1
|
Vacas-Córdoba E, Climent N, De La Mata FJ, Plana M, Gómez R, Pion M, García F, Muñoz-Fernández MÁ. Dendrimers as nonviral vectors in dendritic cell-based immunotherapies against human immunodeficiency virus: steps toward their clinical evaluation. Nanomedicine (Lond) 2015; 9:2683-702. [PMID: 25529571 DOI: 10.2217/nnm.14.172] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although the antiretroviral therapy has led to a long-term control of HIV-1, it does not cure the disease. Therefore, several strategies are being explored to develop an effective HIV vaccine, such as the use of dendritic cells (DCs). DC-based immunotherapies bear different limitations, but one of the most critical point is the antigen loading into DCs. Nanotechnology offers new tools to overcome these constraints. Dendrimers have been proposed as carriers for targeted delivery of HIV antigens in DCs. These nanosystems can release the antigens in a controlled manner leading to a more potent specific immune response. This review focuses on the first steps for clinical development of dendrimers to assess their safety and potential use in DC-based immunotherapies against HIV.
Collapse
Affiliation(s)
- Enrique Vacas-Córdoba
- Laboratorio InmunoBiología Molecular, Sección Inmunologia, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria del Gregorio Marañón, C/Dr. Esquerdo 46, 28007, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Abstract
Purpose of review To summarize the role of adjuvants in eliciting desirable antibody responses against HIV-1 with particular emphasis on both historical context and recent developments. Recent findings Increased understanding of the role of pattern recognition receptors such as Toll-like receptors in recruiting and directing the immune system has increased the variety of adjuvant formulations being tested in animal models and humans. Across all vaccine platforms, adjuvant formulations have been shown to enhance desirable immune responses such as higher antibody titers and increased functional activity. Although no vaccine formulation has yet succeeded in eliciting broad neutralizing antibodies against HIV-1, the ability of adjuvants to direct the immune response to immunogens suggests they will be critically important in any successful HIV-1 vaccine. Summary The parallel development of adjuvants along with better HIV-1 immunogens will be needed for a successful AIDS vaccine. Additional comparative testing will be required to determine the optimal adjuvant and immunogen regimen that can elicit antibody responses capable of blocking HIV-1 transmission.
Collapse
|
3
|
PEG as a spacer arm markedly increases the immunogenicity of meningococcal group Y polysaccharide conjugate vaccine. J Control Release 2013; 172:382-389. [DOI: 10.1016/j.jconrel.2013.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/27/2013] [Accepted: 03/02/2013] [Indexed: 11/21/2022]
|
4
|
Wu D, Ji S, Hu T. Development of pneumococcal polysaccharide conjugate vaccine with long spacer arm. Vaccine 2013; 31:5623-6. [PMID: 24120485 DOI: 10.1016/j.vaccine.2013.09.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 09/19/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022]
Abstract
Streptococcus pneumoniae is a serious Gram-positive pathogen responsible for several life-threatening pneumococcal diseases. Pneumococcal capsular polysaccharide (CPS) is a key virulence determinant of S. pneumoniae and its immunogenicity can be improved by conjugation with a carrier protein. Reductive amination, the most widely used approach for pneumococcal CPS conjugate vaccine (PCV), suffers from low conjugation efficiency and the problem of steric hindrance. Here, copper-catalyzed azide-alkyne cycloaddition was used for development of PCV with long spacer arm (L-PCV). Tetanus toxoid (TT) was used as the carrier protein. The long spacer arm in L-PCV can minimize the problem of steric hindrance between CPS and TT, thereby improving the CPS-specific antibody titers in the mice model. L-PCV can also induce high avidity functional antibody and elicit immunological memory in response to the native CPS.
Collapse
Affiliation(s)
- Dinglong Wu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Bei-Er-Tiao Street, Haidian District, Beijing 100190, China; College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | | | | |
Collapse
|
5
|
A review of nanotechnological approaches for the prophylaxis of HIV/AIDS. Biomaterials 2013; 34:6202-28. [PMID: 23726227 DOI: 10.1016/j.biomaterials.2013.05.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/06/2013] [Indexed: 01/06/2023]
Abstract
Successful treatment and control of HIV/AIDS is one of the biggest challenges of 21st century. More than 33 million individuals are infected with HIV worldwide and more than 2 million new cases of HIV infection have been reported. The situation demands development of effective prevention strategies to control the pandemic of AIDS. Due to lack of availability of an effective HIV vaccine, antiretroviral drugs and nucleic acid therapeutics like siRNA have been explored for HIV prophylaxis. Clinical trials shave shown that antiretroviral drugs, tenofovir and emtricitabine can offer some degree of HIV prevention. However, complete prevention of HIV infection has not been achieved yet. Nanotechnology has brought a paradigm shift in the diagnosis, treatment and prevention of many diseases. The current review discusses potential of various nanocarriers such as dendrimers, polymeric nanoparticles, liposomes, lipid nanocarriers, drug nanocrystals, inorganic nanocarriers and nanofibers in improving efficacy of various modalities available for HIV prophylaxis.
