1
|
Song Y, Mehl F, Zeichner SL. Vaccine Strategies to Elicit Mucosal Immunity. Vaccines (Basel) 2024; 12:191. [PMID: 38400174 PMCID: PMC10892965 DOI: 10.3390/vaccines12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are essential tools to prevent infection and control transmission of infectious diseases that threaten public health. Most infectious agents enter their hosts across mucosal surfaces, which make up key first lines of host defense against pathogens. Mucosal immune responses play critical roles in host immune defense to provide durable and better recall responses. Substantial attention has been focused on developing effective mucosal vaccines to elicit robust localized and systemic immune responses by administration via mucosal routes. Mucosal vaccines that elicit effective immune responses yield protection superior to parenterally delivered vaccines. Beyond their valuable immunogenicity, mucosal vaccines can be less expensive and easier to administer without a need for injection materials and more highly trained personnel. However, developing effective mucosal vaccines faces many challenges, and much effort has been directed at their development. In this article, we review the history of mucosal vaccine development and present an overview of mucosal compartment biology and the roles that mucosal immunity plays in defending against infection, knowledge that has helped inform mucosal vaccine development. We explore new progress in mucosal vaccine design and optimization and novel approaches created to improve the efficacy and safety of mucosal vaccines.
Collapse
Affiliation(s)
- Yufeng Song
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Frances Mehl
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Steven L. Zeichner
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
2
|
Jia R, Yan L, Guo J. Enhancing the immunogenicity of a DNA vaccine against Streptococcus mutans by attenuating the inhibition of endogenous miR-9. Vaccine 2020; 38:1424-1430. [DOI: 10.1016/j.vaccine.2019.11.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/10/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
|
3
|
The Combinations Chitosan-Pam 3CSK 4 and Chitosan-Monophosphoryl Lipid A: Promising Immune-Enhancing Adjuvants for Anticaries Vaccine PAc. Infect Immun 2019; 87:IAI.00651-19. [PMID: 31527122 DOI: 10.1128/iai.00651-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/02/2019] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that recombinant protein PAc could be administered as an anticaries vaccine. However, the relatively weak immunogenicity of PAc limits its application. In the present study, we investigated the effect of two adjuvant combinations of chitosan plus Pam3CSK4 (chitosan-Pam3CSK4) and of chitosan plus monophosphoryl lipid A (chitosan-MPL) in the immune responses to the PAc protein in vivo and in vitro PAc-chitosan-Pam3CSK4 or PAc-chitosan-MPL promoted significantly higher PAc-specific antibody titers in serum and saliva, inhibited Streptococcus mutans colonization onto the tooth surfaces, and endowed better protection effect with significantly less caries activities than PAc alone. Chitosan-Pam3CSK4 and chitosan-MPL showed no statistically significant differences. In conclusion, our study demonstrated that the chitosan-Pam3CSK4 and chitosan-MPL combinations are promising for anticaries vaccine development.
Collapse
|
4
|
Patel M. Dental caries vaccine: are we there yet? Lett Appl Microbiol 2019; 70:2-12. [PMID: 31518435 DOI: 10.1111/lam.13218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022]
Abstract
Dental caries, caused by Streptococcus mutans, is a common infection. Caries vaccine has been under investigation for the last 40 years. Many in vitro and in vivo studies and some human clinical trials have determined many pertinent aspects regarding vaccine development. The virulence determinants of Strep. mutans, such as Ag I/II, responsible for adherence to surfaces, glucosyltransferase, responsible for the production of glucan, and the glucan-binding protein, responsible for the attachment of glucan to surfaces, have been known to elicit an antigen-specific immune response. It is also known that more than one antigen or a functional part of the genome responsible for these virulence determinants provide a better host response compared with the monogenic vaccine or complete genome of a specific antigen. To enhance the host response, the use of adjuvants has been studied and the routes of antigen administration have been investigated. In recent years, some promising vaccines such as pGJA-P/VAX, LT derivative/Pi39-512 , KFD2-rPAc and SBR/GBR-CMV-nirB have been developed and tested in animals. New virulence targets need to be explored. Multicentre collaborative studies and human clinical trials are required and some interest from funders and public health experts should be generated to overcome this hurdle. SIGNIFICANCE AND IMPACT OF THE STUDY: Dental caries is an irreversible, multifactorial opportunistic infection. The treatment is costly, making it a public health problem. Despite many years of promising laboratory research, animal studies and clinical trials, there is no commercially available vaccine today. The research objectives have become more refined from lessons learnt over the years. Multigenic DNA/recombinant vaccines, using the best proved adjuvants with a delivery system for the nasal or sublingual route, should be developed and researched with multicentre collaborative efforts. In addition, new vaccine targets can be identified. To overcome the economic hurdle, funders and public health interest should be stimulated.
Collapse
Affiliation(s)
- M Patel
- Department of Oral Biological Sciences, School of Oral Health Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
5
|
Synthetic antigen-binding fragments (Fabs) against S. mutans and S. sobrinus inhibit caries formation. Sci Rep 2018; 8:10173. [PMID: 29976956 PMCID: PMC6033933 DOI: 10.1038/s41598-018-28240-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/13/2018] [Indexed: 01/29/2023] Open
Abstract
Streptococcus mutans and Streptococcus sobrinus are the main causative agents of human dental caries. Current strategies for treating caries are costly and do not completely eradicate them completely. Passive immunization using nonhuman antibodies against Streptococcal surface antigens has shown success in human trials, however they often invoke immune reactions. We used phage display to generate human antigen-binding fragments (Fabs) against S. mutans and S. sobrinus. These Fabs were readily expressed in E. coli and bound to the surface S. mutans and S. sobrinus. Fabs inhibited sucrose-induced S. mutans and S. sobrinus biofilm formation in vitro and a combination of S. mutans and S. sobrinus Fabs prevented dental caries formation in a rat caries model. These results demonstrated that S. mutans and S. sobrinus Fabs could be used in passive immunization strategies to prevent dental caries. In the future, this strategy may be applied towards a caries therapy, whereby Fabs are topically applied to the tooth surface.
