1
|
Xu C, Xing R, Liu S, Qin Y, Li K, Yu H, Li P. The immunostimulatory effects of hydroxypropyltrimethyl ammonium chloride chitosan-carboxymethyl chitosan nanoparticles. Int J Biol Macromol 2021; 181:398-409. [PMID: 33781818 DOI: 10.1016/j.ijbiomac.2021.03.148] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022]
Abstract
In this study, we generated chitosan nanoparticles by exploiting the electrostatic interactions between positively charged hydroxypropyltrimethyl ammonium chloride chitosan (HACC) and negatively charged carboxymethyl chitosan (CMC), and examined the effects of altering the molecular weight and carboxymethyl substitution sites of the chitosan molecules. Particle size, potential, and encapsulation efficiency of the various chitosan nanoparticles were examined; the particle size range was 162.40-332.80 nm, the charge range was 19.50-40.60 mV, and the encapsulation efficiency range was 48.4-70.7%. We then examined the immunostimulatory effects of the nanoparticle variants on dendritic cells (DCs); we found that the site of carboxymethyl substitution significantly affected the immunostimulatory effects of the nanoparticles. Two nanoparticle types, 200 kDa N,O-carboxymethyl chitosan-HACC (NO-CMC-HACC) and N-carboxymethyl chitosan-HACC (N-CMC-HACC), greatly promoted the expression of interleukin-6, tumor necrosis factor, and interleukin-1β in DCs. Moreover, NO-CMC-HACC nanoparticles caused an increase in major histocompatibility complex-II (MHC-II), CD11c, CD80, and CD86 secretion in DCs, indicating that these nanoparticles promoted antigen presentation. We then examined chitosan nanoparticle uptake by DCs using laser confocal microscopy; we found that the NO-CMC-HACC nanoparticles were more readily absorbed by DCs compared to the N-CMC-HACC nanoparticles. Therefore, we concluded that 200 kDa NO-CMC-HACC nanoparticles exhibited strong potential as immunological adjuvants.
Collapse
Affiliation(s)
- Chaojie Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
2
|
Chua SCJH, Tan HQ, Engelberg D, Lim LHK. Alternative Experimental Models for Studying Influenza Proteins, Host-Virus Interactions and Anti-Influenza Drugs. Pharmaceuticals (Basel) 2019; 12:E147. [PMID: 31575020 PMCID: PMC6958409 DOI: 10.3390/ph12040147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
Ninety years after the discovery of the virus causing the influenza disease, this malady remains one of the biggest public health threats to mankind. Currently available drugs and vaccines only partially reduce deaths and hospitalizations. Some of the reasons for this disturbing situation stem from the sophistication of the viral machinery, but another reason is the lack of a complete understanding of the molecular and physiological basis of viral infections and host-pathogen interactions. Even the functions of the influenza proteins, their mechanisms of action and interaction with host proteins have not been fully revealed. These questions have traditionally been studied in mammalian animal models, mainly ferrets and mice (as well as pigs and non-human primates) and in cell lines. Although obviously relevant as models to humans, these experimental systems are very complex and are not conveniently accessible to various genetic, molecular and biochemical approaches. The fact that influenza remains an unsolved problem, in combination with the limitations of the conventional experimental models, motivated increasing attempts to use the power of other models, such as low eukaryotes, including invertebrate, and primary cell cultures. In this review, we summarized the efforts to study influenza in yeast, Drosophila, zebrafish and primary human tissue cultures and the major contributions these studies have made toward a better understanding of the disease. We feel that these models are still under-utilized and we highlight the unique potential each model has for better comprehending virus-host interactions and viral protein function.
Collapse
Affiliation(s)
- Sonja C J H Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
- CREATE-NUS-HUJ Molecular Mechanisms of Inflammatory Diseases Programme, National University of Singapore, Singapore 138602, Singapore.
| | - Hui Qing Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| | - David Engelberg
- CREATE-NUS-HUJ Molecular Mechanisms of Inflammatory Diseases Programme, National University of Singapore, Singapore 138602, Singapore.
