1
|
Lee CH, Salio M, Napolitani G, Ogg G, Simmons A, Koohy H. Predicting Cross-Reactivity and Antigen Specificity of T Cell Receptors. Front Immunol 2020; 11:565096. [PMID: 33193332 PMCID: PMC7642207 DOI: 10.3389/fimmu.2020.565096] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Adaptive immune recognition is mediated by specific interactions between heterodimeric T cell receptors (TCRs) and their cognate peptide-MHC (pMHC) ligands, and the methods to accurately predict TCR:pMHC interaction would have profound clinical, therapeutic and pharmaceutical applications. Herein, we review recent developments in predicting cross-reactivity and antigen specificity of TCR recognition. We discuss current experimental and computational approaches to investigate cross-reactivity and antigen-specificity of TCRs and highlight how integrating kinetic, biophysical and structural features may offer valuable insights in modeling immunogenicity. We further underscore the close inter-relationship of these two interconnected notions and the need to investigate each in the light of the other for a better understanding of T cell responsiveness for the effective clinical applications.
Collapse
Affiliation(s)
- Chloe H. Lee
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Giorgio Napolitani
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Graham Ogg
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, United Kingdom
| | - Hashem Koohy
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Akram A, Lin A, Gracey E, Streutker CJ, Inman RD. HLA-B27, but not HLA-B7, immunodominance to influenza is ERAP dependent. THE JOURNAL OF IMMUNOLOGY 2014; 192:5520-8. [PMID: 24835397 DOI: 10.4049/jimmunol.1400343] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum-associated aminopeptidase-1 (ERAP1) plays a critical role in the processing of peptides prior to binding to MHC class I molecules. In this article, we show for the first time, to our knowledge, that the HLA-B27 immunodominant influenza nucleoprotein (NP) 383-391 epitope is made as an N-terminally extended 14-mer before it is trimmed by ERAP. In the absence of ERAP, there is a significant reduction in the CTL response to the B27/NP383-391 epitope in influenza A (flu)-infected B27/ERAP(-/-) mice. With the use of tetramer staining, the number of naive CD8(+) T cells expressing TCR Vβ8.1 in B27/ERAP(-/-) transgenic mice is significantly lower than that seen in B27/ERAP(+/+) mice. HLA-B27 surface expression in naive and flu-infected B27/ERAP(-/-) mice is also lower than the expression seen for the same allele in naive and flu-infected B27/ERAP(+/+) mice. In contrast, surface expression of HLA-B7 was unaffected by the absence of ERAP in B7/ERAP(-/-) transgenic mice. The B7-restricted NP418-426 CTL response in flu-infected B7/ERAP(-/-) and B7/ERAP(+/+) mice was also similar. These results provide, to our knowledge, the first in vivo demonstration of ERAP functionally influencing host immune response in an HLA allele-specific manner. This principle has relevance to diseases such as ankylosing spondylitis, in which HLA-B27 and ERAP jointly contribute to disease predisposition.