Collapse
|
6
|
Nanotechnological Approaches for Genetic Immunization. DNA AND RNA NANOBIOTECHNOLOGIES IN MEDICINE: DIAGNOSIS AND TREATMENT OF DISEASES 2013. [PMCID: PMC7121080 DOI: 10.1007/978-3-642-36853-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Genetic immunization is one of the important findings that provide multifaceted immunological response against infectious diseases. With the advent of r-DNA technology, it is possible to construct vector with immunologically active genes against specific pathogens. Nevertheless, site-specific delivery of constructed genetic material is an important contributory factor for eliciting specific cellular and humoral immune response. Nanotechnology has demonstrated immense potential for the site-specific delivery of biomolecules. Several polymeric and lipidic nanocarriers have been utilized for the delivery of genetic materials. These systems seem to have better compatibility, low toxicity, economical and capable to delivering biomolecules to intracellular site for the better expression of desired antigens. Further, surface engineering of nanocarriers and targeting approaches have an ability to offer better presentation of antigenic material to immunological cells. This chapter gives an overview of existing and emerging nanotechnological approaches for the delivery of genetic materials.
Collapse
|
7
|
Designing of novel antigenic peptide cocktail for the detection of antibodies to HIV-1/2 by ELISA. J Immunol Methods 2013; 387:157-66. [DOI: 10.1016/j.jim.2012.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/12/2012] [Accepted: 10/16/2012] [Indexed: 11/23/2022]
|
8
|
Pisal DS, Kosloski MP, Middaugh CR, Bankert RB, Balu-Iyer SV. Native-like aggregates of factor VIII are immunogenic in von Willebrand factor deficient and hemophilia a mice. J Pharm Sci 2012; 101:2055-65. [PMID: 22388918 DOI: 10.1002/jps.23091] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 01/13/2023]
Abstract
The administration of recombinant factor VIII (FVIII) is the first-line therapy for hemophilia A (HA), but 25%-35% of patients develop an inhibitory antibody response. In general, the presence of aggregates contributes to unwanted immunogenic responses against therapeutic proteins. FVIII has been shown to form both native-like and nonnative aggregates. Previously, we showed that nonnative aggregates of FVIII are less immunogenic than the native protein. Here, we investigated the effect of native-like aggregates of FVIII on immunogenicity in HA and von Willebrand factor knockout (vWF(-/-)) mice. Mice immunized with native-like aggregates showed significantly higher inhibitory antibody titers than animals that received native FVIII. Following restimulation in vitro with native FVIII, the activation of CD4+ T-cells isolated from mice immunized with native-like aggregates is approximately fourfold higher than mice immunized with the native protein. Furthermore, this is associated with increases in the secretion of proinflammatory cytokines IL-6 and IL-17 in the native-like aggregate treatment group. The results indicate that the native-like aggregates of FVIII are more immunogenic than native FVIII for both the B-cell and the T-cell responses.
Collapse
Affiliation(s)
- Dipak S Pisal
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Amherst, New York 14260, USA
| | | | | | | | | |
Collapse
|
9
|
Tiwari S, Verma SK, Agrawal GP, Vyas SP. Viral protein complexed liposomes for intranasal delivery of hepatitis B surface antigen. Int J Pharm 2011; 413:211-9. [DOI: 10.1016/j.ijpharm.2011.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/09/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
|
10
|
Kim PS, Read SW. Nanotechnology and HIV: potential applications for treatment and prevention. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 2:693-702. [DOI: 10.1002/wnan.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peter S. Kim
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah W. Read
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Zhong Z, Wei X, Qi B, Xiao W, Yang L, Wei Y, Chen L. A novel liposomal vaccine improves humoral immunity and prevents tumor pulmonary metastasis in mice. Int J Pharm 2010; 399:156-62. [PMID: 20692327 DOI: 10.1016/j.ijpharm.2010.07.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/13/2010] [Accepted: 07/30/2010] [Indexed: 02/05/2023]
Abstract
Basic fibroblast growth factor (bFGF) is an important stimulator of angiogenesis involving in neovascularization progression. The aim of this study is to evaluate whether a liposomal vaccine (MLB) based on xenogeneic human bFGF plus monophosphoryl lipid A (MPLA) could effectively induce cross-reaction immunity in mice and increase antitumor activity. Sera of mice were analyzed and IgG antibody titer in MLB group was obviously higher than other groups including the mice immunized with liposomal bFGF vaccine, bFGF plus Freund's adjuvant, empty liposome and PBS. Furthermore, tumor metastasis was significantly inhibited in MLB group, compared with L and PBS group. The IFN-γ production of cultured splenocytes in vitro was evidently up-regulated meanwhile IL-4 production sustained in a low level, revealing that this vaccine stimulated Th1 immunity response preferentially. Taken together, these findings suggested that this novel bFGF vaccine could effectively induce humoral immunity through cross-reaction, mediate Th1 immune response preferentially and enhance antitumor activity in vivo.