Collapse
|
6
|
Cao XX, Li YH, Ye QL, Hu X, Wang TF, Fan MW. Self-assembling anticaries mucosal vaccine containing ferritin cage nanostructure and glucan-binding region of S. mutans glucosyltransferase effectively prevents caries formation in rodents. Hum Vaccin Immunother 2018; 13:2332-2340. [PMID: 28759297 DOI: 10.1080/21645515.2017.1349046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Anticaries protein vaccines that induce a mucosal immune response are not effective. Therefore, development of effective and convenient anticaries vaccines is a priority of dental research. Here we generated self-assembling nanoparticles by linking the glucan-binding region of Streptococcus mutans glucosyltransferase (GLU) to the N-terminal domain of ferritin to determine whether these novel nanoparticles enhanced the immunogenicity of an anticaries protein vaccine against GLU in rodents. We constructed the expression plasmid pET28a-GLU-FTH and purified the proteins from bacteria using size-exclusion chromatography. BALB/c mice were used to evaluate the ability of GLU-ferritin (GLU-FTH) nanoparticles to induce GLU-specific mucosal and systemic responses. The protective efficiency of GLU-FTH nanoparticles was compared with that of GLU alone or a mixture of GLU and poly(I:C) after administering an intranasal infusion to Wistar rats. The phagocytosis and maturation of dendritic cells (DCs) exposed in vitro to the nanoparticles were assessed using flow cytometry. The GLU-FTH nanoparticle vaccine elicited significantly higher levels of GLU-specific antibodies compared with GLU or a mixture of GLU and poly(I:C). Immunization with GLU-FTH achieved lower caries scores compared with those of the other vaccines. Administration of GLU-FTH nanoparticles enhanced phagocytosis by DCs and their maturation. Thus, self-assembling GLU-FTH is a highly effective anticaries mucosal vaccine that enhanced antibody production and inhibited S. mutans infection in rodents.
Collapse
Affiliation(s)
- Xi-Xi Cao
- a The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM) , School & Hospital of Stomatology, Wuhan University , Wuhan , China
| | - Yu-Hong Li
- a The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM) , School & Hospital of Stomatology, Wuhan University , Wuhan , China.,b Department of Endodontics , School and Hospital of Stomatology, Wuhan University , Wuhan , China
| | - Qian-Lin Ye
- a The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM) , School & Hospital of Stomatology, Wuhan University , Wuhan , China
| | - Xuan Hu
- a The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM) , School & Hospital of Stomatology, Wuhan University , Wuhan , China
| | - Tian-Feng Wang
- c Department of Oral Radiology , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Ming-Wen Fan
- a The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM) , School & Hospital of Stomatology, Wuhan University , Wuhan , China
| |
Collapse
|
7
|
Antitumor immunity of DNA vaccine based on CTLA-4 fused with HER2 against colon carcinoma. EUR J INFLAMM 2018. [DOI: 10.1177/2058739218768144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) negatively regulates the T cell activation and competes with CD28 in binding with B7.1/B7.2 molecules. Fusion of the extracellular region of CTLA-4 and a specific antigen is an effective method for improving the immune efficacy of DNA vaccines. This study aimed to investigate the effects of DNA vaccine of human epidermal growth factor receptor-2 (HER2) fused with CTLA-4 on the development of colon carcinoma in mice and to identify the potential immune mechanisms underlying its effects. We constructed recombinant plasmids corresponding to the control group, individual antigen group, and fusion antigen group. Then, mice were intramuscularly injected with the corresponding plasmids and exposed to electrical pulses. Immunogenicity was evaluated at 2 weeks after the last immunization. Furthermore, to investigate the antitumor immune effects of the recombinant plasmid, we established a mouse model of HER2 expression in transplanted tumors. Experimental results showed that the recombinant plasmids expressing fusion antigen induced a stronger cellular immune response. Inoculation of the HER2-CTLA-4 plasmid exerted the strongest inhibitory effect on HER2 expression-mediated tumor growth in mice. These results highlight the potential of the CTLA-4 fusion DNA vaccine as a therapeutic vaccine against colon cancer based on HER2 and CTLA-4.
Collapse
|
8
|
Yang J, Sun Y, Bao R, Zhou D, Yang Y, Cao Y, Yu J, Zhao B, Li Y, Yan H, Zhong M. Second-generation Flagellin-rPAc Fusion Protein, KFD2-rPAc, Shows High Protective Efficacy against Dental Caries with Low Potential Side Effects. Sci Rep 2017; 7:11191. [PMID: 28894188 PMCID: PMC5593867 DOI: 10.1038/s41598-017-10247-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
Dental caries is one of the most common global chronic diseases affecting all ages of the population; thus a vaccine against caries is urgently needed. Our previous studies demonstrated that a fusion protein, KF-rPAc, in which rPAc of S. mutans is directly fused to the C-terminal of E. coli-derived flagellin (KF), could confer high prophylactic and therapeutic efficiency against caries. However, possible side effects, including the high antigenicity of flagellin and possible inflammatory injury induced by flagellin, may restrict its clinical usage. Here, we produced a second-generation flagellin-rPAc fusion protein, KFD2-rPAc, by replacing the main antigenicity region domains D2 and D3 of KF with rPAc. Compared with KF-rPAc, KFD2-rPAc has lower TLR5 agonist efficacy and induces fewer systemic inflammatory responses in mice. After intranasal immunization, KFD2-rPAc induces significantly lower flagellin-specific antibody responses but a comparable level of rPAc-specific antibody responses in mice. More importantly, in rat challenge models, KFD2-rPAc induces a robust rPAc-specific IgA response, and confers efficient prophylactic and therapeutic efficiency against caries as does KF-rPAc, while the flagellin-specific antibody responses are highly reduced. In conclusion, low side effects and high protective efficiency against caries makes the second-generation flagellin-rPAc fusion protein, KFD2-rPAc, a promising vaccine candidate against caries.