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
3
|
Isakova-Sivak I, Rudenko L. Safety, immunogenicity and infectivity of new live attenuated influenza vaccines. Expert Rev Vaccines 2015; 14:1313-29. [PMID: 26289975 DOI: 10.1586/14760584.2015.1075883] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Live attenuated influenza vaccines (LAIVs) are believed to be immunologically superior to inactivated influenza vaccines, because they can induce a variety of adaptive immune responses, including serum antibodies, mucosal and cell-mediated immunity. In addition to the licensed cold-adapted LAIV backbones, a number of alternative LAIV approaches are currently being developed and evaluated in preclinical and clinical studies. This review summarizes recent progress in the development and evaluation of LAIVs, with special attention to their safety, immunogenicity and infectivity for humans, and discusses their perspectives for the future.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- a Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, Saint Petersburg, Russia
| | | |
Collapse
|
4
|
Bitrus Y, Andrew JN, Owolodun OA, Luka PD, Umaru DA. The reoccurrence of H5N1 outbreaks necessitates the development of safe and effective influenza vaccine technologies for the prevention and control of avian influenza in Sub-Saharan Africa. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/bmbr2015.0246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Current and emerging cell culture manufacturing technologies for influenza vaccines. BIOMED RESEARCH INTERNATIONAL 2015; 2015:504831. [PMID: 25815321 PMCID: PMC4359798 DOI: 10.1155/2015/504831] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/05/2015] [Accepted: 02/16/2015] [Indexed: 01/08/2023]
Abstract
Annually, influenza virus infects millions of people worldwide. Vaccination programs against seasonal influenza infections require the production of hundreds of million doses within a very short period of time. The influenza vaccine is currently produced using a technology developed in the 1940s that relies on replicating the virus in embryonated hens' eggs. The monovalent viral preparation is inactivated and purified before being formulated in trivalent or tetravalent influenza vaccines. The production process has depended on a continuous supply of eggs. In the case of pandemic outbreaks, this mode of production might be problematic because of a possible drastic reduction in the egg supply and the low flexibility of the manufacturing process resulting in a lack of supply of the required vaccine doses in a timely fashion. Novel production systems using mammalian or insect cell cultures have emerged to overcome the limitations of the egg-based production system. These industrially well-established production systems have been primarily selected for a faster and more flexible response to pandemic threats. Here, we review the most important cell culture manufacturing processes that have been developed in recent years for mass production of influenza vaccines.
Collapse
|
6
|
Perdue ML, Arnold F, Li S, Donabedian A, Cioce V, Warf T, Huebner R. The future of cell culture-based influenza vaccine production. Expert Rev Vaccines 2014; 10:1183-94. [DOI: 10.1586/erv.11.82] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Immunization with a hemagglutinin-derived synthetic peptide formulated with a CpG-DNA-liposome complex induced protection against lethal influenza virus infection in mice. PLoS One 2012; 7:e48750. [PMID: 23144954 PMCID: PMC3492448 DOI: 10.1371/journal.pone.0048750] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 10/01/2012] [Indexed: 12/16/2022] Open
Abstract
Whole-virus vaccines, including inactivated or live-attenuated influenza vaccines, have been conventionally developed and supported as a prophylaxis. These currently available virus-based influenza vaccines are widely used in the clinic, but the vaccine production takes a long time and a huge number of embryonated chicken eggs. To overcome the imperfection of egg-based influenza vaccines, epitope-based peptide vaccines have been studied as an alternative approach. Here, we formulated an efficacious peptide vaccine without carriers using phosphodiester CpG-DNA and a special liposome complex. Potential epitope peptides predicted from the hemagglutinin (HA) protein of the H5N1 A/Viet Nam/1203/2004 strain (NCBI database, AAW80717) were used to immunize mice along with phosphodiester CpG-DNA co-encapsulated in a phosphatidyl-β-oleoyl-γ-palmitoyl ethanolamine (DOPE):cholesterol hemisuccinate (CHEMS) complex (Lipoplex(O)) without carriers. We identified a B cell epitope peptide (hH5N1 HA233 epitope, 14 amino acids) that can potently induce epitope-specific antibodies. Furthermore, immunization with a complex of the B cell epitope and Lipoplex(O) completely protects mice challenged with a lethal dose of recombinant H5N1 virus. These results suggest that our improved peptide vaccine technology can be promptly applied to vaccine development against pandemic influenza. Furthermore our results suggest that potent epitopes, which cannot be easily found using proteins or a virus as an antigen, can be screened when we use a complex of peptide epitopes and Lipoplex(O).
Collapse
|
8
|
Lohr V, Genzel Y, Jordan I, Katinger D, Mahr S, Sandig V, Reichl U. Live attenuated influenza viruses produced in a suspension process with avian AGE1.CR.pIX cells. BMC Biotechnol 2012; 12:79. [PMID: 23110398 PMCID: PMC3505166 DOI: 10.1186/1472-6750-12-79] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/15/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Current influenza vaccines are trivalent or quadrivalent inactivated split or subunit vaccines administered intramuscularly, or live attenuated influenza vaccines (LAIV) adapted to replicate at temperatures below body temperature and administered intranasally. Both vaccines are considered safe and efficient, but due to differences in specific properties may complement each other to ensure reliable vaccine coverage. By now, licensed LAIV are produced in embryonated chicken eggs. In the near future influenza vaccines for human use will also be available from adherent MDCK or Vero cell cultures, but a scalable suspension process may facilitate production and supply with vaccines. RESULTS We evaluated the production of cold-adapted human influenza virus strains in the duck suspension cell line AGE1.CR.pIX using a chemically-defined medium. One cold-adapted A (H1N1) and one cold-adapted B virus strain was tested, as well as the reference strain A/PR/8/34 (H1N1). It is shown that a medium exchange is not required for infection and that maximum virus titers are obtained for 1 × 10⁻⁶ trypsin units per cell. 1 L bioreactor cultivations showed that 4 × 10⁶ cells/mL can be infected without a cell density effect achieving titers of 1 × 10⁸ virions/mL after 24 h. CONCLUSIONS Overall, this study demonstrates that AGE1.CR.pIX cells support replication of LAIV strains in a chemically-defined medium using a simple process without medium exchanges. Moreover, the process is fast with peak titers obtained 24 h post infection and easily scalable to industrial volumes as neither microcarriers nor medium replacements are required.
