1
|
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, Mei H, Liu J, Wang W, Liu Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (Beijing) 2022; 3:e161. [PMID: 35928554 PMCID: PMC9345296 DOI: 10.1002/mco2.161] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The heat shock proteins (HSPs) are ubiquitous and conserved protein families in both prokaryotic and eukaryotic organisms, and they maintain cellular proteostasis and protect cells from stresses. HSP protein families are classified based on their molecular weights, mainly including large HSPs, HSP90, HSP70, HSP60, HSP40, and small HSPs. They function as molecular chaperons in cells and work as an integrated network, participating in the folding of newly synthesized polypeptides, refolding metastable proteins, protein complex assembly, dissociating protein aggregate dissociation, and the degradation of misfolded proteins. In addition to their chaperone functions, they also play important roles in cell signaling transduction, cell cycle, and apoptosis regulation. Therefore, malfunction of HSPs is related with many diseases, including cancers, neurodegeneration, and other diseases. In this review, we describe the current understandings about the molecular mechanisms of the major HSP families including HSP90/HSP70/HSP60/HSP110 and small HSPs, how the HSPs keep the protein proteostasis and response to stresses, and we also discuss their roles in diseases and the recent exploration of HSP related therapy and diagnosis to modulate diseases. These research advances offer new prospects of HSPs as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Jing Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
- Precision Medicine Research Laboratory of Anhui ProvinceHefeiAnhuiP. R. China
| |
Collapse
|
2
|
Yin M, Zhang Y, Liu S, Huang J, Li X. Gene Expression Signatures Reveal Common Virus Infection Pathways in Target Tissues of Type 1 Diabetes, Hashimoto's Thyroiditis, and Celiac Disease. Front Immunol 2022; 13:891698. [PMID: 35795668 PMCID: PMC9251511 DOI: 10.3389/fimmu.2022.891698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Type 1 diabetes (T1D) patients are at heightened risk for other autoimmune disorders, particularly Hashimoto's thyroiditis (HT) and celiac disease (CD). Recent evidence suggests that target tissues of autoimmune diseases engage in a harmful dialogue with the immune system. However, it is unclear whether shared mechanisms drive similar molecular signatures at the target tissues among T1D, HT, and CD. In our current study, microarray datasets were obtained and mined to identify gene signatures from disease-specific targeted tissues including the pancreas, thyroid, and intestine from individuals with T1D, HT, and CD, as well as their matched controls. Further, the threshold-free algorithm rank-rank hypergeometric overlap analysis (RRHO) was used to compare the genomic signatures of the target tissues of the three autoimmune diseases. Next, promising drugs that could potentially reverse the observed signatures in patients with two or more autoimmune disorders were identified using the cloud-based CLUE software platform. Finally, microarray data of auto-antibody positive individuals but not diagnosed with T1D and single cell sequencing data of patients with T1D and HT were used to validate the shared transcriptomic fingerprint. Our findings revealed significant common gene expression changes in target tissues of the three autoimmune diseases studied, many of which are associated with virus infections, including influenza A, human T-lymphotropic virus type 1, and herpes simplex infection. These findings support the importance of common environmental factors in the pathogenesis of T1D, HT, and CD.
Collapse
Affiliation(s)
- Min Yin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
3
|
Sun H, Hu W, Yan Y, Zhang Z, Chen Y, Yao X, Teng L, Wang X, Chai D, Zheng J, Wang G. Using PAMPs and DAMPs as adjuvants in cancer vaccines. Hum Vaccin Immunother 2021; 17:5546-5557. [PMID: 34520322 DOI: 10.1080/21645515.2021.1964316] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy for cancer has attracted considerable attention. As one of the immunotherapeutics, tumor vaccines exert great potential for cancer immunotherapy. The most important components in tumor vaccines are antigens and adjuvants, which determine the therapeutic safety and efficacy, respectively. After decades of research, many types of adjuvants have been developed. Although these adjuvants can induce strong and long-lasting immune responses in tumor immunity, they also cause more severe toxic side effects and are therefore not suitable for use in humans. With the development of innate immunity research, pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are receiving more attention in vaccine design. However, whether they have the potential to become new adjuvants remains to be elucidated. The purpose of this review is to provide newideas for the research and development of new adjuvants by discussing the mechanisms and related functions of PAMPs and DAMPs.
