1
|
DeAndres J, Dickenson AH, Hayek S, Linninger A, Yaksh TL. A perspective: neuraxial therapeutics in pain management: now and future. FRONTIERS IN PAIN RESEARCH 2024; 5:1505019. [PMID: 39720319 PMCID: PMC11666549 DOI: 10.3389/fpain.2024.1505019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/11/2024] [Indexed: 12/26/2024] Open
Abstract
The neuraxial delivery of drugs for the management of pain and other spinal pathologies is widely employed and is the subject of a large volume of ongoing research with several thousand papers appearing in the past 5 years alone on neuraxial delivery. Several learned texts have been recently published. A number of considerations have contributed to this widespread interest in the development of the use of neuraxial therapeutics to manage pain. In the following section, major topics relevant to spinal encoding and in the use of neuraxial therapeutics are considered by the Frontiers in Pain Research editors of the research topic: "Neuraxial Therapeutics in Pain Management: Now and Future". This paper seeks to serve as a perspective to encourage the submission of manuscripts reflecting research in this exciting area.
Collapse
Affiliation(s)
- Jose DeAndres
- Department of Anesthesia, Valencia University School of Medicine, Valencia, Spain
| | - Anthony H. Dickenson
- Departments of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Salim Hayek
- Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Andreas Linninger
- Biomedical Engineering and Neurosurgery, University of Illinois, Chicago, IL, United States
| | - Tony L. Yaksh
- Anesthesiology, University of California, San Diego, CA, United States
| |
Collapse
|
2
|
Szallasi A. Resiniferatoxin: Nature's Precision Medicine to Silence TRPV1-Positive Afferents. Int J Mol Sci 2023; 24:15042. [PMID: 37894723 PMCID: PMC10606200 DOI: 10.3390/ijms242015042] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Resiniferatoxin (RTX) is an ultrapotent capsaicin analog with a unique spectrum of pharmacological actions. The therapeutic window of RTX is broad, allowing for the full desensitization of pain perception and neurogenic inflammation without causing unacceptable side effects. Intravesical RTX was shown to restore continence in a subset of patients with idiopathic and neurogenic detrusor overactivity. RTX can also ablate sensory neurons as a "molecular scalpel" to achieve permanent analgesia. This targeted (intrathecal or epidural) RTX therapy holds great promise in cancer pain management. Intra-articular RTX is undergoing clinical trials to treat moderate-to-severe knee pain in patients with osteoarthritis. Similar targeted approaches may be useful in the management of post-operative pain or pain associated with severe burn injuries. The current state of this field is reviewed, from preclinical studies through veterinary medicine to clinical trials.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
3
|
Barletta M, Gordon J, Escobar A, Mitchell K, Trenholme HN, Grimes JA, Jiménez-Andrade JM, Nahama A, Cisternas A. Safety and efficacy of intravesical instillation of resiniferatoxin in healthy cats: A preliminary study. Front Vet Sci 2023; 9:922305. [PMID: 36713852 PMCID: PMC9878299 DOI: 10.3389/fvets.2022.922305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Objectives To evaluate the safety of intravesical application of resiniferatoxin (RTX) in healthy cats and its effects on calcitonin gene-related peptide (CGRP) and substance P (SP) produced by C-fibers. Methods Seven adult female cats received either 25 mL of saline (control; n = 1), or intravesical RTX at 5, 25, or 50 μg in 25 mL of saline to a final concentration of 0.2 μg/mL (318 nM), 1 μg/mL (1,591 nM), and 2 μg/mL (3,181 nM) (n = 2 per group). The treatment was instilled into the urinary bladder for 20 min. Plasma concentrations of RTX were measured at 0, 0.5, 1, and 4 h. Physical exam, complete blood count, and serum biochemical analysis were performed on day 0, 7, and 14. After 14 days, the sacral dorsal root ganglia (DRG) and the urinary bladder were harvested for histological and immunofluorescence analysis. Results Intravesical RTX was well tolerated and plasma concentrations were below the quantifiable limits except for one cat receiving 1 μg/mL. Mild to moderate histopathological changes, including epithelial changes, edema, and blood vessel proliferation, were observed at lower doses (0.2 and 1 μg/mL), and were more severe at the higher dose (2 μg/mL). C-fiber ablation was observed in the urinary bladder tissue at all doses, as shown by an apparent reduction of both CGRP and SP immunoreactive axons. Conclusion A dose of 25 μg (1 μg/mL) of RTX instilled in the urinary bladder of healthy cats appeared to decrease the density of SP and CGRP nerve axons innervating bladder and induced moderate changes in the bladder tissue.