Collapse
Affiliation(s)
- Verena Lohr
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Ingo Jordan
- ProBioGen AG, Goethestr. 54, 13086, Berlin, Germany
| | - Dietmar Katinger
- Polymun Scientific GmbH, Donaustr. 99, 3400, Klosterneuburg, Austria
| | - Stefan Mahr
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
- University for Applied Sciences, Robert-Gerwig-Platz 1, 78120, Furtwangen, Germany
| | | | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
9
|
Zhang W, Tu J, Zhao Z, Chen H, Jin M. The new temperature-sensitive mutation PA-F35S for developing recombinant avian live attenuated H5N1 influenza vaccine. Virol J 2012; 9:97. [PMID: 22621130 PMCID: PMC3413606 DOI: 10.1186/1743-422x-9-97] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 05/23/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND H5N1 highly pathogenic avian influenza virus (HPAIV) is continuously circulating in many Asian countries and threatening poultry industry and human population. Vaccination is the best strategy to control H5N1 HPAIV infection in poultry and transmission to human population. The aim of this study is to identify new temperature-sensitive (ts) mutations for developing recombinant avian live attenuated H5N1 influenza vaccine. FINDINGS A "6 + 2" recombinant virus C4/W1 that contained NA gene and modified HA gene from virus A/chicken/Hubei/327/2004 (H5N1) (C4), and six internal genes from virus A/duck/Hubei/W1/2004 (H9N2) (W1) was generated using reverse genetics and subsequently passaged in chicken eggs at progressively lower temperatures (32°C, 28°C and 25°C). The resulting virus acquired ts phenotype and one of its amino acid mutations, PA (F35S), was identified as ts mutation. Furthermore, when used as live attenuated vaccine, the recombinant virus with this ts mutation PA (F35S) provided efficient protection for chickens against H5N1 HPAIV infection. CONCLUSIONS These findings highlight the potential of the new ts mutation PA (F35S) in developing recombinant avian live attenuated H5N1 influenza vaccine.
Collapse
Affiliation(s)
- Wenting Zhang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | | | | | | | | |
Collapse
|
10
|
Ng SK. Current cell-based influenza vaccine production technology as pandemic contingency. Hum Vaccin Immunother 2012; 8:267-71. [PMID: 22426381 DOI: 10.4161/hv.18336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Say Kong Ng
- Bioprocessing Technology Institute; Agency for Science, Technology and Research (A*STAR); Singapore.
| |
Collapse
|
11
|
Isaeva EI, Mazurkova NA, Skarnovich MO, Troshkova GP, Shishkina LN, Podchernyayeva RY. Optimization of roller culturing of influenza virus vaccine strains in MDCK and Vero cell cultures using plant origin components. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811080059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Chen A, Poh SL, Dietzsch C, Roethl E, Yan ML, Ng SK. Serum-free microcarrier based production of replication deficient influenza vaccine candidate virus lacking NS1 using Vero cells. BMC Biotechnol 2011; 11:81. [PMID: 21835017 PMCID: PMC3163541 DOI: 10.1186/1472-6750-11-81] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/11/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Influenza virus is a major health concern that has huge impacts on the human society, and vaccination remains as one of the most effective ways to mitigate this disease. Comparing the two types of commercially available Influenza vaccine, the live attenuated virus vaccine is more cross-reactive and easier to administer than the traditional inactivated vaccines. One promising live attenuated Influenza vaccine that has completed Phase I clinical trial is deltaFLU, a deletion mutant lacking the viral Nonstructural Protein 1 (NS1) gene. As a consequence of this gene deletion, this mutant virus can only propagate effectively in cells with a deficient interferon-mediated antiviral response. To demonstrate the manufacturability of this vaccine candidate, a batch bioreactor production process using adherent Vero cells on microcarriers in commercially available animal-component free, serum-free media is described. RESULTS Five commercially available animal-component free, serum-free media (SFM) were evaluated for growth of Vero cells in agitated Cytodex 1 spinner flask microcarrier cultures. EX-CELL Vero SFM achieved the highest cell concentration of 2.6 × 10^6 cells/ml, whereas other SFM achieved about 1.2 × 10^6 cells/ml. Time points for infection between the late exponential and stationary phases of cell growth had no significant effect in the final virus titres. A virus yield of 7.6 Log10 TCID50/ml was achieved using trypsin concentration of 10 μg/ml and MOI of 0.001. The Influenza vaccine production process was scaled up to a 3 liter controlled stirred tank bioreactor to achieve a cell density of 2.7 × 10^6 cells/ml and virus titre of 8.3 Log10 TCID50/ml. Finally, the bioreactor system was tested for the production of the corresponding wild type H1N1 Influenza virus, which is conventionally used in the production of inactivated vaccine. High virus titres of up to 10 Log10 TCID50/ml were achieved. CONCLUSIONS We describe for the first time the production of Influenza viruses using Vero cells in commercially available animal-component free, serum-free medium. This work can be used as a basis for efficient production of attenuated as well as wild type Influenza virus for research and vaccine production.