Collapse
Affiliation(s)
- Huanyou Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Wenwen Hu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Yinan Yan
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Zichun Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Yuxin Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Xuefan Yao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Ling Teng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Xinyuan Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Center Of Clinical Oncology, Affiliated Hospital Of Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Jiangsu Center For The Collaboration And Innovation Of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Junnian Zheng
- Center Of Clinical Oncology, Affiliated Hospital Of Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Jiangsu Center For The Collaboration And Innovation Of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Center Of Clinical Oncology, Affiliated Hospital Of Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Jiangsu Center For The Collaboration And Innovation Of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| |
Collapse
|
4
|
Milani A, Basirnejad M, Bolhassani A. Heat-shock proteins in diagnosis and treatment: an overview of different biochemical and immunological functions. Immunotherapy 2020; 11:215-239. [PMID: 30730280 DOI: 10.2217/imt-2018-0105] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heat-shock proteins (HSPs) have been involved in different functions including chaperone activity, protein folding, apoptosis, autophagy and immunity. The HSP families have powerful effects on the stimulation of innate immune responses through Toll-like receptors and scavenger receptors. Moreover, HSP-mediated phagocytosis directly enhances the processing and presentation of internalized antigens via the endocytic pathway in adaptive immune system. These properties of HSPs have been used for development of prophylactic and therapeutic vaccines against infectious and noninfectious diseases. Several studies also demonstrated the relationship between HSPs and drug resistance as well as their use as a novel biomarker for detecting tumors in patients. The present review describes different roles of HSPs in biology and medicine especially biochemical and immunological aspects.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran.,Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | | | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Heat shock proteins in infection. Clin Chim Acta 2019; 498:90-100. [PMID: 31437446 DOI: 10.1016/j.cca.2019.08.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022]
Abstract
Heat shock proteins (HSPs) are constitutively expressed under physiological conditions in most organisms but their expression can significantly enhance in response to four types of stimuli including physical (e.g., radiation or heat shock), chemical and microbial (e.g., pathogenic bacteria, viruses, parasites and fungi) stimuli, and also dietary. These proteins were identified for their role in protecting cells from high temperature and other forms of stress. HSPs control physiological activities or virulence through interaction with various regulators of cellular signaling pathways. Several roles were determined for HSPs in the immune system including intracellular roles (e.g., antigen presentation and expression of innate receptors) as well as extracellular roles (e.g., tumor immunosurveillance and autoimmunity). It was observed that exogenously administered HSPs induced various immune responses in immunotherapy of cancer, infectious diseases, and autoimmunity. Moreover, virus interaction with HSPs as molecular chaperones showed important roles in regulating viral infections including cell entry and nuclear import, viral replication and gene expression, folding/assembly of viral protein, apoptosis regulation, and host immunity. Viruses could regulate host HSPs at different levels such as transcription, translation, post-translational modification and cellular localization. In this review, we attempt to overview the roles of HSPs in a variety of infectious diseases.
Collapse
|
6
|
|
7
|
Chen N, Wan XL, Huang CX, Wang WM, Liu H, Wang HL. Study on the immune response to recombinant Hsp70 protein from Megalobrama amblycephala. Immunobiology 2014; 219:850-8. [DOI: 10.1016/j.imbio.2014.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/03/2014] [Accepted: 07/15/2014] [Indexed: 11/26/2022]
|
8
|
hsp70 and a novel axis of type I interferon-dependent antiviral immunity in the measles virus-infected brain. J Virol 2012; 87:998-1009. [PMID: 23135720 DOI: 10.1128/jvi.02710-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major inducible 70-kDa heat shock protein (hsp70) is host protective in a mouse model of measles virus (MeV) brain infection. Transgenic constitutive expression of hsp70 in neurons, the primary target of MeV infection, abrogates neurovirulence in neonatal H-2(d) congenic C57BL/6 mice. A significant level of protection is retained after depletion of T lymphocytes, implicating innate immune mechanisms. The focus of the present work was to elucidate the basis for hsp70-dependent innate immunity using this model. Transcriptome analysis of brains from transgenic (TG) and nontransgenic (NT) mice 5 days after infection identified type I interferon (IFN) signaling, macrophage activation, and antigen presentation as the main differences linked to survival. The pivotal role of type I IFN in hsp70-mediated protection was demonstrated in mice with a genetically disrupted type I IFN receptor (IFNAR(-/-)), where IFNAR(-/-) eliminated the difference in survival between TG and NT mice. Brain macrophages, not neurons, are the predominant source of type I IFN in the virus-infected brain, and in vitro studies provided a mechanistic basis by which MeV-infected neurons can induce IFN-β in uninfected microglia in an hsp70-dependent manner. MeV infection induced extracellular release of hsp70 from mouse neuronal cells that constitutively express hsp70, and extracellular hsp70 induced IFN-β transcription in mouse microglial cells through Toll-like receptors 2 and 4. Collectively, our results support a novel axis of type I IFN-dependent antiviral immunity in the virus-infected brain that is driven by hsp70.