Collapse
Affiliation(s)
- Michele Barletta
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, United States,*Correspondence: Michele Barletta ✉
| | - Julie Gordon
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - André Escobar
- Department Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Krista Mitchell
- Department Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - H. Nicole Trenholme
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Janet A. Grimes
- Department Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Juan M. Jiménez-Andrade
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Alexis Nahama
- ARK Animal Health, Sorrento Therapeutics, San Diego, CA, United States
| | - Alvaro Cisternas
- ARK Animal Health, Sorrento Therapeutics, San Diego, CA, United States
| |
Collapse
|
4
|
Ishida H, Zhang Y, Gomez R, Shannonhouse J, Son H, Banik R, Kim YS. In Vivo Calcium Imaging Visualizes Incision-Induced Primary Afferent Sensitization and Its Amelioration by Capsaicin Pretreatment. J Neurosci 2021; 41:8494-8507. [PMID: 34452938 PMCID: PMC8513701 DOI: 10.1523/jneurosci.0457-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Previous studies have shown that infiltration of capsaicin into the surgical site can prevent incision-induced spontaneous pain like behaviors and heat hyperalgesia. In the present study, we aimed to monitor primary sensory neuron Ca2+ activity in the intact dorsal root ganglia (DRG) using Pirt-GCaMP3 male and female mice pretreated with capsaicin or vehicle before the plantar incision. Intraplantar injection of capsaicin (0.05%) significantly attenuated spontaneous pain, mechanical, and heat hypersensitivity after plantar incision. The Ca2+ response in in vivo DRG and in in situ spinal cord was significantly enhanced in the ipsilateral side compared with contralateral side or naive control. Primary sensory nerve fiber length was significantly decreased in the incision skin area in capsaicin-pretreated animals detected by immunohistochemistry and placental alkaline phosphatase (PLAP) staining. Thus, capsaicin pretreatment attenuates incisional pain by suppressing Ca2+ response because of degeneration of primary sensory nerve fibers in the skin.SIGNIFICANCE STATEMENT Postoperative surgery pain is a major health and economic problem worldwide with ∼235 million major surgical procedures annually. Approximately 50% of these patients report uncontrolled or poorly controlled postoperative pain. However, mechanistic studies of postoperative surgery pain in primary sensory neurons have been limited to in vitro models or small numbers of neurons. Using an innovative, distinctive, and interdisciplinary in vivo populational dorsal root ganglia (DRG) imaging (>1800 neurons/DRG) approach, we revealed increased DRG neuronal Ca2+ activity from postoperative pain mouse model. This indicates widespread DRG primary sensory neuron plasticity. Increased neuronal Ca2+ activity occurs among various sizes of neurons but mostly in small-diameter and medium-diameter nociceptors. Capsaicin pretreatment as a therapeutic option significantly attenuates Ca2+ activity and postoperative pain.