Collapse
Affiliation(s)
- Jingyi Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Ying Sun
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Rong Bao
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.,Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan, Hubei, 430071, China
| | - Dihan Zhou
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Yi Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Yuan Cao
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Jie Yu
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Bali Zhao
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Yaoming Li
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Huimin Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Maohua Zhong
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
| |
Collapse
|
9
|
Su F, Patel GB, Hu S, Chen W. Induction of mucosal immunity through systemic immunization: Phantom or reality? Hum Vaccin Immunother 2016; 12:1070-9. [PMID: 26752023 DOI: 10.1080/21645515.2015.1114195] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Generation of protective immunity at mucosal surfaces can greatly assist the host defense against pathogens which either cause disease at the mucosal epithelial barriers or enter the host through these surfaces. Although mucosal routes of immunization, such as intranasal and oral, are being intensely explored and appear promising for eliciting protective mucosal immunity in mammals, their application in clinical practice has been limited due to technical and safety related challenges. Most of the currently approved human vaccines are administered via systemic (such as intramuscular and subcutaneous) routes. Whereas these routes are acknowledged as being capable to elicit antigen-specific systemic humoral and cell-mediated immune responses, they are generally perceived as incapable of generating IgA responses or protective mucosal immunity. Nevertheless, currently licensed systemic vaccines do provide effective protection against mucosal pathogens such as influenza viruses and Streptococcus pneumoniae. However, whether systemic immunization induces protective mucosal immunity remains a controversial topic. Here we reviewed the current literature and discussed the potential of systemic routes of immunization for the induction of mucosal immunity.
Collapse
Affiliation(s)
- Fei Su
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada.,b Department of Veterinary Medicine, College of Animal Sciences , Zhejiang University , Hangzhou , Zhejiang , PR China
| | - Girishchandra B Patel
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada
| | - Songhua Hu
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada
| | - Wangxue Chen
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada.,c Department of Biology, Brock University , St. Catharines , Ontario , Canada
| |
Collapse
|
10
|
Fusion of CTLA-4 with HPV16 E7 and E6 enhanced the potency of therapeutic HPV DNA vaccine. PLoS One 2014; 9:e108892. [PMID: 25265018 PMCID: PMC4181872 DOI: 10.1371/journal.pone.0108892] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/28/2014] [Indexed: 11/29/2022] Open
Abstract
Preventive anti-HPV vaccines are effective against HPV infection but not against existing HPV-associated diseases, including cervical cancer and other malignant diseases. Therefore, the development of therapeutic vaccines is urgently needed. To improve anti-tumor effects of therapeutic vaccine, we fused cytotoxic T-lymphocyte antigen 4 (CTLA-4) with HPV16 E7 and E6 as a fusion therapeutic DNA vaccine (pCTLA4-E7E6). pCTLA4-E7E6 induced significantly higher anti-E7E6 specific antibodies and relatively stronger specific CTL responses than the nonfusion DNA vaccine pE7E6 in C57BL/6 mice bearing with TC-1 tumors. pCTLA4-E7E6 showed relatively stronger anti-tumor effects than pE7E6 in therapeutic immunization. These results suggest that fusing CTLA-4 with E7E6 is a useful strategy to develop therapeutic HPV DNA vaccines. In addition, fusing the C-terminal of E7 with the N-terminal of E6 impaired the functions of both E7 and E6.
Collapse
|
11
|
Enhanced nasal mucosal delivery and immunogenicity of anti-caries DNA vaccine through incorporation of anionic liposomes in chitosan/DNA complexes. PLoS One 2013; 8:e71953. [PMID: 23977186 PMCID: PMC3748075 DOI: 10.1371/journal.pone.0071953] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/04/2013] [Indexed: 11/19/2022] Open
Abstract
The design of optimized nanoparticles offers a promising strategy to enable DNA vaccines to cross various physiological barriers for eliciting a specific and protective mucosal immunity via intranasal administration. Here, we reported a new designed nanoparticle system through incorporating anionic liposomes (AL) into chitosan/DNA (CS/DNA) complexes. With enhanced cellular uptake, the constructed AL/CS/DNA nanoparticles can deliver the anti-caries DNA vaccine pGJA-P/VAX into nasal mucosa. TEM results showed the AL/CS/DNA had a spherical structure. High DNA loading ability and effective DNA protection against nuclease were proved by gel electrophoresis. The surface charge of the AL/CS/DNA depended strongly on pH environment, enabling the intracellular release of loaded DNA via a pH-mediated manner. In comparison to the traditional CS/DNA system, our new design rendered a higher transfection efficiency and longer residence time of the AL/CS/DNA at nasal mucosal surface. These outstanding features enable the AL/CS/DNA to induce a significantly (p<0.01) higher level of secretory IgA (SIgA) than the CS/DNA in animal study, and a longer-term mucosal immunity. On the other hand, the AL/CS/DNA exhibited minimal cytotoxicity. These results suggest that the developed nanoparticles offer a potential platform for DNA vaccine packaging and delivery for more efficient elicitation of mucosal immunity.