Collapse
Affiliation(s)
- Ali Akram
- Division of Genetics & Development, Toronto Western Research Institute, Toronto, Ontario, Canada M5T-2S8; Institute of Medical Sciences, University of Toronto Faculty of Medicine, Toronto, Ontario, Canada M5S 1A8; Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8; and
| | - Aifeng Lin
- Division of Genetics & Development, Toronto Western Research Institute, Toronto, Ontario, Canada M5T-2S8
| | - Eric Gracey
- Division of Genetics & Development, Toronto Western Research Institute, Toronto, Ontario, Canada M5T-2S8; Institute of Medical Sciences, University of Toronto Faculty of Medicine, Toronto, Ontario, Canada M5S 1A8; Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8; and
| | - Catherine J Streutker
- University of Toronto, Department of Laboratory Medicine and Pathobiology. Division of Pathology, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - Robert D Inman
- Division of Genetics & Development, Toronto Western Research Institute, Toronto, Ontario, Canada M5T-2S8; Institute of Medical Sciences, University of Toronto Faculty of Medicine, Toronto, Ontario, Canada M5S 1A8; Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8; and
| |
Collapse
|
3
|
Akram A, Inman RD. Co-expression of HLA-B7 and HLA-B27 alleles is associated with B7-restricted immunodominant responses following influenza infection. Eur J Immunol 2013; 43:3254-67. [DOI: 10.1002/eji.201343597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/11/2013] [Accepted: 09/23/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Ali Akram
- Division of Genetics and Development; Toronto Western Research Institute; Toronto Ontario Canada
- Department of Immunology; Faculty of Medicine; Institute of Medical Sciences; University of Toronto; Toronto Ontario Canada
| | - Robert D. Inman
- Department of Medicine; Faculty of Medicine; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
4
|
Mothé BR, Southwood S, Sidney J, English AM, Wriston A, Hoof I, Shabanowitz J, Hunt DF, Sette A. Peptide-binding motifs associated with MHC molecules common in Chinese rhesus macaques are analogous to those of human HLA supertypes and include HLA-B27-like alleles. Immunogenetics 2013; 65:371-86. [PMID: 23417323 PMCID: PMC3633659 DOI: 10.1007/s00251-013-0686-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 01/23/2013] [Indexed: 02/07/2023]
Abstract
Chinese rhesus macaques are of particular interest in simian immunodeficiency virus/human immunodeficiency virus (SIV/HIV) research as these animals have prolonged kinetics of disease progression to acquired immunodeficiency syndrome (AIDS), compared to their Indian counterparts, suggesting that they may be a better model for HIV. Nevertheless, the specific mechanism(s) accounting for these kinetics remains unclear. The study of major histocompatibility complex (MHC) molecules, including their MHC/peptide-binding motifs, provides valuable information for measuring cellular immune responses and deciphering outcomes of infection and vaccine efficacy. In this study, we have provided detailed characterization of six prevalent Chinese rhesus macaque MHC class I alleles, yielding a combined phenotypic frequency of 29 %. The peptide-binding specificity of two of these alleles, Mamu-A2*01:02 and Mamu-B*010:01, as well as the previously characterized allele Mamu-B*003:01 (and Indian rhesus Mamu-B*003:01), was found to be analogous to that of alleles in the HLA-B27 supertype family. Specific alleles in the HLA-B27 supertype family, including HLA-B*27:05, have been associated with long-term nonprogression to AIDS in humans. All six alleles characterized in the present study were found to have specificities analogous to HLA supertype alleles. These data contribute to the concept that Chinese rhesus macaque MHC immunogenetics is more similar to HLA than their Indian rhesus macaque counterparts and thereby warrants further studies to decipher the role of these alleles in the context of SIV infection.
Collapse
Affiliation(s)
- Bianca R Mothé
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Petrova G, Ferrante A, Gorski J. Cross-reactivity of T cells and its role in the immune system. Crit Rev Immunol 2012; 32:349-72. [PMID: 23237510 DOI: 10.1615/critrevimmunol.v32.i4.50] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
T-cell receptors recognize peptides presented by the major histocompatibility complex (MHC) on the surface of antigen-presenting cells (APC). The ability of the T-cell receptor (TCR) to recognize more than one peptide-MHC structure defines cross-reactivity. Cross-reactivity is a documented phenomenon of the immune system whose importance is still under investigation. There are a number of rational arguments for cross-reactivity. These include the discrepancy between the theoretical high number of pathogen-derived peptides and the lower diversity of the T-cell repertoire, the need for recognition of escape variants, and the intrinsic low affinity of this receptor-ligand pair. However, quantifying the phenomenon has been difficult, and its immunological importance remains unknown. In this review, we examined the cases for and against an important role for cross reactivity. We argue that it may be an essential feature of the immune system from the point of view of biological robustness.