Collapse
Affiliation(s)
- Hirotake Ishida
- Department of Oral and Maxillofacial Surgery, University of Texas Health and Science Center at San Antonio, Texas, 78229
| | - Yan Zhang
- Department of Oral and Maxillofacial Surgery, University of Texas Health and Science Center at San Antonio, Texas, 78229
| | - Ruben Gomez
- Department of Oral and Maxillofacial Surgery, University of Texas Health and Science Center at San Antonio, Texas, 78229
| | - John Shannonhouse
- Department of Oral and Maxillofacial Surgery, University of Texas Health and Science Center at San Antonio, Texas, 78229
| | - Hyeonwi Son
- Department of Oral and Maxillofacial Surgery, University of Texas Health and Science Center at San Antonio, Texas, 78229
| | - Ratan Banik
- Department of Anesthesiology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, 55455
| | - Yu Shin Kim
- Department of Oral and Maxillofacial Surgery, University of Texas Health and Science Center at San Antonio, Texas, 78229
- Programs in Integrated Biomedical Sciences, Translational Sciences, Biomedical Engineering, Radiological Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
5
|
Iadarola MJ, Brown DC, Nahama A, Sapio MR, Mannes AJ. Pain Treatment in the Companion Canine Model to Validate Rodent Results and Incentivize the Transition to Human Clinical Trials. Front Pharmacol 2021; 12:705743. [PMID: 34421597 PMCID: PMC8375595 DOI: 10.3389/fphar.2021.705743] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
One of the biggest challenges for analgesic drug development is how to decide if a potential analgesic candidate will work in humans. What preclinical data are the most convincing, incentivizing and most predictive of success? Such a predicament is not unique to analgesics, and the pain field has certain advantages over drug development efforts in areas like neuropsychiatry where the etiological origins are either unknown or difficult to ascertain. For pain, the origin of the problem frequently is known, and the causative peripheral tissue insult might be observable. The main conundrum centers around evaluation of translational cell- and rodent-based results. While cell and rodent models are undeniably important first steps for screening, probing mechanism of action, and understanding factors of adsorption, distribution metabolism and excretion, two questions arise from such studies. First, are they reliable indicators of analgesic performance of a candidate drug in human acute and chronic pain? Second, what additional model systems might be capable of increasing translational confidence? We address this second question by assessing, primarily, the companion canine model, which can provide particularly strong predictive information for candidate analgesic agents in humans. This statement is mainly derived from our studies with resiniferatoxin (RTX) a potent TRPV1 agonist but also from protein therapeutics using a conjugate of Substance P and saporin. Our experience, to date, is that rodent models might be very well suited for acute pain translation, but companion canine models, and other large animal studies, can augment initial discovery research using rodent models for neuropathic or chronic pain. The larger animal models also provide strong translational predictive capacity for analgesic performance in humans, better predict dosing parameters for human trials and provide insight into behavior changes (bladder, bowel, mood, etc.) that are not readily assessed in laboratory animals. They are, however, not without problems that can be encountered with any experimental drug treatment or clinical trial. It also is important to recognize that pain treatment is a major veterinary concern and is an intrinsically worthwhile endeavor for animals as well as humans.
Collapse
Affiliation(s)
- Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, United States
| | | | | | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, United States
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, United States
| |
Collapse
|
6
|
Singla RK, Sultana A, Alam MS, Shen B. Regulation of Pain Genes-Capsaicin vs Resiniferatoxin: Reassessment of Transcriptomic Data. Front Pharmacol 2020; 11:551786. [PMID: 33192502 PMCID: PMC7658921 DOI: 10.3389/fphar.2020.551786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/11/2020] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence has shown a strong association between neuropathic pain and chronic diseases. In recent years, the treatment of neuropathic pain has attracted more attention. Natural products, such as capsaicin and resiniferatoxin, have been well utilized to treat this disease. In this study, we aim to compare the regulatory effects of capsaicin and resiniferatoxin on pain-related genes as well as on genes with no direct association with pain. Public transcriptomic and microarray data on gene expression in the dorsal root ganglia and genes associated with TRPV1 (+) neurons were obtained from the GEO database and then analyzed. Differentially expressed genes were selected for further functional analysis, including pathway enrichment, protein-protein interaction, and regulatory network analysis. Pain-associated genes were extracted with the reference of two pain gene databases and the effects of these two natural drugs on the pain-associated genes were measured. The results of our research indicate that as compared to capsaicin, resiniferatoxin (RTX) regulates more non pain-associated genes and has a negative impact on beneficial genes (off-targets) which are supposed to alleviate nociception and hypersensitivity by themselves. So, based on this study, we may conclude that capsaicin may be less potent when compared to RTX, but it will elicit considerably less adverse effects too. Thereby confirming that capsaicin could be used for the efficient alleviation of neuropathic pain with possibly fewer side effects.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Adiba Sultana
