1
|
Kumru OS, Bajoria S, Kaur K, Hickey JM, Van Slyke G, Doering J, Berman K, Richardson C, Lien H, Kleanthous H, Mantis NJ, Joshi SB, Volkin DB. Effects of aluminum-salt, CpG and emulsion adjuvants on the stability and immunogenicity of a virus-like particle displaying the SARS-CoV-2 receptor-binding domain (RBD). Hum Vaccin Immunother 2023; 19:2264594. [PMID: 37932241 PMCID: PMC10760504 DOI: 10.1080/21645515.2023.2264594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/25/2023] [Indexed: 11/08/2023] Open
Abstract
Second-generation COVID-19 vaccines with improved immunogenicity (e.g., breadth, duration) and availability (e.g., lower costs, refrigerator stable) are needed to enhance global coverage. In this work, we formulated a clinical-stage SARS-CoV-2 receptor-binding domain (RBD) virus-like particle (VLP) vaccine candidate (IVX-411) with widely available adjuvants. Specifically, we assessed the in vitro storage stability and in vivo mouse immunogenicity of IVX-411 formulated with aluminum-salt adjuvants (Alhydrogel™, AH and Adjuphos™, AP), without or with the TLR-9 agonist CpG-1018™ (CpG), and compared these profiles to IVX-411 adjuvanted with an oil-in-water nano-emulsion (AddaVax™, AV). Although IVX-411 bound both AH and AP, lower binding strength of antigen to AP was observed by Langmuir binding isotherms. Interestingly, AH- and AP-adsorbed IVX-411 had similar storage stability profiles as measured by antigen-binding assays (competitive ELISAs), but the latter displayed higher pseudovirus neutralizing titers (pNT) in mice, at levels comparable to titers elicited by AV-adjuvanted IVX-411. CpG addition to alum (AP or AH) resulted in a marginal trend of improved pNTs in stressed samples only, yet did not impact the storage stability profiles of IVX-411. In contrast, previous work with AH-formulations of a monomeric RBD antigen showed greatly improved immunogenicity and decreased stability upon CpG addition to alum. At elevated temperatures (25, 37°C), IVX-411 formulated with AH or AP displayed decreased in vitro stability compared to AV-formulated IVX-411and this rank-ordering correlated with in vivo performance (mouse pNT values). This case study highlights the importance of characterizing antigen-adjuvant interactions to develop low cost, aluminum-salt adjuvanted recombinant subunit vaccine candidates.
Collapse
Affiliation(s)
- Ozan S. Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Sakshi Bajoria
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Kawaljit Kaur
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - John M. Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Greta Van Slyke
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Jennifer Doering
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Katherine Berman
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | | | - Harry Kleanthous
- Discovery & Translational Sciences, Global Health, Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Nicholas J. Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Sangeeta B. Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - David B. Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
2
|
Art JF, Vander Straeten A, Dupont-Gillain CC. Immobilization of Aluminum Hydroxide Particles on Quartz Crystal Microbalance Sensors to Elucidate Antigen-Adjuvant Interaction Mechanisms in Vaccines. Anal Chem 2017; 90:1168-1176. [PMID: 29224339 DOI: 10.1021/acs.analchem.7b03747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aluminum hydroxide (AH) salts are the most widely used adjuvants in vaccine formulation. They trigger immunogenicity from antigenic subunits that would otherwise suffer from a lack of efficiency. Previous studies focusing on antigen-AH interaction mechanisms, performed with model proteins, suggested that electrostatic interactions and phosphate-hydroxyl ligand exchanges drive protein adsorption on AH. We however recently evidenced that NaCl, used in vaccine formulation, provokes AH particle aggregation. This must be taken into account to interpret data related to protein adsorption on AH. Here, we report on the successful development and use of a stable AH-coated surface to explore the mechanisms of protein adsorption by means of ultrasensitive surface analysis tools. Bovine serum albumin (BSA) adsorption was studied at different pHs and ionic strengths (I) using quartz crystal microbalance. The results show that protein adsorption on the AH adjuvant cannot be explained solely by electrostatic interactions and ligand exchanges. Hence, a higher adsorption was observed at pH 3 compared to pH 7, although AH and BSA respectively undergo repulsive and attractive electrostatic interactions at these pH values. Almost no effect of I on adsorption was moreover noted at pH 7. These new developments and observations not only suggest that other mechanisms govern protein adsorption on AH but also offer a new platform for the study of antigen adsorption in the context of vaccine formulation. Immobilizing particles on QCM sensors also enriches the range of applications for which QCM can be exploited, especially in colloid science.