Collapse
Affiliation(s)
- Galina Petrova
- The Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
6
|
West Nile virus T-cell ligand sequences shared with other flaviviruses: a multitude of variant sequences as potential altered peptide ligands. J Virol 2012; 86:7616-24. [PMID: 22573867 DOI: 10.1128/jvi.00166-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Phylogenetic relatedness and cocirculation of several major human pathogen flaviviruses are recognized as a possible cause of deleterious immune responses to mixed infection or immunization and call for a greater understanding of the inter-Flavivirus protein homologies. This study focused on the identification of human leukocyte antigen (HLA)-restricted West Nile virus (WNV) T-cell ligands and characterization of their distribution in reported sequence data of WNV and other flaviviruses. H-2-deficient mice transgenic for either A2, A24, B7, DR2, DR3, or DR4 HLA alleles were immunized with overlapping peptides of the WNV proteome, and peptide-specific T-cell activation was measured by gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assays. Approximately 30% (137) of the WNV proteome peptides were identified as HLA-restricted T-cell ligands. The majority of these ligands were conserved in ∼≥88% of analyzed WNV sequences. Notably, only 51 were WNV specific, and the remaining 86, chiefly of E, NS3, and NS5, shared an identity of nine or more consecutive amino acids with sequences of 64 other flaviviruses, including several major human pathogens. Many of the shared ligands had an incidence of >50% in the analyzed sequences of one or more of six major flaviviruses. The multitude of WNV sequences shared with other flaviviruses as interspecies variants highlights the possible hazard of defective T-cell activation by altered peptide ligands in the event of dual exposure to WNV and other flaviviruses, by either infection or immunization. The data suggest the possible preferred use of sequences that are pathogen specific with minimum interspecies sequence homology for the design of Flavivirus vaccines.
Collapse
|
7
|
Immunodominance: a pivotal principle in host response to viral infections. Clin Immunol 2012; 143:99-115. [PMID: 22391152 DOI: 10.1016/j.clim.2012.01.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/25/2012] [Accepted: 01/28/2012] [Indexed: 11/24/2022]
Abstract
We encounter pathogens on a daily basis and our immune system has evolved to mount an immune response following an infection. An interesting phenomenon that has evolved in response to clearing bacterial and viral infections is called immunodominance. Immunodominance refers to the phenomenon that, despite co-expression of multiple major histocompatibility complex class I alleles by host cells and the potential generation of hundreds of distinct antigenic peptides for recognition following an infection, a large portion of the anti-viral cytotoxic T lymphocyte population targets only some peptide/MHC class I complexes. Here we review the main factors contributing to immunodominance in relation to influenza A and HIV infection. Of special interest are the factors contributing to immunodominance in humans and rodents following influenza A infection. By critically reviewing these findings, we hope to improve understanding of the challenges facing the discovery of new factors enabling better anti-viral vaccine strategies in the future.
Collapse
|
8
|
Tan ACL, La Gruta NL, Zeng W, Jackson DC. Precursor frequency and competition dictate the HLA-A2-restricted CD8+ T cell responses to influenza A infection and vaccination in HLA-A2.1 transgenic mice. THE JOURNAL OF IMMUNOLOGY 2011; 187:1895-902. [PMID: 21765016 DOI: 10.4049/jimmunol.1100664] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The human HLA-A2-restricted CD8(+) T cell response to influenza A virus (IAV) is largely directed against the matrix protein-derived M1(58-66) epitope and represents an archetypal example of CD8(+) T cell immunodominance. In this study, we examined the CD8(+) T cell hierarchy to M1(58-66) and two subdominant IAV-specific epitopes: NS1(122-130) and PA(46-55) in HLA-A2(+) human subjects and HLA-A2.1 transgenic (HHD) mice. Using epitope-based lipopeptides, we show that the CD8(+) T cell hierarchy induced by IAV infection could also be induced by lipopeptide vaccination in a context outside of viral infection when the Ag load is equalized. In the HHD HLA-A2.1 mouse model, we show that the naive T cell precursor frequencies, and competition at the Ag presentation level, can predict the IAV-specific CD8(+) T cell hierarchy. Immunization of mice with subdominant epitopes alone was unable to overcome the dominance of the M1(58-66)-specific response in the face of IAV challenge; however, a multiepitope vaccination strategy was most effective at generating a broad and multispecific response to infection.