Collapse
|
12
|
Yan H. Salivary IgA enhancement strategy for development of a nasal-spray anti-caries mucosal vaccine. SCIENCE CHINA-LIFE SCIENCES 2013; 56:406-13. [PMID: 23633072 DOI: 10.1007/s11427-013-4473-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 03/21/2013] [Indexed: 01/09/2023]
Abstract
Dental caries remains one of the most common global chronic diseases caused by Streptococcus mutans, which is prevalent all over the world. The caries prevalence of children aged between 5-6 years old in China is still in very high rate. A potent and effective anti-caries vaccine has long been expected for caries prevention but no vaccines have been brought to market till now mainly due to the low ability to induce and maintain protective antibody in oral fluids. This review will give a brief historical retrospect on study of dental caries and pathogenesis, effective targets for anti-caries vaccines, oral immune system and immunization against dental caries. Then, salivary IgA antibodies and the protective responses are discussed in the context of the ontogeny of mucosal immunity to indigenous oral streptococcal. The methods and advancement for induction of specific anti-caries salivary sIgA antibodies and enhancement of specific anti-caries salivary sIgA antibodies by intranasal immunization with a safe effective mucosal adjuvant are described. The progress in the enhancement of salivary sIgA antibodies and anti-caries protection by intranasal immunization with flagellin-PAc fusion protein will be highlighted. Finally, some of the main strategies that have been used for successful mucosal vaccination of caries vaccine are reviewed, followed by discussion of the mucosal adjuvant choice for achieving protective immunity at oral mucosal membranes for development of a nasal-spray or nasal-drop anti-caries vaccine for human.
Collapse
Affiliation(s)
- Huimin Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
13
|
Huang L, Xu QA, Liu C, Fan MW, Li YH. Anti-caries DNA vaccine-induced secretory immunoglobulin A antibodies inhibit formation of Streptococcus mutans biofilms in vitro. Acta Pharmacol Sin 2013; 34:239-46. [PMID: 23274411 DOI: 10.1038/aps.2012.145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM To investigate the effects of anti-caries DNA vaccine-induced salivary secretory immunoglobulin A (S-IgA) antibodies on Streptococcus mutans (S. mutans) adherence and biofilms formation in vitro. METHODS Adult female Wistar rats were intranasally immunized with the anti-caries DNA vaccine pGJA-P/VAX. Their saliva samples were collected at different times after the immunization, and S-IgA antibody level in the saliva and its inhibition on S. mutans adherence were examined. The effects of S-IgA in the saliva with the strongest inhibitory effects were examined at 3 different stages, ie acquired pellicles, biofilm formation and production of mature biofilms. The number of viable bacteria and depth of the biofilm at 16 h in each stage were determined using counting colony forming units and using a confocal laser scanning microscopy (CLSM). The participation of S-IgA in acquired pellicles and its aggregation with S. mutans were also observed under CLSM. RESULTS The S-IgA titer in saliva reached its peak and exhibited the strongest inhibition on S. mutans adhesion at 10 weeks after the immunization. The colonies and depth of the biofilm in the saliva-pretreated group were 41.79% and 41.02%, respectively, less than the control group. The colonies and depth of the biofilm in the co-culture group were 27.4% and 22.81% less than the control group. The assembly of S. mutans and S-IgA was observed under CLSM after co-cultivation. In the mature-stage biofilm, no differences were observed between the different groups. CONCLUSION These results demonstrate that the anti-caries DNA vaccine induces the production of specific S-IgA antibodies that may prevent dental caries by inhibiting the initial adherence of S. mutans onto tooth surfaces, thereby reducing the accumulation of S. mutans on the acquired pellicles.
Collapse
|
14
|
Jayaraj R, Piedrafita D, Spithill T, Smooker P. Evaluation of the immune responses induced by four targeted DNA vaccines encoding the juvenile liver fluke antigen, cathepsin B in a mouse model. GENETIC VACCINES AND THERAPY 2012; 10:7. [PMID: 22938392 PMCID: PMC3505173 DOI: 10.1186/1479-0556-10-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 08/20/2012] [Indexed: 11/23/2022]
Abstract
Background Liver fluke can infect cattle and sheep, and is also emerging as a human pathogen in developing countries. Cathepsin B (Cat B2) is a major cysteine protease secreted by the juvenile flukes. To enhance the immune responses of Cat B2, the cDNA sequence was fused with four different DNA vaccine vectors. The induced cellular and antibody responses were compared in vaccinated mice. Methods The following recombinant DNA vaccine constructs were constructed: empty vector VR1012 as negative control, cytoplasmic construct pVR1012 Cat B2, secretory construct pVR1020 Cat B2, chemokine-fused construct pMCP3 Cat B2 and lymph node targeting construct pCTLA-4 Cat B2. Plasmids were constructed using standard procedures, and positive constructs screened and selected using restriction digestion analysis followed by sequence analysis. The constructs were then tested in Cos-7 cells for in vitro expression, which was analysed using immunoblotting. Subsequently, female BALB/c mice were immunised with DNA constructs as vaccines. Elicited antibody responses were measured using ELISA. The ratio between IgG1 and IgG2a antibody responses was estimated among different vaccine groups. IgG antibody avidity assay was performed and the relative avidity index was calculated. The induced cytokine production from splenocytes of vaccinated animals was estimated using ELISPOT. Results DNA vaccine constructs carrying Cat B2 were expressed in Cos-7 cell lines and encoded protein was recognised using western blotting using rat anti- cathepsin B antibody. DNA vaccines elicited high Cat B2- specific IgG, IgG1, IgE and also modest IgG2a antibody responses. Cat B2 specific IL-4 T cell responses were also observed in Cat B2 vaccinated mice. The comparison of immunogenic potential in each of these constructs was demonstrated as enhanced antibody responses on the lymph-node targeting vector pCTLA-4 Cat B2, the high antibody avidity of chemo-attractant pMCP3 Cat B2 and stronger T cellular responses of non-secretory DNA vaccine pVR1012 Cat B2 in vaccinated animals. Conclusion This study showed that the targeting DNA vaccine strategies enhanced specific immune responses to juvenile fluke Cat B2. The results of our current study have demonstrated that a gene-based vaccine as an immunotherapeutic approach to combat Fasciola infection may be feasible.
