1
|
Foster BM, Shi L, Harris KS, Patel C, Surratt VE, Langsten KL, Kerr BA. Bone Marrow-Derived Stem Cell Factor Regulates Prostate Cancer-Induced Shifts in Pre-Metastatic Niche Composition. Front Oncol 2022; 12:855188. [PMID: 35515124 PMCID: PMC9063312 DOI: 10.3389/fonc.2022.855188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Skeletal metastasis is the leading cause of morbidity and mortality in prostate cancer, with 80% of advanced prostate cancer patients developing bone metastases. Before metastasis, bone remodeling occurs, stimulating pre-metastatic niche formation and bone turnover, and platelets govern this process. Stem cell factor (SCF, Kit Ligand) is increased in advanced prostate cancer patient platelet releasates. Further, SCF and its receptor, CD117/c-kit, correlate with metastatic prostate cancer severity. We hypothesized that bone-derived SCF plays an important role in prostate cancer tumor communication with the bone inducing pre-metastatic niche formation. We generated two cell-specific SCF knockout mouse models deleting SCF in either mature osteoblasts or megakaryocytes and platelets. Using two syngeneic androgen-insensitive murine prostate cancer cell lines, RM1 (Ras and Myc co-activation) and mPC3 (Pten and Trp53 deletion), we examined the role of bone marrow-derived SCF in primary tumor growth and bone microenvironment alterations. Platelet-derived SCF was required for mPC3, but not RM1, tumor growth, while osteoblast-derived SCF played no role in tumor size in either cell line. While exogenous SCF induced proangiogenic protein secretion by RM1 and mPC3 prostate cancer cells, no significant changes in tumor angiogenesis were measured by immunohistochemistry. Like our previous studies, tumor-induced bone formation occurred in mice bearing RM1 or mPC3 neoplasms, demonstrated by bone histomorphometry. RM1 tumor-bearing osteoblast SCF knockout mice did not display tumor-induced bone formation. Bone stromal cell composition analysis by flow cytometry showed significant shifts in hematopoietic stem cell (HSC), mesenchymal stem cell (MSC), and osteoblast cell percentages in mice bearing RM1 or mPC3 tumors. There were no significant changes in the percentage of macrophages, osteoclasts, or osteocytes. Our study demonstrates that megakaryocyte/platelet-derived SCF regulates primary mPC3 tumor growth, while SCF originating from osteoblasts plays a role in bone marrow-derived progenitor cell composition and pre-metastatic niche formation. Further, we show that both the source of SCF and the genetic profile of prostate cancer determine the effects of SCF. Thus, targeting the SCF/CD117 signaling axis with tyrosine kinase inhibitors could affect primary prostate carcinomas or play a role in reducing bone metastasis dependent on the gene deletions or mutations driving the patients' prostate cancer.
Collapse
Affiliation(s)
- Brittni M. Foster
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Lihong Shi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Koran S. Harris
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Chirayu Patel
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Victoria E. Surratt
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kendall L. Langsten
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Bethany A. Kerr
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
| |
Collapse
|
2
|
Porras-Quesada P, González-Cabezuelo JM, Sánchez-Conde V, Puche-Sanz I, Arenas-Rodríguez V, García-López C, Flores-Martín JF, Molina-Hernández JM, Álvarez-Cubero MJ, Martínez-González LJ, Vázquez-Alonso F. Role of IGF2 in the Study of Development and Evolution of Prostate Cancer. Front Genet 2022; 12:740641. [PMID: 35095996 PMCID: PMC8790605 DOI: 10.3389/fgene.2021.740641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Prostate Cancer (PC) is commonly known as one of the most frequent tumors among males. A significant problem of this tumor is that in early stages most of the cases course as indolent forms, so an active surveillance will anticipate the appearance of aggressive stages. One of the main strategies in medical and biomedical research is to find non-invasive biomarkers for improving monitoring and performing a more precise follow-up of diseases like PC. Here we report the relevant role of IGF2 and miR-93-5p as non-invasive biomarker for PC. This event could improve current medical strategies in PC.