Collapse
|
9
|
Virus-heat shock protein interaction and a novel axis for innate antiviral immunity. Cells 2012; 1:646-66. [PMID: 24710494 PMCID: PMC3901102 DOI: 10.3390/cells1030646] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 12/20/2022] Open
Abstract
Virus infections induce heat shock proteins that in turn enhance virus gene expression, a phenomenon that is particularly well characterized for the major inducible 70 kDa heat shock protein (hsp70). However, hsp70 is also readily induced by fever, a phylogenetically conserved response to microbial infections, and when released from cells, hsp70 can stimulate innate immune responses through toll like receptors 2 and 4 (TLR2 and 4). This review examines how the virus-hsp70 relationship can lead to host protective innate antiviral immunity, and the importance of hsp70 dependent stimulation of virus gene expression in this host response. Beginning with the well-characterized measles virus-hsp70 relationship and the mouse model of neuronal infection in brain, we examine data indicating that the innate immune response is not driven by intracellular sensors of pathogen associated molecular patterns, but rather by extracellular ligands signaling through TLR2 and 4. Specifically, we address the relationship between virus gene expression, extracellular release of hsp70 (as a damage associated molecular pattern), and hsp70-mediated induction of antigen presentation and type 1 interferons in uninfected macrophages as a novel axis of antiviral immunity. New data are discussed that examines the more broad relevance of this protective mechanism using vesicular stomatitis virus, and a review of the literature is presented that supports the probable relevance to both RNA and DNA viruses and for infections both within and outside of the central nervous system.
Collapse
|
10
|
Wald A, Koelle DM, Fife K, Warren T, Leclair K, Chicz RM, Monks S, Levey DL, Musselli C, Srivastava PK. Safety and immunogenicity of long HSV-2 peptides complexed with rhHsc70 in HSV-2 seropositive persons. Vaccine 2011; 29:8520-9. [PMID: 21945262 DOI: 10.1016/j.vaccine.2011.09.046] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 12/27/2022]
Abstract
HSV-2, the primary causative agent of genital herpes, establishes latency in sensory ganglia and reactivates causing recurrent lesions and viral shedding. Induction or expansion of CD4(+) and CD8(+) T cell responses are expected to be important for a successful therapeutic vaccine against HSV-2. A candidate vaccine consisting of 32 synthetic 35mer HSV-2 peptides non-covalently complexed with recombinant human Hsc70 protein (named HerpV, formerly AG-707) was tested for safety and immunogenicity in a Phase I study. These peptides are derived from 22 HSV-2 proteins representative of all phases of viral replication. Thirty-five HSV-2 infected participants were randomized and treated in one of four groups: HerpV+QS-21 (saponin adjuvant), HerpV, QS-21, or vehicle. The vaccine was well tolerated and safe. All seven participants with evaluable samples who were administered HerpV with QS-21 demonstrated a statistically significant CD4(+) T cell response to HSV-2 antigens, and the majority of such participants demonstrated a statistically significant CD8(+) T cell response as well. To our knowledge, this is the first candidate vaccine against HSV-2 to demonstrate a broad CD4(+) and CD8(+) T cell response in HSV-2(+) participants, and the first HSP-based vaccine to show immune responses against viral antigens in humans.