Collapse
Affiliation(s)
- Rama Jayaraj
- Biotechnology & Environmental Biology, School of Applied Sciences, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Vic 3083, Australia.
| | | | | | | |
Collapse
|
15
|
Sun Y, Shi W, Yang JY, Zhou DH, Chen YQ, Zhang Y, Yang Y, He BX, Zhong MH, Li YM, Cao Y, Xiao Y, Li W, Yu J, Li YH, Fan MW, Yan HM. Flagellin-PAc fusion protein is a high-efficacy anti-caries mucosal vaccine. J Dent Res 2012; 91:941-7. [PMID: 22895510 DOI: 10.1177/0022034512457684] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We previously demonstrated that an anti-caries DNA vaccine intranasally administered with recombinant flagellin protein as a mucosal adjuvant enhanced salivary IgA response and conferred better protection against caries. However, the relatively weak immunogenicity of DNA vaccines and the necessity for a large quantity of antigens remain significant challenges. Here, we fused the flagellin derived from E. coli (KF) and target antigen PAc containing the A-P fragment of PAc from S. mutans (rPAc) to produce a single recombinant protein (KF-rPAc). The abilities of KF-rPAc to induce rPAc-specific mucosal and systemic responses and protective efficiency against caries following intranasal immunization were compared with those of rPAc alone or a mixture of rPAc and KF (KF + rPAc) in rats. Results showed that KF-rPAc promoted significantly higher rPAc-specific antibodies in serum as well as in saliva than did an equivalent dose of rPAc alone or a mixture of KF + rPAc. Intranasal immunization of 8.5 µg KF-rPAc could achieve 64.2% reduction of dental caries in rats. In conclusion, our study demonstrated that flagellin and PAc fusion strategy is promising for anti-caries vaccine development, and KF-rPAc could be used as an anti-caries mucosal vaccine.
Collapse
Affiliation(s)
- Y Sun
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Despite many years of research, human DNA vaccines have yet to fulfill their early promise. Over the past 15 years, multiple generations of DNA vaccines have been developed and tested in preclinical models for prophylactic and therapeutic applications in the areas of infectious disease and cancer, but have failed in the clinic. Thus, while DNA vaccines have achieved successful licensure for veterinary applications, their poor immunogenicity in humans when compared with traditional protein-based vaccines has hindered their progress. Many strategies have been attempted to improve DNA vaccine potency including use of more efficient promoters and codon optimization, addition of traditional or genetic adjuvants, electroporation, intradermal delivery and various prime-boost strategies. This review summarizes these advances in DNA vaccine technologies and attempts to answer the question of when DNA vaccines might eventually be licensed for human use.
Collapse
Affiliation(s)
- Fadi Saade
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
- Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University, Adelaide 5042, Australia
| |
Collapse
|
17
|
Shi W, Li Y, Liu F, Yang J, Zhou D, Chen Y, Zhang Y, Yang Y, He B, Han C, Fan M, Yan H. Flagellin Enhances Saliva IgA Response and Protection of Anti-caries DNA Vaccine. J Dent Res 2011; 91:249-54. [DOI: 10.1177/0022034511424283] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We and others have shown that anti-caries DNA vaccines, including pGJA-P/VAX, are promising for preventing dental caries. However, challenges remain because of the low immunogenicity of DNA vaccines. In this study, we used recombinant flagellin protein derived from Salmonella (FliC) as a mucosal adjuvant for anti-caries DNA vaccine (pGJA-P/VAX) and analyzed the effects of FliC protein on the serum PAc-specific IgG and saliva PAc-specific IgA antibody responses, the colonization of Streptococcus mutans ( S. mutans) on rat teeth, and the formation of caries lesions. Our results showed that FliC promoted the production of PAc-specific IgG in serum and secretory IgA (S-IgA) in saliva of rats by intranasal immunization with pGJA-P/VAX plus FliC. Furthermore, we found that enhanced PAc-specific IgA responses in saliva were associated with the inhibition of S. mutans colonization of tooth surfaces and endowed better protection with significant fewer caries lesions. In conclusion, our study demonstrates that recombinant FliC could enhance specific IgA responses in saliva and protective ability of pGJA-P/VAX, providing an effective mucosal adjuvant candidate for intranasal immunization of an anti-caries DNA vaccine.
Collapse
Affiliation(s)
- W. Shi
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Y.H. Li
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - F. Liu
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - J.Y. Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - D.H. Zhou
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Y.Q. Chen
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Y. Zhang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Y. Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - B.X. He
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - C. Han
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - M.W. Fan
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - H.M. Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| |
Collapse
|
18
|
The effect of antigen size on the immunogenicity of antigen presenting cell targeted DNA vaccine. Int Immunopharmacol 2011; 12:21-5. [PMID: 21945335 DOI: 10.1016/j.intimp.2011.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 08/11/2011] [Accepted: 08/23/2011] [Indexed: 11/20/2022]
Abstract
Directing antigens to antigen presenting cells (APCs) has been demonstrated to be an efficient strategy to enhance immune responses induced by DNA vaccination. Fusion of antigens to cytotoxic T-Lymphocyte antigen 4 (CTLA4), a ligand of B7 molecules on the surfaces of APCs with strong binding affinity, enhanced the immunogenicities of antigens in various degrees. To investigate the relationship between antigen size and the immunogenicity of CTLA4 fusion DNA vaccine, we constructed CTLA4 targeted fusion anti-caries DNA vaccines containing different size of antigens. In vivo and in vitro experiments showed that CTLA4 fusion with smaller antigen induced stronger humoral immune responses and had higher affinity to B7-expressed cells than fusion with larger antigen. In conclusion, antigen size is one of the important factors regulating the potency of humoral immune response induced by CTLA4 targeted DNA vaccines.