Collapse
Affiliation(s)
- Zhenghua Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Mamo T, Moseman EA, Kolishetti N, Salvador-Morales C, Shi J, Kuritzkes DR, Langer R, von Andrian U, Farokhzad OC. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine (Lond) 2010; 5:269-85. [PMID: 20148638 DOI: 10.2217/nnm.10.1] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Currently, there is no cure and no preventive vaccine for HIV/AIDS. Combination antiretroviral therapy has dramatically improved treatment, but it has to be taken for a lifetime, has major side effects and is ineffective in patients in whom the virus develops resistance. Nanotechnology is an emerging multidisciplinary field that is revolutionizing medicine in the 21st century. It has a vast potential to radically advance the treatment and prevention of HIV/AIDS. In this review, we discuss the challenges with the current treatment of the disease and shed light on the remarkable potential of nanotechnology to provide more effective treatment and prevention for HIV/AIDS by advancing antiretroviral therapy, gene therapy, immunotherapy, vaccinology and microbicides.
Collapse
Affiliation(s)
- Tewodros Mamo
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mertins O, Schneider PH, Pohlmann AR, da Silveira NP. Interaction between phospholipids bilayer and chitosan in liposomes investigated by 31P NMR spectroscopy. Colloids Surf B Biointerfaces 2010; 75:294-9. [DOI: 10.1016/j.colsurfb.2009.08.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/22/2009] [Accepted: 08/28/2009] [Indexed: 10/20/2022]
|
14
|
Thevenot J, Troutier AL, David L, Delair T, Ladavière C. Steric stabilization of lipid/polymer particle assemblies by poly(ethylene glycol)-lipids. Biomacromolecules 2007; 8:3651-60. [PMID: 17958441 DOI: 10.1021/bm700753q] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biocompatible and biodegradable assemblies consisting of spherical particles coated with lipid layers were prepared from sub-micrometer poly(lactic acid) particles and lipid mixtures composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-3-trimethylammonium-propane. These original colloidal assemblies, named LipoParticles, are of a great interest in biotechnology and biomedicine. Nevertheless, a major limitation of their use is their poor colloidal stability toward ionic strength. Indeed, electrostatic repulsions failed to stabilize LipoParticles in aqueous solutions containing more than 10 mM NaCl. By analogy with the extensive use of poly(ethylene glycol) (PEG)-lipid conjugates to improve the circulation lifetime of liposomes in vivo, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] with various PEG chain lengths was added to the lipid formulation. Here, we show that LipoParticle stabilization was enhanced at least up to 150 mM NaCl (for more than 1 year at 4 degrees C). To determine the structure of PEG-modified LipoParticles as a function of the PEG chain length and the PEG-lipid fraction in the lipid formulation, a thorough physicochemical characterization was carried out by means of many techniques including quasi-elastic light scattering, zeta potential measurements, transmission electron microscopy, 1H NMR spectroscopy, and small-angle X-ray scattering. Finally, an attempt was made to link the resulting structural data to the colloidal behavior of PEG-modified LipoParticles.
Collapse
Affiliation(s)
- Julie Thevenot
- Unite Mixte de Reecherche 2714, Centre National de la Recherche Scientifique/bioMérieux, Systèmes Macromoléculaires et Physiopathologie Humaine, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
15
|
Singh SK, Shah NK, Bisen PS. A synthetic gag p24 epitope chemically coupled to BSA through a decaalanine peptide enhances HIV type 1 serodiagnostic ability by several folds. AIDS Res Hum Retroviruses 2007; 23:153-60. [PMID: 17263645 DOI: 10.1089/aid.2006.0148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
p24 is an immunodominant gag core protein of HIV-1. The synthetic immunodominant epitope of p24 and the recombinant p24 show poor immunoreactivity and specificity, respectively. Their application is, therefore, severely limited in the serodiagnosis of HIV-1, although it is an important marker for early diagnosis. These limitations have been overcome by conjugating the synthetic p24 to BSA through a decaalanine peptide spacer. The engineered p24 shows about 5-fold more efficient immunoreactivity than the synthetic p24, and, at the same time, shows a several fold reduction in nonspecific cross-reactivity as compared to recombinant p24. Our strategy to conjugate the p24 peptide epitope to BSA worked well as a consistent and reliable immunodiagnostic marker. This strategy may also prove useful for the diagnosis of other diseases.
Collapse
Affiliation(s)
- Sanjay K Singh
- Department of Biotechnology, JC Bose Institute of Life Sciences, Bundelkhand University, Jhansi 284128, UP, India
| | | | | |
Collapse
|