Collapse
Affiliation(s)
- Anna Wald
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Measles virus is highly neuroinvasive, yet host immune responses are highly effective at limiting neurovirulence in humans. We know that neurons are an important target of infection and that both IFN-γ and -β expression are observed in the measles virus-infected human brain. Rodent models can be used to understand how this response is orchestrated. Constitutive expression of the major inducible 70-kDa heat-shock protein is a feature of primate tissues that is lacking in mice. This article examines the importance of addressing this difference when modeling outcomes of brain infection in mice, particularly in terms of understanding how infected neurons may activate uninfected brain macrophages to produce IFN-β and support T-cell production of IFN-γ, a mediator of noncytolytic viral clearance. New and historical data suggest that the virus heat-shock protein 70 relationship is key to a protective host immune response and has potential broad relevance.
Collapse
Affiliation(s)
- Michael Oglesbee
- Department of Veterinary Biosciences, Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | | |
Collapse
|
12
|
|
13
|
Hsp110-mediated enhancement of CD4+ T cell responses to the envelope glycoprotein of members of the family Flaviviridae in vitro does not occur in vivo. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:311-7. [PMID: 21147937 DOI: 10.1128/cvi.00414-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The use of heat shock proteins (HSP) to enhance activation of the immune response to chaperoned antigen is being explored for immunotherapy. Hsp110 chaperones large protein substrates more effectively than Hsp70, offering the potential to use complex antigens containing multiple epitopes in HSP-based vaccines. In this study, we investigated the ability of recombinant bovine Hsp110 to chaperone E2 glycoprotein, the major envelope protein of bovine viral diarrhea virus (BVDV) and the dominant target of neutralizing antibodies. Hsp110 formed complexes with E2, as demonstrated by immunoprecipitation. When monocytes from BVDV-immunized cattle were stimulated with these complexes and incubated with autologous CD4(+) T cells, enhanced levels of proliferation were observed. To determine the ability of these complexes to improve immunogenicity in vivo, cattle were vaccinated with either Hsp110-E2 complex or E2 only, combined with Quil-A adjuvant. In contrast to the in vitro data, cellular and humoral responses to E2 were greater in the E2-only vaccination group, indicating that complex formation had actually reduced the immunogenicity of E2. This study highlights the need for further understanding of the means by which HSP complexes are endocytosed and processed in vivo to enable the design of successful vaccine strategies.
Collapse
|
14
|
Abstract
Neonatal septic shock is a devastating condition associated with high morbidity and mortality. Definitions for the sepsis continuum and treatment algorithms specific for premature neonates are needed to improve studies of septic shock and assess benefit from clinical interventions. Unique features of the immature immune system and pathophysiologic responses to sepsis, particularly those of extremely preterm infants, necessitate that clinical trials consider them as a separate group. Keen clinical suspicion and knowledge of risk factors will help to identify those neonates at greatest risk for development of septic shock. Genomic and proteomic approaches, particularly those that use very small sample volumes, will increase our understanding of the pathophysiology and direct the development of novel agents for prevention and treatment of severe sepsis and shock in the neonate. Although at present antimicrobial therapy and supportive care remain the foundation of treatment, in the future immunomodulatory agents are likely to improve outcomes for this vulnerable population.
Collapse
|
15
|
Xiao A, Wong J, Luo H. Viral interaction with molecular chaperones: role in regulating viral infection. Arch Virol 2010; 155:1021-31. [DOI: 10.1007/s00705-010-0691-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 05/02/2010] [Indexed: 02/08/2023]
|
16
|
McLaughlin K, Seago J, Robinson L, Kelly C, Charleston B. Hsp70 enhances presentation of FMDV antigen to bovine CD4+ T cells in vitro. Vet Res 2010; 41:36. [PMID: 20167197 PMCID: PMC2831533 DOI: 10.1051/vetres/2010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 01/29/2010] [Indexed: 11/14/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious acute vesicular disease affecting cloven-hoofed animals, including cattle, sheep and pigs. The current vaccine induces a rapid humoral response, but the duration of the protective antibody response is variable, possibly associated with a variable specific CD4+ T cell response. We investigated the use of heat shock protein 70 (Hsp70) as a molecular chaperone to target viral antigen to the Major Histocompatibility Complex (MHC) class II pathway of antigen presenting cells and generate enhanced MHC II-restricted CD4+ T cell responses in cattle. Monocytes and CD4+ T cells from FMDV vaccinated cattle were stimulated in vitro with complexes of Hsp70 and FMDV peptide, or peptide alone. Hsp70 was found to consistently improve the presentation of a 25-mer FMDV peptide to CD4+ T cells, as measured by T cell proliferation. Complex formation was required for the enhanced effects and Hsp70 alone did not stimulate proliferation. This study provides further evidence that Hsp70:peptide complexes can enhance antigen-specific CD4+ T cell responses in vitro for an important pathogen of livestock.