Collapse
Affiliation(s)
- Jean-François Art
- Université catholique de Louvain , Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter division, Place Louis Pasteur 1/L4.01.10, 1348, Louvain-la-Neuve, Belgium
| | - Aurélien Vander Straeten
- Université catholique de Louvain , Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter division, Place Louis Pasteur 1/L4.01.10, 1348, Louvain-la-Neuve, Belgium
| | - Christine C Dupont-Gillain
- Université catholique de Louvain , Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter division, Place Louis Pasteur 1/L4.01.10, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Huang M, Wang W. Factors affecting alum-protein interactions. Int J Pharm 2014; 466:139-46. [PMID: 24607202 DOI: 10.1016/j.ijpharm.2014.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/18/2014] [Accepted: 03/02/2014] [Indexed: 01/16/2023]
Abstract
Alum (or aluminum-containing) adjuvants are key components of many vaccines currently on the market. The immuno-potentiation effect of alum adjuvants is presumably due to their interaction with antigens, leading to adsorption on the alum particle surface. Understanding the mechanism of antigen adsorption/desorption and its influencing factors could provide guidance on formulation design and ensure proper in-vivo immuno-potentiation effect. In this paper, surface adsorption of several model proteins on two types of aluminum adjuvants (Alhydrogel(®) and Adjuphos(®)) are investigated to understand the underlying adsorption mechanisms, capacities, and potential influencing factors. It was found that electrostatic interactions are the major driving force for surface adsorption of all the model proteins except ovalbumin. Alhydrogel has a significantly higher adsorption capacity than Adjuphos. Several factors significantly change the adsorption capacity of both Alhydrogel and Adjuphos, including molecular weight of protein antigens, sodium chloride, phosphate buffer, denaturing agents, and size of aluminum particles. These important factors need to be carefully considered in the design of an effective protein antigen-based vaccine.
Collapse
Affiliation(s)
- Min Huang
- Pharmaceutical Research and Development, Biotherapeutic Pharmaceutical Sciences, Pfizer Inc., 1 Burtt Rd, Andover, MA 01810, United States.
| | - Wei Wang
- Pharmaceutical Research and Development, Biotherapeutic Pharmaceutical Sciences, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield, MO 63017, United States
| |
Collapse
|
4
|
|
5
|
Estey T, Vessely C, Randolph TW, Henderson I, Braun LJ, Nayar R, Carpenter JF. Evaluation of chemical degradation of a trivalent recombinant protein vaccine against botulinum neurotoxin by LysC peptide mapping and MALDI-TOF mass spectrometry. J Pharm Sci 2009; 98:2994-3012. [PMID: 18781606 DOI: 10.1002/jps.21543] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Vaccines utilizing recombinant protein antigens typically require an adjuvant to enhance immune response in the recipients. However, the consequences of antigen binding to adjuvant on both the short- and long-term stability of the protein remain poorly defined. In our companion paper (Vessely et al., in press, J Pharm Sci), we characterized the effects of binding to adjuvant on the conformation and thermodynamic stability of three antigen variants for botulinum vaccines: rBoNTA(H(c)), rBoNTB(H(c)), and rBoNTE(H(c)). In the current study, we evaluated the effect of binding to adjuvant (Alhydrogel, aluminum hydroxide) on chemical stability of these antigens during long-term storage in aqueous suspension. We developed methods that employ LysC peptide mapping in conjunction with MALDI-TOF mass spectrometry. Peptide maps were developed for the proteins for a vaccine formulation of rBoNTE(H(c)) as well as a trivalent rBoNT(H(c)) vaccine formulation. This method provided high sequence coverage for the proteins in part due to the implementation of a postdigestion elution fractionation method during sample preparation, and was also successfully utilized to evaluate the chemical integrity of adjuvant-bound rBoNT(H(c)) protein antigens. We found that all three of the rBoNT(H(c)) proteins were susceptible to degradation via both oxidation and deamidation. In many cases, such reactions occurred earlier with the adjuvant-bound protein formulations when compared to the proteins in control samples that were not bound to adjuvant. Additionally, some chemical modifications were found in the adjuvant-bound protein formulations but were not detected in the unbound solution controls. Our studies indicate that binding to aluminum-based adjuvants can impact the chemical stability and/or the chemical degradation pathways of protein during long-term storage in aqueous suspension. Furthermore, the methods we developed should be widely useful for assessing chemical stability of adjuvant-bound recombinant protein antigens.
Collapse
Affiliation(s)
- Tia Estey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, SOP-215, Campus Box C238, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Vessely C, Estey T, Randolph TW, Henderson I, Cooper J, Nayar R, Braun LJ, Carpenter JF. Stability of a trivalent recombinant protein vaccine formulation against botulinum neurotoxin during storage in aqueous solution. J Pharm Sci 2009; 98:2970-93. [PMID: 18680175 DOI: 10.1002/jps.21498] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The adsorption of recombinant botulinum neurotoxin (BoNT) protein-derived vaccine antigens to aluminum salt adjuvants has been previously studied for the development of a trivalent vaccine against the neurotoxins (Vessely et al., in press, J Pharm Sci). The current paper describes an investigation of the stability of recombinant BoNT antigens adsorbed to aluminum salt adjuvants during storage in aqueous solution. Both chemical and physical changes occurred during storage. Phosphate groups in the buffer exchanged with hydroxyl groups on the adjuvant surface. The resulting changes in solution pH and adjuvant surface chemistry promoted more favorable electrostatic interaction between the BoNT proteins and the surface, possibly increasing the affinity of the proteins for the surface during storage. Fluorescence and UV spectroscopy suggested changes to protein structure during storage, whereas differential scanning calorimetry showed changes to thermal processes related to protein conformation and/or surface adsorption. The consequence of the chemical and physical changes to the proteins was a decrease in the ability to desorb protein from the adjuvant surface during storage. Overall, the results of this study emphasize the utility of a thorough characterization of the interactions between protein antigens and aluminum salt adjuvants.