Collapse
Affiliation(s)
- Amabel C L Tan
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | |
Collapse
|
9
|
Petrova GV, Naumova EN, Gorski J. The polyclonal CD8 T cell response to influenza M158-66 generates a fully connected network of cross-reactive clonotypes to structurally related peptides: a paradigm for memory repertoire coverage of novel epitopes or escape mutants. THE JOURNAL OF IMMUNOLOGY 2011; 186:6390-7. [PMID: 21518969 DOI: 10.4049/jimmunol.1004031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cross-reactivity of T cells is defined as recognition of two or more peptide-MHC complexes by the same T cell. Although examples of cross-reactivity have been reported, a detailed examination of cross-reactivity has not been performed. In this study, we took advantage of the high degree of polyclonality in the BV19 T cell repertoire responding to influenza M1(58-66) in HLA-A2 individuals to obtain a measure of simple cross-reactivity. We used substitutions that incrementally change the structure of the M1(58-66) peptide to measure how the HLA-A2-restricted response adapts to these changes. In three HLA-A2 adult subjects, we identified the BV19 clonotypes in the recall response to the influenza epitope M1(58-66) and 12 M1 peptides substituted at TCR contact position 63 or 65. The fraction of cross-reactive clonotypes in the M1(58-66) repertoire varied from 45-58% in the three donors. The extent of cross-reactivity, which is the additional number of peptides recognized by a single clonotype, is as high as six. We summarized the data using graph theory, with the cross-reactive clonotypes connecting the different HLA-A2 peptides recognized. The cross-reactive clonotypes form a well-connected network that could provide protection from virus-escape variants. We predict that any new pathogen with an epitope whose shape corresponds to that of the peptides that we studied would find a pre-existing repertoire ready to respond to it. We propose that in adult memory repertoires, previously encountered epitopes may have generated similar cross-reactive repertoires.
Collapse
Affiliation(s)
- Galina V Petrova
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
10
|
Preclinical Qualification of a New Multi-antigen Candidate Vaccine for Metastatic Melanoma. J Immunother 2010; 33:743-58. [DOI: 10.1097/cji.0b013e3181eccc87] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Bodewes R, Rimmelzwaan GF, Osterhaus ADME. Animal models for the preclinical evaluation of candidate influenza vaccines. Expert Rev Vaccines 2010; 9:59-72. [PMID: 20021306 DOI: 10.1586/erv.09.148] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
At present, new influenza A (H1N1)2009 viruses of swine origin are responsible for the first influenza pandemic of the 21st Century. In addition, highly pathogenic avian influenza A/H5N1 viruses continue to cause outbreaks in poultry and, after zoonotic transmission, cause an ever-increasing number of human cases, of which 59% have a fatal clinical outcome. It is also feared that these viruses adapt to replication in humans and become transmissible from human to human. The development of effective vaccines against epidemic and (potentially) pandemic viruses is therefore considered a priority. In this review, we discuss animal models that are used for the preclinical evaluation of novel candidate influenza vaccines. In most cases, a tier of multiple animal models is used before the evaluation of vaccine candidates in clinical trials is considered. Commonly, vaccines are tested for safety and efficacy in mice, ferrets and/or macaques. The use of each of these species has its advantages and limitations, which are addressed here.