Collapse
Affiliation(s)
- P Porras-Quesada
- Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government (GENYO), Granada, Spain
| | | | - V Sánchez-Conde
- Urology Department, University Hospital Virgen de las Nieves, Granada, Spain
| | - I Puche-Sanz
- Urology Department, University Hospital Virgen de las Nieves, Granada, Spain
| | - V Arenas-Rodríguez
- Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government (GENYO), Granada, Spain
| | - C García-López
- Pathological Anatomy Service, University Hospital Virgen de las Nieves, Granada, Spain
| | | | | | - M J Álvarez-Cubero
- Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government (GENYO), Granada, Spain.,Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, Granada, Spain.,Biosanitary Research Institute (ibs. GRANADA), University of Granada, Granada, Spain
| | - L J Martínez-González
- Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government (GENYO), Granada, Spain
| | - F Vázquez-Alonso
- Urology Department, University Hospital Virgen de las Nieves, Granada, Spain
| |
Collapse
|
3
|
Bahcivan A, Gamsizkan M, Kantarcioglu Coskun S, Cangur S, Yuksel A, Ceyhan A, Onal B. KRAS, BRAF, PIK3CA mutation frequency of radical prostatectomy samples and review of the literature. Aging Male 2020; 23:1627-1641. [PMID: 33878842 DOI: 10.1080/13685538.2021.1901274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE The molecular basis of prostate cancer is highly heterogeneous. Our study aimed to perform the mutation analysis of KRAS, BRAF, PIK3CA, and immunohistochemical (IHC) evaluation of EGFR, HER2, p16, and PTEN to demonstrate new areas for targeted therapies. METHODS A total of 24 prostatectomy samples diagnosed with adenocarcinoma were analyzed by microarray hybridization. Also, these samples were IHC stained for EGFR, HER2, P16, and PTEN. The cases were divided into two groups based on low and high Gleason scores. All findings were compared with the clinicopathological parameters of the patients. RESULTS While KRAS mutation was in 3/24 (12.5%) of our cases, BRAF and PIK3CA mutations were not detected. There was no significant difference between the groups in terms of KRAS mutation frequency. HER2 was immunohistochemically negative in all samples. There was no correlation between EGFR, P16 immunopositivity, and clinicopathological features. CONCLUSION KRAS mutation frequency is similar to those in Asian populations. BRAF and PIK3CA mutation frequencies have been reported in the literature in the range of 0-15% and 0-10.4%, respectively, consistent with our study findings. HER2 immunoexpression is a controversial issue in the literature. EGFR and p16 expressions may not correlate with the stage.
Collapse
Affiliation(s)
- Atike Bahcivan
- Department of Pathology, Duzce University, Duzce, Turkey
| | | | | | - Sengul Cangur
- Department of Biostatistics and Medical Informatics, Duzce University, Duzce, Turkey
| | | | - Aysegul Ceyhan
- Department of Pathology, Duzce University, Duzce, Turkey
| | - Binnur Onal
- Department of Pathology, Duzce University, Duzce, Turkey
| |
Collapse
|
4
|
Gupta A, Shukla N, Nehra M, Gupta S, Malik B, Mishra AK, Vijay M, Batra J, Lohiya NK, Sharma D, Suravajhala P. A Pilot Study on the Whole Exome Sequencing of Prostate Cancer in the Indian Phenotype Reveals Distinct Polymorphisms. Front Genet 2020; 11:874. [PMID: 33193569 PMCID: PMC7477354 DOI: 10.3389/fgene.2020.00874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) is the third most common cancer among men in India, and no next-generation sequencing (NGS) studies have been attempted earlier. Recent advances in NGS have heralded the discovery of biomarkers from Caucasian/European and Chinese ancestry, but not much is known about the Indian phenotype/variant of PCa. In a pilot study using the whole exome sequencing of benign/PCa patients, we identified characteristic mutations specific to the Indian sub-population. We observed a large number of mutations in DNA repair genes, viz. helicases, TP53, and BRCA besides the variants of unknown significance with a possibly damaging rare variant (rs730881069/chr19:55154172C/TR136Q) in the TNNI3 gene that has been previously reported as a semi-conservative amino acid substitution. Our pilot study attempts to bring an understanding of PCa prognosis and recurrence for the Indian phenotype.
Collapse
Affiliation(s)
- Ayam Gupta
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India.,Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | - Nidhi Shukla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India.,Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, India
| | - Mamta Nehra
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Sonal Gupta
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Babita Malik
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, India
| | | | | | - Jyotsna Batra
- Australian Prostate Cancer Research Centre, Queensland Institute of Health and Biomedical Innovation and School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | | | | | - Prashanth Suravajhala
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| |
Collapse
|
5
|
Macharia LW, Wanjiru CM, Mureithi MW, Pereira CM, Ferrer VP, Moura-Neto V. MicroRNAs, Hypoxia and the Stem-Like State as Contributors to Cancer Aggressiveness. Front Genet 2019; 10:125. [PMID: 30842790 PMCID: PMC6391339 DOI: 10.3389/fgene.2019.00125] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that play key regulatory roles in cancer acting as both oncogenes and tumor suppressors. Due to their potential roles in improving cancer prognostic, predictive, diagnostic and therapeutic approaches, they have become an area of intense research focus in recent years. Several studies have demonstrated an altered expression of several miRNAs under hypoxic condition and even shown that the hypoxic microenvironment drives the selection of a more aggressive cancer cell population through cellular adaptations referred as the cancer stem-like cell. These minor fractions of cells are characterized by their self-renewal abilities and their ability to maintain the tumor mass, suggesting their crucial roles in cancer development. This review aims to highlight the interconnected role between miRNAs, hypoxia and the stem-like state in contributing to the cancer aggressiveness as opposed to their independent contributions, and it is based in four aggressive tumors, namely glioblastoma, cervical, prostate, and breast cancers.
Collapse
Affiliation(s)
- Lucy Wanjiku Macharia
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Muriithi Wanjiru
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Valéria Pereira Ferrer
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|