Collapse
|
19
|
Yu F, Xu QA, Chen W. A targeted fimA DNA vaccine prevents alveolar bone loss in mice after intra-nasal administration. J Clin Periodontol 2011; 38:334-40. [PMID: 21261672 DOI: 10.1111/j.1600-051x.2010.01700.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To construct a dendritic cell (DC)-targeted DNA vaccine against FimA of Porphyromonas gingivalis and evaluate the immunogenicity and protection in mice. MATERIALS AND METHODS A targeted DNA plasmid pCTLA4-FimA, which encodes the signal peptide and extracellular regions of mouse cytotoxic T lymphocyte-associated antigen 4 (CTLA4), the hinge and Fc regions of human Igγ1 and FimA of P. gingivalis, was constructed. Mice were immunized with pCTLA4-FimA, the non-targeted DNA plasmid pFimA, which contains only fimA gene, or pCI vector intra-nasally. Serum and saliva antibody responses were detected by enzyme-linked immunosorbent assay. The protection against P. gingivalis-induced periodontitis was evaluated by measuring alveolar bone loss in mice. RESULTS Mice immunized with pCTLA4-FimA showed elevated levels of specific serum IgG and salivary IgA antibody responses compared with mice immunized with pFimA (p<0.01). Both pFimA and pCTLA4-FimA immunized groups showed significantly lower alveolar bone loss, with the magnitude protection greater in the latter (p<0.01), compared with the pCI immunized group. CONCLUSIONS The DC-targeted DNA construct pCTLA4-FimA enhanced both systemic and mucosal immunity following intra-nasal immunization. A DNA-based immunization strategy may be an effective way to attenuate periodontitis induced by P. gingivalis.
Collapse
Affiliation(s)
- Fei Yu
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | | | | |
Collapse
|
20
|
Li YH, Huang S, Du M, Bian Z, Chen Z, Fan MW. Immunogenic characterization and protection against Streptococcus mutans infection induced by intranasal DNA prime–protein boost immunization. Vaccine 2010; 28:5370-6. [DOI: 10.1016/j.vaccine.2010.04.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 04/14/2010] [Accepted: 04/23/2010] [Indexed: 01/25/2023]
|
21
|
Good Manufacturing Practices production and analysis of a DNA vaccine against dental caries. Acta Pharmacol Sin 2009; 30:1513-21. [PMID: 19890359 DOI: 10.1038/aps.2009.152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIM To prepare a clinical-grade anti-caries DNA vaccine pGJA-P/VAX and explore its immune effect and protective efficacy against a cariogenic bacterial challenge. METHODS A large-scale industrial production process was developed under Good Manufacturing Practices (GMP) by combining and optimizing common unit operations such as alkaline lysis, precipitation, endotoxin removal and column chromatography. Quality controls of the purified bulk and final lyophilized vaccine were conducted according to authoritative guidelines. Mice and gnotobiotic rats were intranasally immunized with clinical-grade pGJA-P/VAX with chitosan. Antibody levels of serum IgG and salivary SIgA were assessed by an enzyme-linked immunosorbent assay (ELISA), and caries activity was evaluated by the Keyes method. pGJA-P/VAX and pVAX1 prepared by a laboratory-scale commercial kit were used as controls. RESULTS The production process proved to be scalable and reproducible. Impurities including host protein, residual RNA, genomic DNA and endotoxin in the purified plasmid were all under the limits of set specifications. Intranasal vaccination with clinical-grade pGJA-P/VAX induced higher serum IgG and salivary SIgA in both mice and gnotobiotic rats. While in the experimental caries model, the enamel (E), dentinal slight (Ds), and dentinal moderate (Dm) caries lesions were reduced by 21.1%, 33.0%, and 40.9%, respectively. CONCLUSION The production process under GMP was efficient in preparing clinical-grade pGJA-P/VAX with high purity and intended effectiveness, thus facilitating future clinical trials for the anti-caries DNA vaccine.
Collapse
|
22
|
Li Y, Jin J, Yang Y, Bian Z, Chen Z, Fan M. Enhanced immunogenicity of an anti-caries vaccine encoding a cell-surface protein antigen ofStreptococcus mutansby intranasal DNA prime-protein boost immunization. J Gene Med 2009; 11:1039-47. [DOI: 10.1002/jgm.1386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
23
|
Niu Y, Sun J, Fan M, Xu QA, Guo J, Jia R, Li Y. Construction of a New Fusion Anti-caries DNA Vaccine. J Dent Res 2009; 88:455-60. [PMID: 19493890 DOI: 10.1177/0022034509336727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mutans streptococci (MS) are generally considered to be the principal etiological agent of dental caries. MS have two important virulence factors: cell- surface protein PAc and glucosyltransferases (GTFs). GTFs have two functional domains: an N-terminal catalytic sucrose-binding domain (CAT) and a C-terminal glucan-binding domain (GLU). A fusion anti-caries DNA vaccine, pGJA-P/VAX, encoding two important antigenic domains, PAc and GLU, of S. mutans, was successful in reducing the levels of dental caries caused by S. mutans in gnotobiotic animals. However, its protective effect against S. sobrinus infection proved to be weak. Does the DNA vaccine need an antigen of S. sobrinus to enhance its ability to inhibit infection? To answer this question, in this study, we cloned the catalytic ( cat) fragment of S. sobrinus gtf-I, which demonstrated its ability to inhibit water-insoluble glucan synthesis by S. sobrinus, into pGJA-P/VAX to produce a new anti-caries DNA vaccine.
