1
|
Sassmannshausen J, Bennink S, Distler U, Küchenhoff J, Minns AM, Lindner SE, Burda PC, Tenzer S, Gilberger TW, Pradel G. Comparative proteomics of vesicles essential for the egress of Plasmodium falciparum gametocytes from red blood cells. Mol Microbiol 2024; 121:431-452. [PMID: 37492994 DOI: 10.1111/mmi.15125] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
Transmission of malaria parasites to the mosquito is mediated by sexual precursor cells, the gametocytes. Upon entering the mosquito midgut, the gametocytes egress from the enveloping erythrocyte while passing through gametogenesis. Egress follows an inside-out mode during which the membrane of the parasitophorous vacuole (PV) ruptures prior to the erythrocyte membrane. Membrane rupture requires exocytosis of specialized egress vesicles of the parasites; that is, osmiophilic bodies (OBs) involved in rupturing the PV membrane, and vesicles that harbor the perforin-like protein PPLP2 (here termed P-EVs) required for erythrocyte lysis. While some OB proteins have been identified, like G377 and MDV1/Peg3, the majority of egress vesicle-resident proteins is yet unknown. Here, we used high-resolution imaging and BioID methods to study the two egress vesicle types in Plasmodium falciparum gametocytes. We show that OB exocytosis precedes discharge of the P-EVs and that exocytosis of the P-EVs, but not of the OBs, is calcium sensitive. Both vesicle types exhibit distinct proteomes with the majority of proteins located in the OBs. In addition to known egress-related proteins, we identified novel components of OBs and P-EVs, including vesicle-trafficking proteins. Our data provide insight into the immense molecular machinery required for the inside-out egress of P. falciparum gametocytes.
Collapse
Affiliation(s)
- Juliane Sassmannshausen
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Ute Distler
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Juliane Küchenhoff
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Allen M Minns
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Stefan Tenzer
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Tyagi RK, Sharma YD. Erythrocyte Binding Activity Displayed by a Selective Group of Plasmodium vivax Tryptophan Rich Antigens Is Inhibited by Patients' Antibodies. PLoS One 2012; 7:e50754. [PMID: 23236392 PMCID: PMC3516511 DOI: 10.1371/journal.pone.0050754] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/24/2012] [Indexed: 01/03/2023] Open
Abstract
Plasmodium vivax is a very common but non-cultivable malaria parasite affecting large human population in tropical world. To develop therapeutic reagents for this malaria, the parasite molecules involved in host-parasite interaction need to be investigated as they form effective vaccine or drug targets. We have investigated here the erythrocyte binding activity of a group of 15 different Plasmodium vivax tryptophan rich antigens (PvTRAgs). Only six of them, named PvTRAg, PvTRAg38, PvTRAg33.5, PvTRAg35.2 PvTRAg69.4 and PvATRAg74, showed binding to host erythrocytes. That the PvTRAgs binding to host erythrocytes was specific was evident from the competitive inhibition and saturation kinetics results. The erythrocyte receptors for these six PvTRAgs were resistant to trypsin and neuraminidase. These receptors were also chymotrypsin resistant except the receptors for PvTRAg38 and PvATRAg74 which were partially sensitive to this enzyme. The cross-competition studies showed that the chymotrypsin resistant RBC receptor for each of these two proteins was different. Altogether, there seems to be three RBC receptors for these six PvTRAgs and each PvTRAg has two RBC receptors. Both RBC receptors for PvTRAg, PvTRAg69.4, PvTRAg33.5, and PvTRAg35.2 were common to all these four proteins. These four PvTRAgs also shared one of their RBC receptors with PvTRAg38 as well as with PvATRAg74. The erythrocyte binding activity of these six PvTRAgs was inhibited by the respective rabbit polyclonal antibodies as well as by the natural antibodies produced by the P. vivax exposed individuals. It is concluded that only selective few PvTRAgs show erythrocyte binding activity involving different receptor molecules which can be blocked by the natural antibodies. Further studies on these receptor and ligands may lead to the development of therapeutic reagents for P. vivax malaria.