Collapse
Affiliation(s)
- Kerry McLaughlin
- Institute for Animal Health, Pirbright, Woking, Surrey GU24 0NF, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
Rodríguez LS, Barreto A, Franco MA, Angel J. Immunomodulators released during rotavirus infection of polarized caco-2 cells. Viral Immunol 2009; 22:163-72. [PMID: 19435412 DOI: 10.1089/vim.2008.0110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rotavirus preferentially replicates in enterocytes and "danger signals" released by these cells are likely to modulate viral immunity. As a model of these events, we studied selected immunomodulators released during rotavirus infection of polarized Caco-2 cells grown in transwell cultures (TW). At early time points post-infection the virus was detected mainly in the apical side of the TWs, but this tendency was progressively lost concomitantly with disruption of the cell monolayer and cell death. Rotavirus-infected cells released IL-8, PGE(2), small quantities of TGF-beta1, and the constitutive and inducible heat shock proteins HSC70 and HSP70, but not IL-1beta, IL-6, IL-10, IL-12p70, or TNF-alpha. This set of immunomodulators is known to induce a non-inflammatory (non-Th-1) immune response, and may be determining, in part, the relatively low T-cell immune response observed in blood samples after RV infection.
Collapse
Affiliation(s)
- Luz-Stella Rodríguez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | | | | |
Collapse
|
18
|
HSP70 fused with GP3 and GP5 of porcine reproductive and respiratory syndrome virus enhanced the immune responses and protective efficacy against virulent PRRSV challenge in pigs. Vaccine 2009; 27:825-32. [DOI: 10.1016/j.vaccine.2008.11.088] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 11/19/2008] [Accepted: 11/22/2008] [Indexed: 11/18/2022]
|
19
|
Pack CD, Gierynska M, Rouse BT. An intranasal heat shock protein based vaccination strategy confers protection against mucosal challenge with herpes simplex virus. HUMAN VACCINES 2008; 4:360-4. [PMID: 18382144 DOI: 10.4161/hv.4.5.5978] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Herpes simplex virus-1 (HSV-1) represents a significant obstacle for vaccine designers, despite decades of investigation. The virus primarily infects the host at vulnerable mucosal surfaces that progresses to lesion development, latency in nervous tissue, and possible reactivation. Therefore, protection at the site of infection is crucial. Mucosal adjuvants are critical for the development of an effective vaccine approach and heat-shock protein 70 (Hsp70) represents an attractive candidate for this purpose. This study demonstrates that Hsp70 coupled to gB498-505 from HSV-1 induced mucosal and systemic priming of CD8(+) T cells capable of protecting C57BL/6 mice against a lethal vaginal challenge. Elevated gB-specific cytotoxicity was observed in the spleen of mice immunized with conjugated Hsp70 and gB498-505. In addition, both vaginal IFNgamma levels and viral clearance were enhanced in mice mucosally immunized with Hsp70 and gB peptide versus peptide only control mice or mice receiving Hsp70 and a control peptide. These studies demonstrate that Hsp70 can be used as an effective mucosal adjuvant capable of generating a protective cell-mediated immune response against HSV-1.