Collapse
Affiliation(s)
- Y. Niu
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079 Wuhan, Hubei, China
| | - J. Sun
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079 Wuhan, Hubei, China
| | - M. Fan
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079 Wuhan, Hubei, China
| | - Q.-A. Xu
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079 Wuhan, Hubei, China
| | - J. Guo
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079 Wuhan, Hubei, China
| | - R. Jia
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079 Wuhan, Hubei, China
| | - Y. Li
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079 Wuhan, Hubei, China
| |
Collapse
|
24
|
Liu C, Fan M, Bian Z, Chen Z, Li Y. Effects of targeted fusion anti-caries DNA vaccine pGJA-P/VAX in rats with caries. Vaccine 2009; 26:6685-9. [PMID: 18789994 DOI: 10.1016/j.vaccine.2008.08.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/24/2008] [Accepted: 08/25/2008] [Indexed: 11/30/2022]
Abstract
Our previously prophylactic studies have proved that the anti-caries DNA vaccine pGJA-P/VAX could generate effective immune response by intramuscular (i.m.) and intranasal (i.n.) administration in rats without caries. In the present, we determine whether it also could produce efficacy in rats with caries. By immunized with pGJA-P/VAX, rats were elicited both significantly higher anti-Streptococcus mutans serum IgG and salivary SIgA responses, compared to those with pVAX1. Correspondingly, rats immunized with pGJA-P/VAX via i.n. displayed significantly fewer enamel, dentinal lesions compared to those with pVAX1 via i.n. However, there was no significant difference in dental caries lesions between pGJA-P/VAX (i.m.) and pVAX1 (i.m.). These findings suggest that DNA vaccination via i.n., with bupivacaine delivery system, could be a promising alternatives for slowing down caries development in rat models.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory for Oral Biomedical Engineering Ministry of Education, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430079 Wuhan, Hubei, China
| | | | | | | | | |
Collapse
|
25
|
Xu QA, Yu F, Fan M, Xing Q, Liu G, Liu C. Analysis of the molecular mechanisms of targeted anti-caries DNA plasmid enhancing antibody responses by gene arrays. J Gene Med 2009; 11:354-60. [DOI: 10.1002/jgm.1308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
26
|
Xu QA, Zhang F, Fan MW, Liu ST, Li YH, Yu F, Tian QW. Fusion protein encoded by a CTLA-4 targeted DNA construct binds to human dendritic cells. Immunol Invest 2009; 38:123-31. [PMID: 19330622 DOI: 10.1080/08820130802664363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fusing antigens to cytotoxic T-lymphocyte antigen 4 (CTLA-4) represents an effective approach to enhance DNA vaccine efficacy. It has been speculated that the direct targeting of CTLA-4 fusion antigens to antigen-presenting cells (APCs) causes antigens to be processed and presented to T cells more efficiently, leading to a stronger immune response. In the present study, dendritic cells (DCs), the most potent APCs, were generated from human monocytes. The specific binding of CTLA-4 fusion protein to DCs was investigated by flow cytometry. The results showed that the CTLA-4 fusion protein was capable of binding to the B7 molecules on human DCs with specificity.
Collapse
Affiliation(s)
- Q A Xu
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Liu GX, Xu QA, Jin J, Li YH, Jia R, Guo JH, Fan MW. Mucosal and systemic immunization with targeted fusion anti-caries DNA plasmid in young rats. Vaccine 2009; 27:2940-7. [PMID: 19428904 DOI: 10.1016/j.vaccine.2009.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 03/01/2009] [Accepted: 03/04/2009] [Indexed: 10/21/2022]
Abstract
Early life vaccination is necessary to protect young children from dental caries. Our group had previously reported that a plasmid DNA vaccine pGJA-P/VAX against the glucosyltransferase (GTF) enzyme and cell surface antigen AgI/II (PAc) of Streptococcus mutans (S. mutans) elicited a specific and protective immunity in adult experimental animal models. In this report, early life immunization with the same plasmid was studied following intranasal (i.n.) and intramuscular (i.m.) delivery in murine models. The potential of inducing mucosal and systemic immune responses to special antigens was measured by ELISA. In addition, cytokine production and protection effectiveness against dental caries formation were also investigated. In the i.n. route, rats were primed when they were 5 days old, and boosted after 10 and 20 days with either plasmid pGJA-P/VAX-bupivacaine complexes, or pGJA-P/VAX alone, or empty vector. The pGJA-P/VAX-bupivacaine combination was able to mount the immune responses characterized by increased antibody levels of specific salivary IgA and serum IgG, preferential IFN-gamma production and significant reduction in the dental caries lesions. In the i.m. route, rats were vaccinated with either pGJA-P/VAX alone or empty vector with the same immunization schedule as the i.n. route. Plasmid pGJA-P/VAX alone induced a significant increase in the serum IgG and IFN-gamma production. However, it was not effective in eliciting specific salivary IgA and in decreasing the dental caries formation. All these findings indicate the feasibility of immunity with a targeted fusion DNA vaccine to a young immune system.