Collapse
Affiliation(s)
- Rogier Bodewes
- Department of Virology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
12
|
Goy K, Von Bibra S, Lewis J, Laurie K, Barr I, Anderson D, Hellard M, Ffrench R. Heterosubtypic T-cell responses against avian influenza H5 haemagglutinin are frequently detected in individuals vaccinated against or previously infected with human subtypes of influenza. Influenza Other Respir Viruses 2009; 2:115-25. [PMID: 19453462 PMCID: PMC4634225 DOI: 10.1111/j.1750-2659.2008.00046.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Cellula r immune responses play a critical role in providing help for the production of neutralizing antibodies to influenza virus, as well as producing anti‐viral cytokines and killing infected cells in the lung. Heterosubtypic T‐cell responses between different subtypes of influenza have been shown to exist in humans and to provide protection against morbidity and mortality associated with H5N1 infection in animal challenge models. Therefore, existing T‐cell responses induced by natural infection or vaccination in humans may provide some degree of protection from infection with H5N1 strains, or may attenuate the severity of disease. Objectives To investigate heterosubtypic T‐cell responses to avian influenza in humans. Methods T‐cell responses to an overlapping set of H5 HA peptides and inactivated viruses (H1N1, H3N2 and H5N1) were assessed using IFN‐γ and IL‐2 enzyme‐linked immunospot (ELISpot) assays in a cohort of adults either vaccinated against seasonal influenza in the last 3 years (n = 20) or previously infected (n = 40). Results T‐cell responses to all three subtypes of virus were found in both infected and vaccinated individuals by IFN‐γ and IL‐2 ELISpot assays. Approximately half of the participants from each group had a positive T‐cell response to the H5 HA peptides in the IFN‐γ or IL‐2 ELISpot assay. Conclusions Heterosubtypic T‐cell responses to H5 HA occur quite frequently in vaccinated and infected individuals. Further investigation of these responses and what role they may play upon challenge or vaccination against H5N1 may assist in vaccine design for avian influenza.
Collapse
Affiliation(s)
- Kylie Goy
- Burnet Institute, Prahran, Vic, Australia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
A modified epitope identified for generation and monitoring of PSA-specific T cells in patients on early phases of PSA-based immunotherapeutic protocols. Vaccine 2009; 27:1557-65. [PMID: 19171173 DOI: 10.1016/j.vaccine.2009.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 12/16/2008] [Accepted: 01/07/2009] [Indexed: 11/20/2022]
Abstract
Efficacy of vaccination in cancer patients on immunotherapeutic protocols can be difficult to evaluate. The aim of this study was therefore to identify a single natural or modified epitope in prostate-specific antigen (PSA) with the ability to generate high levels of PSA-specific T cells to facilitate monitoring in patients after vaccination against prostate cancer. To the best of our knowledge, this study describes for the first time the peptide specificity of T cells stimulated by endogenously processed PSA antigen. The peptide specificity of HLA-A*0201-restricted CD8(+) T cells against human and rhesus PSA was investigated both in vivo after DNA vaccination in HLA-A*0201-transgenic mice and in vitro after repetitive stimulation of human T cells with DNA-transfected human dendritic cells (DCs). One of seven native PSA peptides, psa53-61, was able to activate high levels of PSA-specific CD8(+) T cells in HLA-A*0201-transgenic mice after PSA DNA vaccination. Psa53-61 was also the only peptide that induced human T cells to produce IFNgamma after stimulation with PSA transfected DCs, however not in all donors. Therefore, plasmids encoding modified epitopes in predicted HLA-A*0201 sequences were constructed. One of these modified PSA plasmids consistently induced IFNgamma producing CD8(+) T cells to the corresponding modified peptide as well as to the corresponding native peptide, in all murine and human T cell cultures. This study demonstrates a novel concept of introducing a modified epitope within a self-tumor antigen, with the purpose of eliciting a reliable T cell response from the non-tolerized immune repertoire, to facilitate monitoring of vaccine efficacy in cancer patients on immunotherapeutic protocols. The purpose of such a modified epitope is thus not to induce therapeutically relevant T cells but rather to, in case of weak or divergent T cell responses to self antigens/peptides, help answer questions about efficacy of vaccine delivery and about the possibility to induce immune responses in the selected and often immunosuppressed cancer patients.
Collapse
|