95% CIs for Gli1 positivity for pathological category using T category (from TNM), invasiveness, and grade with both the World Health Organization 1973 and World Health Organization International Society of Urological Pathology criteria. We calculated hazard ratios and their 95% CI for Gli1 positivity and recurrence for both Ta-category and invasive bladder tumors (T1+). RESULTS A total of 194 men and 67 women, whose tumors were assessable for Gli1 staining, were included in the study. No appreciable differences in Gli1 staining were noted by sex, age, smoking status, or high-risk occupation. Ta-category tumors were more likely to stain for Gli1 as compared with T1-category tumors (adjusted OR = 0.38, CI: 0.17-0.87). Similarly, low-grade (grades 1-2) tumors were more likely to stain for Gli1 as compared with high-grade tumors (grade 3) (adjusted OR = 0.44, CI: 0.21-0.93). In a Cox proportional hazards regression analysis, non-muscle-invasive bladder tumors expressing Gli1 were less likely to recur (adjusted hazard ratio = 0.48; CI: 0.28-0.82; P<0.05) than those in which Gli1 was absent. CONCLUSION Our findings indicate that Gli1 expression may be a marker of low-stage, low-grade bladder tumors and an indicator of a reduced risk of recurrence in this group.
Collapse
Affiliation(s)
- Einar F Sverrisson
- Department of Surgery (Urology), Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Michael S Zens
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Dennis Liang Fei
- Cancer Biology Section, National Institutes of Health, Bethesda, MD
| | - Angeline Andrews
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Alan Schned
- Department of Pathology (Urology), Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - David Robbins
- Molecular Oncology Program, Department of Surgery, University of Miami, Miami, FL
| | - Karl T Kelsey
- Department of Community Health, Brown University, Providence, RI
| | - Hua Li
- Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - James DiRenzo
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Margaret R Karagas
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - John D Seigne
- Department of Surgery (Urology), Dartmouth-Hitchcock Medical Center, Lebanon, NH.
| |
Collapse
|
26
|
Loss of Sh3gl2/endophilin A1 is a common event in urothelial carcinoma that promotes malignant behavior. Neoplasia 2014; 15:749-60. [PMID: 23814487 DOI: 10.1593/neo.121956] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/16/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022] Open
Abstract
Urothelial carcinoma (UC) causes substantial morbidity and mortality worldwide. However, the molecular mechanisms underlying urothelial cancer development and tumor progression are still largely unknown. Using informatics analysis, we identified Sh3gl2 (endophilin A1) as a bladder urothelium-enriched transcript. The gene encoding Sh3gl2 is located on chromosome 9p, a region frequently altered in UC. Sh3gl2 is known to regulate endocytosis of receptor tyrosine kinases implicated in oncogenesis, such as the epidermal growth factor receptor (EGFR) and c-Met. However, its role in UC pathogenesis is unknown. Informatics analysis of expression profiles as well as immunohistochemical staining of tissue microarrays revealed Sh3gl2 expression to be decreased in UC specimens compared to nontumor tissues. Loss of Sh3gl2 was associated with increasing tumor grade and with muscle invasion, which is a reliable predictor of metastatic disease and cancer-derived mortality. Sh3gl2 expression was undetectable in 19 of 20 human UC cell lines but preserved in the low-grade cell line RT4. Stable silencing of Sh3gl2 in RT4 cells by RNA interference 1) enhanced proliferation and colony formation in vitro, 2) inhibited EGF-induced EGFR internalization and increased EGFR activation, 3) stimulated phosphorylation of Src family kinases and STAT3, and 4) promoted growth of RT4 xenografts in subrenal capsule tissue recombination experiments. Conversely, forced re-expression of Sh3gl2 in T24 cells and silenced RT4 clones attenuated oncogenic behaviors, including growth and migration. Together, these findings identify loss of Sh3gl2 as a frequent event in UC development that promotes disease progression.
Collapse
|
27
|
Strand DW, DeGraff DJ, Jiang M, Sameni M, Franco OE, Love HD, Hayward WJ, Lin-Tsai O, Wang AY, Cates JMM, Sloane BF, Matusik RJ, Hayward SW. Deficiency in metabolic regulators PPARγ and PTEN cooperates to drive keratinizing squamous metaplasia in novel models of human tissue regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:449-59. [PMID: 23219716 DOI: 10.1016/j.ajpath.2012.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/15/2012] [Accepted: 10/19/2012] [Indexed: 01/14/2023]
Abstract
Hindgut-derived endoderm can differentiate into rectal, prostatic, and bladder phenotypes. Stromal-epithelial interactions are crucial for this development; however, the precise mechanisms by which epithelium responds to stromal cues remain unknown. We have previously reported ectopic expression of peroxisome proliferator-activated receptor-γ2 (PPARγ2) increased androgen receptor expression and promoted differentiation of mouse prostate epithelium. PPARγ is also implicated in urothelial differentiation. Herein we demonstrate that knockdown of PPARγ2 in benign human prostate epithelial cells (BHPrEs) promotes urothelial transdifferentiation. Furthermore, in vitro and in vivo heterotypic tissue regeneration models with embryonic bladder mesenchyme promoted urothelial differentiation of PPARγ2-deficient BHPrE cells, and deficiency of both PPARγ isoforms 1 and 2 arrested differentiation. Because PTEN deficiency is cooperative in urothelial pathogenesis, we engineered BHPrE cells with combined knockdown of PPARγ and PTEN and performed heterotypic recombination experiments using embryonic bladder mesenchyme. Whereas PTEN deficiency alone induced latent squamous differentiation in BHPrE cells, combined PPARγ and PTEN deficiency accelerated the development of keratinizing squamous metaplasia (KSM). We further confirmed via immunohistochemistry that gene expression changes in metaplastic recombinants reflected human urothelium undergoing KSM. In summary, these data suggest that PPARγ isoform expression provides a molecular basis for observations that adult human epithelium can be transdifferentiated on the basis of heterotypic mesenchymal induction. These data also implicate PPARγ and PTEN inactivation in the development of KSM.
Collapse
Affiliation(s)
- Douglas W Strand
- Department of Urologic Surgery, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2765, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|