Collapse
Affiliation(s)
- G X Liu
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Liu C, Fan M, Xu Q, Li Y. Biodistribution and expression of targeted fusion anti-caries DNA vaccine pGJA-P/VAX in mice. J Gene Med 2008; 10:298-305. [DOI: 10.1002/jgm.1138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
29
|
Zhang F, Li YH, Fan MW, Jia R, Xu QA, Guo JH, Yu F, Tian QW. Enhanced efficacy of CTLA-4 fusion anti-caries DNA vaccines in gnotobiotic hamsters. Acta Pharmacol Sin 2007; 28:1236-42. [PMID: 17640488 DOI: 10.1111/j.1745-7254.2007.00600.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To evaluate the comparative immunogenicity and protective efficacy of the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) fusion anti-caries DNA vaccines pGJA-P/VAX1, pGJA-P, and non-fusion anti-caries DNA construct pGLUA-P in hamsters. In addition, the ability of CTLA-4 to target pGJA-P/VAX1-encoding antigen to dendritic cells was tested in vitro. METHODS All DNA constructs contain genes encoding the A-P regions of a cell surface protein (PAc) and the glucan binding (GLU) domain of glucosyltransferases (GTFs) of cariogenic organism Streptococcus mutans. Human dendritic cells were mixed with the CTLA-4-Ig-GLU-A-P protein expressed by pGJA-P/VAX1-transfected cells and analyzed by flow cytometry. Gnotobiotic hamsters were immunized with anti-caries DNA vaccines by intramuscular injection or intranasal administration. Antibody responses to a representative antigen PAc were assayed by ELISA, and caries protection was evaluated by Keyes caries scores. RESULTS A flow cytometric analysis demonstrated that CTLA-4-Ig-GLU-A-P protein was capable of binding to human dendritic cells. pGJA-P/VAX1 and pGJA-P induced significantly higher specific salivary and serum anti-PAc antibody responses than pGLUA-P. Significantly fewer caries lesions were also observed in hamsters immunized with pGJA-P/VAX1 and pGJA-P. There was no significant difference in the anti-PAc antibody level or caries scores between pGJA-P/VAX1 and pGJA-P-immunized groups. CONCLUSION Antigen encoded by CTLA-4 fusion anti-caries DNA vaccine pGJA-P/VAX1 could specifically bind to human dendritic cells through the interaction of CTLA-4 and B7 molecules. Fusing antigen to CTLA-4 has been proven to greatly enhance the immunogenicity and protective efficacy of anti-caries DNA vaccines.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Han TK, Dao ML. Enhancement of salivary IgA response to a DNA vaccine against Streptococcus mutans wall-associated protein A in mice by plasmid-based adjuvants. J Med Microbiol 2007; 56:675-680. [PMID: 17446293 DOI: 10.1099/jmm.0.47020-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A specific salivary IgA (sIgA) response was obtained in mice by intranasal immunization with a naked DNA vaccine consisting of the Streptococcus mutans wall-associated protein A gene (wapA) inserted into the mammalian expression vector pcDNA3.1/V5/His-TOPO. In the present study, the vaccine, referred to as pcDNA-wapA, was administered with or without the cationic lipid DMRIE-C. No mucosal response was observed in mice immunized with the vaccine alone, whereas a weak and temporal sIgA response was obtained when the vaccine was mixed with DMRIE-C. To investigate the use of pcDNA containing the interleukin 5 (IL-5) gene (pcDNA-il-5) or the cholera toxin B gene (pcDNA-ctb) as genetic adjuvants, these constructs were used in co-immunization studies. The enhancement effect was transient with pcDNA-il-5, but longer lasting with pcDNA-ctb, thus supporting the use of the latter as a genetic adjuvant to DNA vaccine.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Administration, Intranasal
- Animals
- Antibodies, Bacterial/analysis
- Antibodies, Bacterial/immunology
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Cholera Toxin/genetics
- Cholera Toxin/immunology
- Female
- Genetic Vectors
- Immunity, Mucosal
- Immunoglobulin A, Secretory/analysis
- Immunoglobulin A, Secretory/immunology
- Interleukin-5/genetics
- Interleukin-5/immunology
- Mice
- Mice, Inbred BALB C
- Plasmids/genetics
- Saliva/immunology
- Streptococcal Vaccines/genetics
- Streptococcal Vaccines/immunology
- Streptococcus mutans/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Thomas K Han
- Department of Biology, University of South Florida, Tampa, FL, USA
| | - My Lien Dao
- Department of Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
31
|
Xu QA, Yu F, Fan MW, Bian Z, Chen Z, Fan B, Jia R, Guo JH. Immunogenicity and persistence of a targeted anti-caries DNA vaccine. J Dent Res 2006; 85:915-8. [PMID: 16998131 DOI: 10.1177/154405910608501008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We have previously reported that a targeted anti-caries DNA vaccine, pGJA-P, induced accelerated and increased antibody responses compared with a non-targeted anti-caries DNA vaccine. Recently, pGJA-P/VAX, a new targeted anti-caries DNA vaccine for human trials, was constructed by replacing the pCI vector used in the construction of pGJA-P with pVAX1, the only vector authorized by the US Food and Drug Administration in clinical trials. Here, we report on our exploration of the kinetics of the antibody responses generated following pGJA-P/VAX immunization and the persistence of pGJA-P/VAX at both the inoculation site and the draining lymph nodes. Intranasal vaccination of mice with pGJA-P/VAX induced strong antibody responses that lasted for more than 6 months. Furthermore, pGJA-P/VAX could still be detected at both the inoculation site and the draining cervical lymph nodes 6 months after immunization. Thus, the persistent immune responses are likely due to the DNA depot in the host, which acts as a booster immunization.
Collapse
Affiliation(s)
- Q A Xu
- The Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430079 Wuhan, Hubei, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Xu QA, Yu F, Fan MW, Bian Z, Chen Z, Peng B, Jia R, Guo JH. Protective efficacy of a targeted anti-caries DNA plasmid against cariogenic bacteria infections. Vaccine 2006; 25:1191-5. [PMID: 17095128 DOI: 10.1016/j.vaccine.2006.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/06/2006] [Accepted: 10/10/2006] [Indexed: 11/15/2022]
Abstract
We have previously reported that a targeted anti-caries DNA plasmid pGJA-P/VAX which was constructed against the antigenic determinants of Streptococcus mutans (S. mutans) successfully induced antibody responses in mice and monkeys. The present study explored the protective efficacy of pGJA-P/VAX against cariogenic bacterial challenge. Groups of rats were orally challenged with S. mutans or Streptococcus sobrinus (S. sobrinus) and then immunized with pGJA-P/VAX or the vector pVAX1 intranasally. Serum IgG and salivary IgA antibody levels were assessed by an enzyme-linked immunosorbent assay and caries activity was evaluated by the Keyes method. The results showed that specific salivary IgA antibody responses were induced following intranasal vaccination with pGJA-P/VAX. Moreover, immunization with pGJA-P/VAX resulted in significantly reduced enamel and dentinal caries lesions in rats after S. mutans infection and significantly reduced enamel caries lesions after S. sobrinus infection. Thus, pGJA-P/VAX was not only protective toward S. mutans infection, but also provided cross-strain protection against S. sobrinus infection in rats.
Collapse
Affiliation(s)
- Q A Xu
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School&hospital of Stomatology, Wuhan University, Luoyu Road 237, 430079 Wuhan, Hubei, China
| | | | | | | | | | | | | | | |
Collapse
|