Collapse
Affiliation(s)
- Christina Vessely
- Department of Pharmaceutical Sciences. School of Pharmacy, SOP-215, Campus Box C238, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Hem SL, Hogenesch H. Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation. Expert Rev Vaccines 2007; 6:685-98. [PMID: 17931150 DOI: 10.1586/14760584.6.5.685] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aluminum-containing adjuvants are an important component of many vaccines because they safely potentiate the immune response. The structure and properties of aluminum hydroxide adjuvant, aluminum phosphate adjuvant and alum-precipitated adjuvants are presented in this review. The major antigen adsorption mechanisms, electrostatic attraction and ligand exchange, are related to the adjuvant structure. The manner by which aluminum-containing adjuvants potentiate the immune response is related to the structure, properties of the adjuvant and adsorption mechanism. Immunopotentiation occurs through the following sequential steps: inflammation and recruitment of antigen-presenting cells, retention of antigen at the injection site, uptake of antigen, dendritic cell maturation, T-cell activation and T-cell differentiation.
Collapse
Affiliation(s)
- Stanley L Hem
- Purdue University, Industrial and Physical Pharmacy Department, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
8
|
Vessely C, Estey T, Randolph TW, Henderson I, Nayar R, Carpenter JF. Effects of solution conditions and surface chemistry on the adsorption of three recombinant botulinum neurotoxin antigens to aluminum salt adjuvants. J Pharm Sci 2007; 96:2375-89. [PMID: 17518359 DOI: 10.1002/jps.20880] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Botulinum neurotoxin (BoNT) is a biological warfare threat. Protein antigens have been developed against the seven major BoNT serotypes for the development of a recombinant protein vaccine. This study is an evaluation of adsorption profiles for three of the recombinant protein antigens to aluminum salt adjuvants in the development of a trivalent vaccine against BoNT. Adsorption profiles were obtained over a range of protein concentrations. The results document that charge-charge interactions dominate the adsorption of antigen to adjuvant. Optimal conditions for adsorption were determined. However, potency studies and solution stability studies indicated the necessity of using aluminum hydroxide adjuvant at low pH. To improve the adsorption profiles to AlOH adjuvant, phosphate ions were introduced into the adsorption buffers. The resulting change in the adjuvant chemistry led to an improvement of adsorption of the BoNT antigens to aluminum hydroxide adjuvant while maintaining potency. Competitive adsorption profiles were also determined, and showed changes in maximum adsorption from mixed solutions compared to adsorption from individual protein solutions. The adsorption profiles for each protein varied due to differences in adsorption mechanism and affinity for the adjuvant surface. These results emphasize the importance of evaluating competitive adsorption in the development of multivalent vaccine products.
Collapse
Affiliation(s)
- Christina Vessely
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver, Colorado, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Carra JH, Wannemacher RW, Tammariello RF, Lindsey CY, Dinterman RE, Schokman RD, Smith LA. Improved formulation of a recombinant ricin A-chain vaccine increases its stability and effective antigenicity. Vaccine 2007; 25:4149-58. [PMID: 17408819 DOI: 10.1016/j.vaccine.2007.03.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 02/28/2007] [Accepted: 03/05/2007] [Indexed: 12/22/2022]
Abstract
Ricin is a potent toxin associated with bioterrorism for which no vaccine or specific countermeasures are currently available. A stable, non-toxic and immunogenic recombinant ricin A-chain vaccine (RTA 1-33/44-198) has been developed by protein engineering. We identified optimal formulation conditions for this vaccine under which it remained stable and potent in storage for up to 18 months, and resisted multiple rounds of freeze-thawing without stabilizing co-solvents. Reformulation from phosphate buffer to succinate buffer increased adherence of the protein to aluminum hydroxide adjuvant from 15 to 91%, with a concomitant increase of nearly threefold in effective antigenicity in a mouse model. Using Fourier-transform infrared spectroscopy, we examined the secondary structure of the protein while it was adhered to aluminum hydroxide. Adjuvant adsorption produced only a small apparent change in secondary structure, while significantly stabilizing the protein to thermal denaturation. The vaccine therefore may be safely stored in the presence of adjuvant. Our results suggest that optimization of adherence of a protein antigen to aluminum adjuvant can be a useful route to increasing both stability and effectiveness, and support a role for a "depot effect" of adjuvant.
Collapse
Affiliation(s)
- John H Carra
- Integrated Toxicology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702-5011, United States
| | | | | | | | | | | | | |
Collapse
|