Collapse
Affiliation(s)
- Christopher D Pack
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | |
Collapse
|
20
|
Phase I dose-escalation study of a monovalent heat shock protein 70-herpes simplex virus type 2 (HSV-2) peptide-based vaccine designed to prime or boost CD8 T-cell responses in HSV-naïve and HSV-2-infected subjects. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:773-82. [PMID: 18353920 DOI: 10.1128/cvi.00020-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This was a phase I study to assess the safety, tolerability, and immunogenicity of escalating doses of AG-702, a noncovalent complex of an HLA A*0201-restricted epitope in the glycoprotein B protein of herpes simplex virus type 2 (gB2) and truncated human constitutive heat shock protein 70. Similar vaccines have been immunogenic in animals. Three injections of 10 to 250 mug were administered intradermally to HLA A*0201-bearing subjects who were either herpes simplex virus type 2 (HSV-2)-infected or HSV uninfected. Sixty-two participants received the vaccine, 60 completed the protocol, and T-cell data were accrued for 56 subjects. The vaccine was safe and well tolerated. New or boosted responses to the HSV-2 CD8 epitope were not detected. Baseline responses to an epitope in virion proteins 13/14 were higher than responses to the gB2 epitope. A heat shock protein vaccine with an HSV-2 peptide appears to be safe at the doses studied in healthy adults with or without HSV infection. Modifications of the dose, adjuvant, route, schedule, or HSV antigen may be required to improve responses.
Collapse
|
21
|
Su C, Duan X, Wang X, Wang C, Cao R, Zhou B, Chen P. Heterologous expression of FMDV immunodominant epitopes and HSP70 in P. pastoris and the subsequent immune response in mice. Vet Microbiol 2007; 124:256-63. [PMID: 17548173 DOI: 10.1016/j.vetmic.2007.04.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 04/12/2007] [Accepted: 04/17/2007] [Indexed: 01/09/2023]
Abstract
Mycobacterium tuberculosis heat shock protein70 (HSP70) is a major antigen with both chaperone and cytokine functions. It has been used as an adjuvant to induce or potentiate humoral and cellular immunity, both in the form of a mixture with peptide antigens, and as a fusion protein. We have evaluated the effects of HSP70 on foot and mouth virus (FMDV) subunit vaccines. FMDV VP1, and a synthetic multi-epitope FMDV (EG), and VP1-HSP70 and EG-HSP70 fusion proteins were all heterologously expressed in the yeast Pichia pastoris, and used as antigen in mice. The recombinant VP1 and EG alone was able to induce both humoral and marginal cell-mediated immune responses, while the HSP70 fusions markedly enhanced both the humoral and cell-mediated immune responses. The most prominent immune responses arose from vaccination with the EG-HSP70 fusion product. Both fusion protein-induced Th1-like cytokine (IFN-gamma) and Th2-like cytokine (IL-4) were identified.
Collapse
Affiliation(s)
- Chunxia Su
- Key Laboratory of Animal Diseases Diagnosis & Immunology of China's Department of Agriculture, Nanjing Agricultural University, Jiangsu, Nanjing 210095, PR China
| | | | | | | | | | | | | |
Collapse
|
22
|
Ge FF, Qiu YF, Yang YW, Chen PY. An hsp70 fusion protein vaccine potentiates the immune response against Japanese encephalitis virus. Arch Virol 2006; 152:125-35. [PMID: 16862385 DOI: 10.1007/s00705-006-0822-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 06/15/2006] [Indexed: 10/24/2022]
Abstract
To evaluate the possibility of developing an effective subunit vaccine against Japanese encephalitis virus (JEV), mice were intraperitoneally immunized with either a neutralizing epitope (a 27-amino-acid region of the JEV E protein), or with a fusion protein between this region and a Mycobacterium tuberculosis hsp70. Both antigens were heterologously expressed in Escherichia coli as fusion proteins with thioredoxin. The fusion protein antigen elicited a higher titer of anti-thioredoxin-neutralizing epitope antibodies and a stronger proliferation of lymphocytes than did either the neutralizing epitope (irrespective of the presence of mineral oil as an adjuvant), or the conventional JEV SA14-14-2 vaccine. Assays of antibody isotype and IFN-gamma and IL-4 content in post-immunization serum showed that the fusion protein elicited a higher IgG2a titer and higher levels of IFN-gamma suggesting a potentiation of the Th1 immune response. The fusion protein antigen elicited a long-lived immune response, and the antibodies were able to neutralize JEV in vitro more strongly than did those elicited by the JEV SA14-14-2 vaccine. Immunization with the fusion protein generated both humoral and cellular immune responses to JEV, and the fusion protein appeared to be a more efficient protectant than the JEV SA14-14-2 vaccine.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/genetics