Collapse
Affiliation(s)
- Allen Chen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore
| | | | | | | | | | | |
Collapse
|
13
|
Zuccotti GV, Fabiano V. Strategies for preventing influenza: future perspectives in influenza vaccine technology. Expert Opin Biol Ther 2011; 11:1-4. [PMID: 21133814 DOI: 10.1517/14712598.2010.539047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prevention of influenza transmission and containment of epidemics and pandemics require effective strategies that can be efficiently and easily addressed to the whole population. Annual vaccination is undoubtedly the most effective way to provide protection against influenza infection. Numbers of vaccines are actually available for yearly immunisation. However, the continuous increasing demand for rapidly available vaccine doses for immunisation of a larger proportion of population represents the stimulus for study and development of more efficient vaccine production technologies, which can guarantee reduction of vaccine manufacture times and better compliance by availability of easier routes of administration. New perspectives in influenza vaccination technology are making their way in the future panorama of influenza prevention strategies.
Collapse
Affiliation(s)
- Gian Vincenzo Zuccotti
- Department of Pediatrics, Luigi Sacco Hospital, Università degli Studi di Milano, Milan Italy.
| | | |
Collapse
|
14
|
Aggarwal K, Jing F, Maranga L, Liu J. Bioprocess optimization for cell culture based influenza vaccine production. Vaccine 2011; 29:3320-8. [DOI: 10.1016/j.vaccine.2011.01.081] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 12/12/2022]
|
15
|
Stech J. Several hemagglutinins of same serotype for induction of broad immunity against influenza A virus antigenic drift variants: WO2008048984. Expert Opin Ther Pat 2010; 20:447-50. [PMID: 20180625 DOI: 10.1517/13543770903547855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The respiratory disease influenza gives rise to severe public health concerns. During inter-pandemic periods, the constant problem of the annually recurring seasonal influenza is perpetuated by the ability of influenza viruses to alter their surface antigens continuously (antigenic drift). Therefore, vaccines eliciting broad immunity against drift variants still remain a major objective in vaccine development. The patent WO2008048984 evaluated in this article claims an approach which aims to elicit homosubtypic protection against drift variants by simultaneous vaccination with several hemagglutinins (HAs) of the same serotype. The proposed multivalent vaccine based on simultaneous administration of several HAs, the results obtained from mice immunization studies and the implications of this concept are discussed in light of their relevance to application in humans. This proof-of-principle study suggests that a multivalent HA vaccine could elicit broad protection against drifted virus variants of one HA subtype. In the future, the dependence of broad efficacy on large antigenic distances among the HAs used for immunization as well as the antigenic distance between the HAs administered to that of the challenge virus, the immunological correlates of broad efficacy, and the suitability of this concept for domestic animals and humans remain to be investigated.
Collapse
Affiliation(s)
- Jürgen Stech
- Friedrich-Loeffler-Institute, Institute of Molecular Biology, Federal Research Institute for Animal Health, Suedufer 10, Greifswald - Insel Riems, 17493, Germany.
| |
Collapse
|
16
|
Liu J, Mani S, Schwartz R, Richman L, Tabor DE. Cloning and assessment of tumorigenicity and oncogenicity of a Madin–Darby canine kidney (MDCK) cell line for influenza vaccine production. Vaccine 2010; 28:1285-93. [DOI: 10.1016/j.vaccine.2009.11.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 11/03/2009] [Accepted: 11/06/2009] [Indexed: 12/28/2022]
|
17
|
He F, Madhan S, Kwang J. Baculovirus vector as a delivery vehicle for influenza vaccines. Expert Rev Vaccines 2009; 8:455-67. [PMID: 19348561 DOI: 10.1586/erv.09.2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The baculovirus vector has emerged as an efficient delivery vehicle for influenza vaccines. In addition to the ease and safety in expeditious production, recent improvements in baculovirus engineering to display foreign proteins on the surface and to express transgenes with suitable promoters in various cell lines have become milestones in the development of the baculovirus expression system. Surface-displayed and shuttle promoter-mediated baculovirus vaccines for influenza present advantages in immunogenicity and safety, as studied in several animal models. A variety of strategies, including the modification of envelope proteins for surface display, the selection of novel promoters for in vivo transductions and advancements in downstream processing, aid the improvement of baculovirus-based influenza vaccines and represent progress toward next-generation vaccines for influenza.