Collapse
Affiliation(s)
- Rupesh Kumar Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Yagya Dutta Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
- * E-mail:
| |
Collapse
|
3
|
García J, Curtidor H, Vanegas M, Arévalo-Pinzon G, Patarroyo MA, Patarroyo ME. Conserved regions of the Plasmodium falciparum rhoptry-associated protein 3 mediate specific host-pathogen interactions during invasion of red blood cells. Peptides 2010; 31:2165-72. [PMID: 20833215 DOI: 10.1016/j.peptides.2010.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 11/25/2022]
Abstract
Invasion of red blood cells (RBCs) by the Plasmodium falciparum malaria merozoite is mediated by parasite surface molecules and proteins contained within apical organelles that are capable of recognizing receptors on the membrane of RBCs. The identification and characterization of these P. falciparum invasion-associated proteins is the first step for unveiling potential new drug and vaccine target molecules to eradicate this deadly disease. Among the exclusive set of malarial vaccine candidates, the members of the rhoptry-associated protein (RAP) family have been associated with the parasite's binding to and invasion of RBCs. Remarkably, the third member of this family (named RAP-3) has been recently detected on the surface of non-infected RBCs exposed to free merozoites, therefore suggesting the participation of this protein during RBC infection. In this study, the sequence of RAP-3 was finely mapped using synthetic peptides in order to identify which are the specific binding regions involved in RAP3-RBC interactions. Two high-activity binding peptides (HABPs) established high affinity interactions with RBC surface molecules of about 27-90 kDa, which were differentially affected by different enzymatic treatments. RAP-1 and RAP-2 HABPs inhibited binding of RAP-3 HABPs to different extents, thus suggesting the recognition of similar binding sites on RBC membrane, as well as ability of RAP-3 HABPs to inhibit P. falciparum infection in vitro. Altogether, these functional analyses of RAP-3 HABPs strongly suggest a potential role for this protein in RBC invasion, and highlight its HABPs as potential targets to develop a fully protective minimal subunit-based malarial vaccine.
Collapse
Affiliation(s)
- Jeison García
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
| | | | | | | | | | | |
Collapse
|
4
|
Pacheco MA, Ryan EM, Poe AC, Basco L, Udhayakumar V, Collins WE, Escalante AA. Evidence for negative selection on the gene encoding rhoptry-associated protein 1 (RAP-1) in Plasmodium spp. INFECTION GENETICS AND EVOLUTION 2010; 10:655-61. [PMID: 20363375 DOI: 10.1016/j.meegid.2010.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 03/25/2010] [Accepted: 03/26/2010] [Indexed: 11/18/2022]
Abstract
Assessing how natural selection, negative or positive, operates on genes with low polymorphism is challenging. We investigated the genetic diversity of orthologous genes encoding the rhoptry-associated protein 1 (RAP-1), a low polymorphic protein of malarial parasites that is involved in erythrocyte invasion. We applied evolutionary genetic methods to study the polymorphism in RAP-1 from Plasmodium falciparum (n=32) and Plasmodium vivax (n=6), the two parasites responsible for most human malaria morbidity and mortality, as well as RAP-1 orthologous in closely related malarial species found in non-human primates (NHPs). Overall, genes encoding RAP-1 are highly conserved in all Plasmodium spp. included in this investigation. We found no evidence for natural selection, positive or negative, acting on the gene encoding RAP-1 in P. falciparum or P. vivax. However, we found evidence that the orthologous genes in non-human primate parasites (Plasmodium cynomolgi, Plasmodium inui, and Plasmodium knowlesi) are under purifying (negative) selection. We discuss the importance of considering negative selection while studying genes encoding proteins with low polymorphism and how selective pressures may differ among orthologous genes in closely related malarial parasites species.
Collapse
Affiliation(s)
- M Andreína Pacheco
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, United States
| | | | | | | | | | | | | |
Collapse
|
5
|
Pinzón CG, Curtidor H, García J, Vanegas M, Vizcaíno C, Patarroyo MA, Patarroyo ME. Sequences of the Plasmodium falciparum cytoadherence-linked asexual protein 9 implicated in malaria parasite invasion to erythrocytes. Vaccine 2010; 28:2653-63. [PMID: 20085836 DOI: 10.1016/j.vaccine.2010.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/17/2009] [Accepted: 01/06/2010] [Indexed: 10/20/2022]
Abstract
In this study, we synthesized the complete sequence of the CLAG-9 protein as 67 20-mer-long non-overlapped peptides and assessed their ability to bind to erythrocytes in receptor-ligand assays. Twenty CLAG-9 peptides were found to have specific high-affinity binding ability to erythrocytes (thereby named as HABPs), with nanomolar dissociation constants. CLAG-9 HABPs interacted with different erythrocyte surface receptors having apparent molecular weights of 85, 63 and 34 kDa. CLAG-9 HABPs binding was also affected by pre-treatment of RBCs with enzymes and inhibited erythrocyte invasion in vitro by up to 72% at 200 microM. These results suggest that some protein fragments of CLAG-9 may be part of the molecular machinery used by malaria parasites to invade erythrocytes, hence supporting their study as possible vaccine candidates.