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/administration & dosage
- Antigens, Viral/genetics
- Bacterial Proteins/administration & dosage
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Cytokines/biosynthesis
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/immunology
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/prevention & control
- Epitopes/administration & dosage
- Epitopes/genetics
- HSP70 Heat-Shock Proteins/administration & dosage
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/immunology
- Immunization, Secondary
- Immunoglobulin G/blood
- Injections, Intraperitoneal
- Japanese Encephalitis Vaccines/administration & dosage
- Japanese Encephalitis Vaccines/genetics
- Japanese Encephalitis Vaccines/immunology
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- Neutralization Tests
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- F-F Ge
- Key Laboratory of Animal Disease Diagnosis and Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, PR China
| | | | | | | |
Collapse
|
23
|
Lund BT, Chakryan Y, Ashikian N, Mnatsakanyan L, Bevan CJ, Aguilera R, Gallaher T, Jakowec MW. Association of MBP peptides with Hsp70 in normal appearing human white matter. J Neurol Sci 2006; 249:122-34. [PMID: 16842822 DOI: 10.1016/j.jns.2006.05.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 05/04/2006] [Accepted: 05/26/2006] [Indexed: 10/24/2022]
Abstract
Multiple Sclerosis is an autoimmune disease directed against myelin proteins. The etiology of MS is poorly defined though, with no definitive causative agent yet identified. It has been hypothesized that MS may be a multifactorial disease resulting in the same end product: the destruction of myelin by the immune system. In this report we describe a potential role for heat shock proteins in the pathogenesis of MS. We isolated Hsp70 from the normal appearing white matter of both MS and normal human brain and found this was actively associated with, among other things, immunodominant MBP peptides. Hsp70-MBP peptide complexes prepared in vitro were shown to be highly immunogenic, with adjuvant-like effects stimulating MBP peptide-specific T cell lines to respond to normally sub-optimal concentrations of peptide. This demonstration of a specific interaction between Hsp70 and different MBP peptides, coupled with the adjuvanticity of this association is suggestive of a possible role for Hsp70 in the immunopathology associated with MS.
Collapse
Affiliation(s)
- Brett T Lund
- Department of Neurology, Keck School of Medicine, University of Southern California, McKibben Annex, Room 246, 1333 San Pablo Street, Los Angeles, California 90033, United States.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Rose S, Guevara P, Farach S, Adkins B. The key regulators of adult T helper cell responses, STAT6 and T-bet, are established in early life in mice. Eur J Immunol 2006; 36:1241-53. [PMID: 16568497 PMCID: PMC2112774 DOI: 10.1002/eji.200535563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Murine neonatal immunity is typically Th2 biased. This is characterized by high-level IL-4 production at all phases of the immune response and poor IFN-gamma memory responses. The differential expression of Th1/Th2 cytokines by neonates and adults could arise if the critical regulators of Th differentiation and function, STAT6 and T-bet, operate differently during the neonatal period. To test this idea, the Th cell responses of wild-type, T-bet-deficient, or STAT6-deficient mice were compared in vitro and in vivo. The absence of these factors had similar qualitative effects on the development of effector function in neonates and adults, i.e., if a Th lineage was inhibited or enhanced in adult animals, a similar phenomenon was observed in neonates. However, there was a striking difference observed in the in vivo Th1 memory responses of STAT6-deficient mice initially immunized as neonates. Antigen-specific IFN-gamma production was increased 50-100-fold in STAT6-deficient neonates, achieving levels similar to those of STAT6-deficient adults. These findings demonstrate that STAT6 and T-bet signals are central in shaping Th responses in wild-type neonates, as in adult mice, and that the master regulators of Th cell development and function are already firmly established in early life.
Collapse
Affiliation(s)
| | | | | | - Becky Adkins
- Corresponding author: Becky Adkins, Ph.D., Department of Microbiology and Immunology R-138, 1600 NW 10 Ave., RMSB Room 3152A, Miller School of Medicine at the University of Miami, Miami, FL 33136, 305-243-5560 (phone), 305-243-4623 (fax),
| |
Collapse
|