Collapse
Affiliation(s)
- Fang He
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, 117604 Singapore.
| | | | | |
Collapse
|
18
|
Ghendon Y, Markushin S, Vasiliev Y, Akopova I, Koptiaeva I, Krivtsov G, Borisova O, Ahmatova N, Kurbatova E, Mazurina S, Gervazieva V. Evaluation of properties of chitosan as an adjuvant for inactivated influenza vaccines administered parenterally. J Med Virol 2009; 81:494-506. [DOI: 10.1002/jmv.21415] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Abstract
Influenza is a highly contagious, acute respiratory illness afflicting humans. Although influenza epidemics occur frequently, their severity varies (1). Not until 1933, when the first human influenza virus was isolated, was it possible to define with certainty which pandemics were caused by influenza viruses. In general, influenza A viruses are more pathogenic than are influenza B viruses. Influenza A virus is a zoonotic infection, and more than 100 types of influenza A viruses infect most species of birds, pigs, horses, dogs, and seals. It is believed that the 1918–1919 pandemic originated from a virulent strain of H1N1 from pigs and birds.
Collapse
Affiliation(s)
- Vassil St. Georgiev
- Department of Health & Human Services, National Institutes of Health, 6610 Rockledge Drive, Bethesda, MD 20892 USA
| |
Collapse
|
20
|
Stech J. Attenuated influenza A viruses with modified cleavage sites in hemagglutinin as live vaccines. Expert Rev Vaccines 2008; 7:739-43. [PMID: 18665773 DOI: 10.1586/14760584.7.6.739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Influenza A viruses are a public-health concern as they cause annual epidemics and may initiate a pandemic. Common inactivated influenza A vaccines induce a serum antibody response, which may not be protective against virus variation in the field. In contrast to conventional vaccines, the intranasally administered live influenza vaccine may have the potential to induce long-lived and heterosubtypic immunity. In this perspective, attenuated hemagglutinin cleavage-site mutants are discussed in view of usage as influenza live vaccines. This approach allows the convertion of any influenza A strain into an attenuated vaccine virus. The mutated hemagglutinin can serve as a component of a multiple live-attenuated influenza vaccine and would prevent reassortment into circulating viruses.
Collapse
Affiliation(s)
- Jürgen Stech
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Molecular Biology, Südufer 10, 17493 Greifswald, Insel Riems, Germany.
| |
Collapse
|
21
|
A consensus-hemagglutinin-based DNA vaccine that protects mice against divergent H5N1 influenza viruses. Proc Natl Acad Sci U S A 2008; 105:13538-43. [PMID: 18765801 DOI: 10.1073/pnas.0806901105] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
H5N1 influenza viruses have spread extensively among wild birds and domestic poultry. Cross-species transmission of these viruses to humans has been documented in over 380 cases, with a mortality rate of approximately 60%. There is great concern that a H5N1 virus would acquire the ability to spread efficiently between humans, thereby becoming a pandemic threat. An H5N1 influenza vaccine must, therefore, be an integral part of any pandemic preparedness plan. However, traditional methods of making influenza vaccines have yet to produce a candidate that could induce potently neutralizing antibodies against divergent strains of H5N1 influenza viruses. To address this need, we generated a consensus H5N1 hemagglutinin (HA) sequence based on data available in early 2006. This sequence was then optimized for protein expression before being inserted into a DNA plasmid (pCHA5). Immunizing mice with pCHA5, delivered intramuscularly via electroporation, elicited antibodies that neutralized a panel of virions that have been pseudotyped with the HA from various H5N1 viruses (clades 1, 2.1, 2.2, 2.3.2, and 2.3.4). Moreover, immunization with pCHA5 in mice conferred complete (clades 1 and 2.2) or significant (clade 2.1) protection from H5N1 virus challenges. We conclude that this vaccine, based on a consensus HA, could induce broad protection against divergent H5N1 influenza viruses and thus warrants further study.
Collapse
|
22
|
Ueda M, Yamate M, Du A, Daidoji T, Okuno Y, Ikuta K, Nakaya T. Maturation efficiency of viral glycoproteins in the ER impacts the production of influenza A virus. Virus Res 2008; 136:91-7. [DOI: 10.1016/j.virusres.2008.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 04/08/2008] [Accepted: 04/23/2008] [Indexed: 01/05/2023]
|
23
|
Mazurkova NA, Kolokol'tsova TD, Nechaeva EA, Shishkina LN, Sergeev AN. The use of components of plant origin in the development of production technology for live cold-adapted cultural influenza vaccine. Bull Exp Biol Med 2008; 146:144-7. [PMID: 19145373 DOI: 10.1007/s10517-008-0223-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The impact of culturing conditions (multiplicity of cell culture infection with influenza virus, composition of growth and maintenance nutrient media) for the efficiency of multiplication of cold-adapted reassortant vaccine strains of influenza A and B viruses was evaluated. Soybean hydrolysate protein-based biological additive to nutrient medium provided effective reproduction of influenza A virus in MDCK cells in the presence of 2 microg/ml trypsin. The use of soybean peptone-based stabilizer provided retention of infectious titer of influenza virus grown in MDCK culture after its lyophilization to a level of 8.5 lg EID50/ml.