Collapse
|
6
|
Molecular characterizations of three distinctBabesia gibsonirhoptry-associated protein-1s (RAP-1s). Parasitology 2009; 136:1147-60. [DOI: 10.1017/s003118200999045x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYThree cDNAs encoding rhoptry-associated protein 1 (RAP-1) homologues were found in theBabesia gibsoniEST database. Based on similarities to BgRAP-1a, which was identified previously by serological screening of a cDNA merozoite library, the two new genes were designatedBgRAP-1b(33·7%) andBgRAP-1c(57%). Mice antiserum raised against each recombinant protein reacted specifically withB. gibsoniparasites as determined by Western blotting, which showed native molecular sizes of the BgRAP-1a (51 kDa), BgRAP-1b (53 kDa) and BgRAP-1c (47 kDa) consistent with predictable molecular weights. Immunofluoresence using these antibodies revealed localization of all BgRAP-1s within the matrix of merozoites; however, BgRAP-1a appeared to diverge from the other two when it was found secreted into the cytoplasm of infected erythrocytes. Apical localization of all 3 BgRAP-1s during the extracellular stage of the parasite combined with their ability to bind a canine erythrocyte membrane fraction was suggestive of a role for these proteins in erythrocyte attachment. Lastly, the ability of these recombinant proteins to be used as diagnostic reagents was tested by ELISA and the sensitivities of BgRAP-1a and BgRAP-1c were found increased through N-terminal truncation. Taken together, our data suggest divergent roles for the 3 BgRAP-1s in the merozoite stage ofB. gibsoni.
Collapse
|
7
|
Immunogenicity and protection-inducing ability of recombinant Plasmodium vivax rhoptry-associated protein 2 in Aotus monkeys: A potential vaccine candidate. Vaccine 2009; 27:2870-6. [DOI: 10.1016/j.vaccine.2009.02.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 02/19/2009] [Accepted: 02/24/2009] [Indexed: 11/23/2022]
|
8
|
Patarroyo ME, Cifuentes G, Bermúdez A, Patarroyo MA. Strategies for developing multi-epitope, subunit-based, chemically synthesized anti-malarial vaccines. J Cell Mol Med 2009; 12:1915-35. [PMID: 19012725 PMCID: PMC4506160 DOI: 10.1111/j.1582-4934.2008.00174.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
An anti-malarial vaccine against the extremely lethal Plasmodium falciparum is desperately needed. Peptides from this parasite's proteins involved in invasion and having high red blood cell-binding ability were identified; these conserved peptides were not immun genic or protection-inducing when used for immunizing Aotus monkeys. Modifying some critical binding residues in these high-activi binding peptides' (HABPs') attachment to red blood cells (RBC) allowed them to induce immunogenicity and protection against expermental challenge and acquire the ability to bind to specific HLA-DRp1* alleles. These modified HABPs adopted certain characterist structural configurations as determined by circular dichroism (CD) and 1H nuclear magnetic resonance (NMR) associated with certain HLA-DRβ1* haplotype binding activities and characteristics, such as a 2-Å-distance difference between amino acids fitting into HLA-DRp1 Pockets 1 to 9, residues participating in binding to HLA-DR pockets and residues making contact with the TCR, suggesting haplotyp and allele-conscious TCR. This has been demonstrated in HLA-DR-like genotyped monkeys and provides the basis for designing high effective, subunit-based, multi-antigen, multi-stage, synthetic vaccines, for immediate human use, malaria being one of them.
Collapse
Affiliation(s)
- M E Patarroyo
- Fundación Instituto de Inmunólogia de Colombia (FIDIC), Bogotá, Colombia.
| | | | | | | |
Collapse
|
9
|
Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate Molecular Interactions of P. falciparum Merozoite Proteins Involved in Invasion of Red Blood Cells and Their Implications for Vaccine Design. Chem Rev 2008; 108:3656-705. [DOI: 10.1021/cr068407v] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Mauricio Urquiza
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Gladys Cifuentes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Claudia Reyes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | | |
Collapse
|
10
|
Pinzón CG, Curtidor H, Bermúdez A, Forero M, Vanegas M, Rodríguez J, Patarroyo ME. Studies of Plasmodium falciparum rhoptry-associated membrane antigen (RAMA) protein peptides specifically binding to human RBC. Vaccine 2007; 26:853-62. [PMID: 18191882 DOI: 10.1016/j.vaccine.2007.11.086] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 11/02/2007] [Accepted: 11/07/2007] [Indexed: 11/19/2022]
Abstract
Plasmodium falciparum rhoptry-associated membrane antigen (RAMA) peptides used in normal red blood cell (RBC) binding assays revealed that peptides 33426 (79NINILSSVHRKGRILYDSF97) and 33460 (777HKKREKSISPHSYQKVSTKVQ797) bound with high activity, presenting nanomolar affinity constants. Such high binding activity peptides (HABPs) displayed helicoid and random coil structures as determined by circular dichroism. HABPs inhibited P. falciparumin vitro invasion of normal RBC by up to 61% (depending on concentration), suggesting that some RAMA protein regions could be involved in P. falciparum invasion of RBC. The nature and localisation of receptors on RBC surface responsible for HABP binding were studied using enzyme-treated erythrocytes and structural analysis.