- Center for Systems Biology, Soochow University, Suzhou, China
| | - Md Shahin Alam
- Center for Systems Biology, Soochow University, Suzhou, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Long-term pain relief in canine osteoarthritis by a single intra-articular injection of resiniferatoxin, a potent TRPV1 agonist. Pain 2019; 159:2105-2114. [PMID: 30015705 DOI: 10.1097/j.pain.0000000000001314] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The translational potential of analgesic approaches emerging from basic research can be augmented by client-owned dog trials. We report on a peripheral interventional approach that uses intra-articular injection of the ultrapotent TRPV1 agonist resiniferatoxin (RTX) to produce a selective long-term chemoinactivation of nociceptive primary afferent nerve endings for pain control in naturally occurring canine osteoarthritis. A single injection of 10 µg of RTX, produced suppression of pain, improvement in gait, weight bearing, and improvement in the dog's activities of daily living lasting 4 months or longer. Two to 3 years after the injection, there are no alterations to suggest that removal of inflammatory pain caused accelerated joint degeneration (Charcot joint) in any of the dogs. To amplify the effective use of canine subjects in translational analgesia research, we report a high-quality canine dorsal root ganglion transcriptome. Some targets for analgesia are highly conserved both in protein sequence and level of expression within a target tissue while others diverge substantially from the human. This knowledge is especially important for development of analgesics aimed at peripheral molecular targets and provides a template for informed translational research. The peripheral site of action, long duration of analgesia, apparent safety, and retention of coordination, all resulting from a single dose suggest that intra-articular RTX may be an effective intervention for osteoarthritis pain with few or no side effects and lead to an improved quality of life.
Collapse
|
8
|
Lin CL, Chang CH, Chang YS, Lu SC, Hsieh YL. Treatment with methyl-β-cyclodextrin prevents mechanical allodynia in resiniferatoxin neuropathy in a mouse model. Biol Open 2019; 8:bio.039511. [PMID: 30578250 PMCID: PMC6361210 DOI: 10.1242/bio.039511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Specialized microdomains which have cholesterol-rich membrane regions contain transient receptor potential vanilloid subtype 1 (TRPV1) are involved in pain development. Our previous studies have demonstrated that the depletion of prostatic acid phosphatase (PAP) – a membrane-bound ectonucleotidase – and disordered adenosine signaling reduce the antinociceptive effect. The role of membrane integrity in the PAP-mediated antinociceptive effect in small-fiber neuropathy remains unclear, especially with respect to whether TRPV1 and PAP are colocalized in the same microdomain which is responsible for PAP-mediated antinociception. Immunohistochemistry was conducted on the dorsal root ganglion to identify the membrane compositions, and pharmacological interventions were conducted using methyl-β-cyclodextrin (MβC) – a membrane integrity disruptor that works by depleting cholesterol – in pure small-fiber neuropathy with resiniferatoxin (RTX). Immunohistochemical evidence indicated that TRPV1 and PAP were highly colocalized with flotillin 1 (66.7%±9.7%) and flotillin 2 (73.7%±6.0%), which reside in part in the microdomain. MβC mildly depleted PAP, which maintained the ability to hydrolyze phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and delayed the development of mechanical allodynia. MβC treatment had no role in thermal transduction and neuronal injury following RTX neuropathy. In summary, this study demonstrated the following: (1) membrane cholesterol depletion preserves PAP-mediated antinociception through PI(4,5)P2 hydrolysis and (2) pain hypersensitivity that develops after TRPV1(+) neuron depletion-mediated neurodegeneration following RTX neuropathy is attributable to the downregulation of PAP analgesic signaling. Summary: The role and mechanism of cholesterol-rich membrane integrity in pain development for small-fiber neuropathy remains unclear. Depletion of membrane cholesterol contents preserves functional PAP profiles and the antinociceptive effect after RTX neuropathy.
Collapse
Affiliation(s)
- Chih-Lung Lin
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.,Faculty of Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chin-Hong Chang
- Department of Surgery, Chi Mei Medical Center, Tainan 71004, Taiwan
| | - Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shui-Chin Lu
- Department of Medical Research, Ultrastructural Laboratory, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|