Collapse
Affiliation(s)
- N A Mazurkova
- Vector Center of Virology and Biotechnology, Koltsovo, Novosibirsk region, Russia.
| | | | | | | | | |
Collapse
|
24
|
Shoji Y, Chichester JA, Bi H, Musiychuk K, de la Rosa P, Goldschmidt L, Horsey A, Ugulava N, Palmer GA, Mett V, Yusibov V. Plant-expressed HA as a seasonal influenza vaccine candidate. Vaccine 2008; 26:2930-4. [PMID: 18440103 DOI: 10.1016/j.vaccine.2008.03.045] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/13/2007] [Accepted: 03/19/2008] [Indexed: 11/15/2022]
Abstract
Influenza is a globally important respiratory pathogen that causes a high degree of morbidity and mortality annually. Although current vaccines are effective against virus infection, new strategies need to be developed to satisfy the global demand for an influenza vaccine. To address this point, we have engineered and produced the full-length hemagglutinin (HA) protein from the A/Wyoming/03/03 (H3N2) strain of influenza in plants. The antigenicity of this plant-produced HA was confirmed by ELISA and single-radial immunodiffusion (SRID) assays. Immunization of mice with plant-produced HA resulted in HA-specific humoral (IgG1, IgG2a and IgG2b) and cellular (IFNgamma and IL-5) immune responses. In addition, significant serum hemagglutination inhibition (HI) and virus neutralizing (VN) antibody titers were obtained with an antigen dose as low as 5mug. These results demonstrate that plant-produced HA protein is antigenic and can induce immune responses in mice that correlate with protection.
Collapse
Affiliation(s)
- Yoko Shoji
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Suite 200, Newark, DE 19711, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Polymenidou M, Trusheim H, Stallmach L, Moos R, Julius C, Miele G, Lenz-Bauer C, Aguzzi A. Canine MDCK cell lines are refractory to infection with human and mouse prions. Vaccine 2008; 26:2601-14. [PMID: 18423803 DOI: 10.1016/j.vaccine.2008.03.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 03/05/2008] [Accepted: 03/11/2008] [Indexed: 11/25/2022]
Abstract
Influenza vaccine production in embryonated eggs is associated with many disadvantages, and production in cell culture systems is a viable alternative. Madin Darby canine kidney (MDCK) cells are permissive for a variety of orthomyxoviruses and have proven particularly suitable for vaccine mass production. However, mammalian cells harboring the Prnp gene can theoretically acquire prion infections. Here, we have attempted to infect MDCK cells and substrains thereof with prions. We found that MDCK cells did not produce any protease-resistant PrP(Sc) upon exposure to brain homogenates derived from humans suffering from Creutzfeldt-Jakob disease (CJD) or from mice infected with Rocky Mountain Laboratory (RML) scrapie prions. Further, transmission of MDCK lysates to N2aPK1 cells did not induce formation of PrP(Sc) in the latter. PrP(C) biogenesis and processing in MDCK cells were similar to those of prion-sensitive N2aPK1 cells. However, steady-state levels of PrP(C) were very low, and PrP(C) did not partition with detergent-resistant membranes upon density gradient analysis. These factors may account for their resistance to infection. Alternatively, prion resistance may be related to the specific sequence of canine Prnp, as suggested by the lack of documented prion diseases in dogs.
Collapse
Affiliation(s)
- Magdalini Polymenidou
- Institute of Neuropathology, University Hospital of Zürich, Schmelzbergstrasse 12, Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Pohlscheidt M, Langer U, Minuth T, Bödeker B, Apeler H, Hörlein HD, Paulsen D, Rübsamen-Waigmann H, Henzler HJ, Reichl U. Development and optimisation of a procedure for the production of Parapoxvirus ovis by large-scale microcarrier cell culture in a non-animal, non-human and non-plant-derived medium. Vaccine 2008; 26:1552-65. [PMID: 18295380 DOI: 10.1016/j.vaccine.2008.01.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Revised: 12/29/2007] [Accepted: 01/08/2008] [Indexed: 12/31/2022]
Abstract
For the production of a chemically inactivated Parapoxvirus ovis (PPVO), an adherent bovine kidney cell line was cultivated on Cytodex-3 microcarriers in suspension culture. The inactivated and purified virus particles have shown immune modulatory activity in several animal models. PPVO was produced by a biphasic batch process at the 3.5 and 10 L scale. Aeration was realised by bubble-free membrane oxygenation via a tube stator with a central two-blade anchor impeller. In order to increase efficiency, process robustness and safety, the established process was optimised. The cell line was adapted to a protein-free medium (except recombinant insulin) in order to increase biosafety. A scale up to a 50 L pilot plant with direct cell expansion was performed successfully. In parallel, the biphasic batch process was optimised with special emphasis on different operating conditions (cell number, Multiplicity of Infection (MOI), etc.) and process management (fed-batch, dialysis, etc.). The quality and concentration of the purified virus particles was assessed by quantitative electron microscopy, residual host cell protein and DNA-content and, finally, biologic activity in a transgenic mouse model. This integrated approach led to a new, safe, robust and highly productive large-scale production process, called "Volume-Expanded-Fed" Batch with cell densities up to 6-7e06 cells/mL. By subsequent dilution of infected cells into the next process scale, an increase in total productivity by a factor of 40 (related to an established biphasic batch process) was achieved.