Collapse
|
11
|
Reyes C, Patarroyo ME, Vargas LE, Rodríguez LE, Patarroyo MA. Functional, structural, and immunological compartmentalisation of malaria invasive proteins. Biochem Biophys Res Commun 2007; 354:363-71. [PMID: 17239816 DOI: 10.1016/j.bbrc.2006.12.220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 12/22/2006] [Indexed: 11/16/2022]
Abstract
Conserved Plasmodium falciparum merozoite high activity binding peptides (HABPs) involved in red blood cell (RBC) invasion which are present in merozoite surface proteins (MSPs) involved in attachment, rolling over RBC, those derived from soluble proteins loosely bound to the membrane, and those present in microneme and rhoptry organelles have an alpha-helical structure and bind with high affinity to HLA-DR52 molecules. On the contrary, conserved HABPs belonging to molecules anchored to the membrane by a GPI tail, or a transmembranal region, or those molecules presenting PEXEL motifs have a strand, turn or unordered configuration and bind with high affinity to HLA-DR53 molecules. Such functional, cellular, structural, and immunological compartmentalisation has tremendous implications in subunit-based, multi-epitope, synthetic, anti-malarial vaccine development.
Collapse
Affiliation(s)
- Claudia Reyes
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-00, Bogota, Colombia
| | | | | | | | | |
Collapse
|
12
|
Cooke BM, Mohandas N, Cowman AF, Coppel RL. Cellular adhesive phenomena in apicomplexan parasites of red blood cells. Vet Parasitol 2005; 132:273-95. [PMID: 16087297 DOI: 10.1016/j.vetpar.2005.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The apicomplexan parasites Babesia and Plasmodium are related, yet phylogenetically distinct haemoprotozoa that infect red blood cells and cause severe diseases of major human and veterinary importance. A variety of cellular and molecular interactions are pivotal in many aspects of the pathogenicity of these two parasites. Comparison of the cellular and molecular mechanisms that culminate in accumulation of parasitised red blood cells in the microvasculature of cattle infected with Babesia bovis (babesiosis) and humans infected with Plasmodium falciparum (falciparum malaria) is particularly instructive given the striking similarities in the pathophysiology of these two important medical and veterinary diseases. While such adhesive phenomena have been studied extensively in malaria, they have received relatively little attention in babesiosis. In this review, we summarise the findings of more than 25 years of research into cellular adhesive phenomena in malaria and speculate on how this body of work can now be applied to Babesia parasites. Such information is fundamental if we are to learn more about the biology of Babesia parasites, the cellular and molecular mechanisms by which they cause infection and disease and how to develop novel therapeutic strategies or vaccines for both Babesia and malaria infections.
Collapse
Affiliation(s)
- Brian M Cooke
- Department of Microbiology, Monash University, Vic. 3800, Australia.
| | | | | | | |
Collapse
|
13
|
Puentes A, Ocampo M, Rodríguez LE, Vera R, Valbuena J, Curtidor H, García J, López R, Tovar D, Cortes J, Rivera Z, Patarroyo ME. Identifying Plasmodium falciparum merozoite surface protein-10 human erythrocyte specific binding regions. Biochimie 2005; 87:461-72. [PMID: 15820753 DOI: 10.1016/j.biochi.2005.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 01/07/2005] [Indexed: 11/24/2022]
Abstract
Receptor-ligand interactions between synthetic peptides and normal human erythrocytes were studied to determine P. falciparum merozoite surface protein-10 (MSP-10) regions specifically binding to membrane surface receptors on human erythrocytes. Three MSP-10 protein High Activity Binding Peptides (HABPs) were identified, whose binding to erythrocytes became saturable and sensitive on being treated with neuraminidase, trypsin and chymotrypsin. Some of them specifically recognised a 50 kDa erythrocyte membrane protein. Some HABPs inhibited in vitro P. falciparum merozoite invasion of erythrocytes by 70%, suggesting that MSP-10 protein's possible role in the invasion process probably functions by using similar mechanisms to those described for other MSP family antigens. In addition to above results, the high homology in amino-acid sequence and superimposition of both MSP-10, MSP-8 and MSP-1 EGF-like domains and HABPs 31132, 26373 and 5501 suggest that tridimensional structure could be playing an important role in the invasion process and in designing synthetic multi-stage anti-malarial vaccines.
Collapse
Affiliation(s)
- Alvaro Puentes
- Fundación Instituto de Inmunología de Colombia and Universidad Nacional de Colombia, Bogotá, Colombia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|