Collapse
Affiliation(s)
- M Pohlscheidt
- Roche Diagnostics GmbH, Pharma Biotech Production and Development, Penzberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Conceição MM, Tonso A, Freitas CB, Pereira CA. Viral antigen production in cell cultures on microcarriers Bovine parainfluenza 3 virus and MDBK cells. Vaccine 2007; 25:7785-95. [PMID: 17920165 DOI: 10.1016/j.vaccine.2007.08.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 08/07/2007] [Accepted: 08/26/2007] [Indexed: 12/16/2022]
Abstract
Viral antigens can be obtained from infected mammalian cells cultivated on microcarriers. We have worked out parameters for the production of bovine parainfluenza 3 (PI-3) virus by Mandin-Darby Bovine Kidney (MDBK) cells cultivated on Cytodex 1 microcarriers (MCs) in spinners flasks and bioreactor using fetal bovine serum (FBS) supplemented Eagle minimal essential medium (Eagle-MEM). Medium renewal during the cell culture was shown to be crucial for optimal MCs loading (>90% MCs with confluent cell monolayers) and cell growth (2.5 x 10(6)cells/mL and a micro(x) (h(-1)) 0.05). Since cell cultures performed with lower amount of MCs (1g/L), showed good performances in terms of cell loading, we designed batch experiments with a lower concentration of MCs in view of optimizing the cell growth and virus production. Studies of cell growth with lower concentrations of MCs (0.85 g/L) showed that an increase in the initial cell seeding (from 7 to 40 cells/MC) led to a different kinetic of initial cell growth but to comparable final cell concentrations ((8-10)x10(5)cells/mL at 120 h) and cell loading (210-270 cells/MC). Upon infection with PI-3 virus, cultures showed a decrease in cell growth and MC loading directly related to the multiplicity of infection (moi) used for virus infection. Infected cultures showed also a higher consumption of glucose and production of lactate. The PI-3 virus and PI-3 antigen production among the cultures was not significantly different and attained values ranging from, respectively, 7-9 log(10) TCID(50)/mL and 1.5-2.2 OD. The kinetics of PI-3 virus production showed a sharp increase during the first 24h and those of PI-3 antigen increased after 24h. The differential kinetics of PI-3 virus and PI-3 antigen can be explained by the virus sensitivity to temperature. In view of establishing a protocol of virus production and based on the previous experiments, MDBK cell cultures performed under medium perfusion in a bioreactor of 1.2L were infected and the PI-3 virus production in 12L attained 12 log(10) TCID(50). Other than establishing a protocol for PI-3 production in MDBK cell cultures on Cytodex 1, the experiments are proposed as a basis for approaching the development of a virus production protocol in mammalian cells cultivated on microcarriers in bioreactors.
Collapse
Affiliation(s)
- M M Conceição
- Laboratório de Imunologia Viral, Instituto Butantan, Av. Vital Brasil 1500, 05503-900 São Paulo, Brazil
| | | | | | | |
Collapse
|
28
|
Abstract
The increasing number of reports of direct transmission of avian influenza viruses to humans in the past few years and the ongoing outbreak of H5N1 influenza virus infections in birds and humans highlight the pandemic threat posed by avian influenza viruses. Although vaccination is the key strategy for the prevention of severe illness and death from pandemic influenza viruses and despite the long-term experience with vaccines against human influenza viruses, researchers face several obstacles in developing successful vaccines against avian influenza viruses. The haemagglutinin (HA) and neuraminidase (NA) glycoproteins of influenza viruses are the main targets of the protective immune response. Licensed influenza virus vaccines are designed to induce HA-specific antibody responses to protect the host from infection. However, the presence of 16 subtypes of HA and 9 subtypes of NA glycoproteins among avian influenza viruses and the genetic and antigenic diversity among each subtype in nature present several unique challenges for the generation of broadly cross-protective vaccines. Inactivated virus and live attenuated virus vaccines against pandemic influenza are being developed on the basis of plasmid-based reverse-genetics technology. Vaccines based on various other platforms, including live virus vectors and DNA vaccines, are also being developed and show promise in preclinical studies. The available data indicate that inactivated avian influenza virus vaccines are poorly immunogenic and require a high concentration of HA glycoprotein or co-administration with an adjuvant to achieve the desired antibody response in humans. The biological basis for the poor immunogenicity of avian HA glycoproteins is not well understood. Assays to measure the immune response to avian influenza viruses, in particular cell-mediated immune responses, are not available and the immune correlates of protection are not well understood. The choice of assay(s) for assessment of the immune response to pandemic influenza vaccines is a practical challenge in the evaluation of candidate vaccines. As it is difficult to predict which avian influenza virus will cross the species barrier and cause a future pandemic, a library of candidate vaccines of different subtypes must be generated and evaluated in animal models and humans. Although an ideal vaccine would prevent infection, a more realistic goal for a pandemic influenza vaccine might be to prevent severe illness and death.
The pandemic threat posed by avian influenza viruses highlights the need for new safe and efficient vaccines. However, several unique obstacles are faced by researchers in the development of these vaccines against avian influenza viruses. What are these obstacles and how can we overcome them? The increasing number of reports of direct transmission of avian influenza viruses to humans underscores the need for control strategies to prevent an influenza pandemic. Vaccination is the key strategy to prevent severe illness and death from pandemic influenza. Despite long-term experience with vaccines against human influenza viruses, researchers face several additional challenges in developing human vaccines against avian influenza viruses. In this Review, we discuss the features of avian influenza viruses, the gaps in our understanding of infections caused by these viruses in humans and of the immune response to them that distinguishes them from human influenza viruses, and the current status of vaccine development.
Collapse
Affiliation(s)
- Kanta Subbarao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
29
|
Williams JV. Avian influenza viruses: a severe threat of a pandemic in children? PEDIATRIC INFECTIOUS DISEASES REVISITED 2007. [PMCID: PMC7123517 DOI: 10.1007/978-3-7643-8099-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Influenza virus is a leading cause of human respiratory illnesses, causing significant annual morbidity and mortality. The greatest severity of illness due to seasonal influenza occurs in infants less than 6 months of age and the elderly. In recent years, avian influenza virus infections with high mortality have occurred in humans. Many of these avian influenza virus infections have occurred in children, and unlike seasonal influenza, the most severe disease and highest death rates have occurred in children and young adults. Treatment and prevention options for avian influenza viruses are limited at present, although much research effort is directed toward these areas. Avian-derived influenza viruses are potential causes of pandemic influenza that could have a dramatic impact on children worldwide.
Collapse
|
30
|
Abstract
Influenza is a potentially fatal respiratory infection resulting from several influenza virus strains. It causes annual epidemics of disease for which vaccination is the cornerstone of public health policy. The inadequacies of vaccine supply in the US during the 2004 influenza season revealed the deficiencies of current vaccine development and delivery. One outcome of this was the accelerated approval of an inactivated split-virus influenza vaccine, Fluarix. This paper reviews the immunogenicity and reactogenicity of this vaccine, and makes recommendations for the incorporation of Fluarix into the public health framework alongside other similar vaccines. Other directions to explore in an effort to secure future vaccine supply are considered.
Collapse
Affiliation(s)
- G W Rose
- Division of Infectious Diseases, The Ottawa Hospital, University of Ottawa, Ottawa, ON, K1H 8L6, Canada.
| | | |
Collapse
|
31
|
Abstract
BACKGROUND Humans have faced 3 major influenza pandemics in the 20th century. In recent years, it has become evident that domestic poultry play an important role in the generation of novel influenza strains with the capacity to cross the species barrier and infect and kill humans at an alarming rate. There is particular concern that avian influenza viruses of the H5N1 subtype could cause a pandemic. METHODS A better understanding of the genetic factors that lead to interspecies transmission is essential to prevent the emergence of influenza pandemics. In addition, the stockpiling of antiviral drugs and development of vaccines against potentially pandemic viruses must be considered under the umbrella of pandemic plans. RESULTS The world is ill-prepared to face an influenza pandemic. Only a handful of countries have developed influenza pandemic plans, and even fewer are developing vaccines or stockpiling antiinfluenza drugs to ameliorate the impact of a potential pandemic. Currently the major undertaking in several at risk nations is to implement effective control measures to stop the spread of the virus at its source, that is, avian species. These measures include the culling of domestic poultry to contain the virus, a practice that could eventually bring these countries to a financial and social breaking point. CONCLUSIONS Avian influenza disease is preventable in humans and birds with the concerted effort of governments and poultry producers, large and small, to improve biosecurity and education programs. Pandemic plans can reduce the impact of the pandemic; however, preventing avian influenza in poultry can avert a pandemic altogether.
Collapse
Affiliation(s)
- Daniel R Perez
- Department of Veterinary Medicine, University of Maryland at College Park and Virginia-Maryland Regional College of Veterinary Medicine, 8075 Greenmead Drive, College Park, MD 20742, USA.
| | | | | |
Collapse
|