1
|
Hsu SC, Lin KH, Tseng YC, Cheng YY, Ma HH, Chen YC, Jan JT, Wu CY, Ma C. An Adjuvanted Vaccine-Induced Pathogenesis Following Influenza Virus Infection. Vaccines (Basel) 2024; 12:569. [PMID: 38932298 PMCID: PMC11209567 DOI: 10.3390/vaccines12060569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
An incomplete Freund's adjuvant elicited an overt pathogenesis in vaccinated mice following the intranasal challenge of A/California/07/2009 (H1N1) virus despite the induction of a higher specific antibody titer than other adjuvanted formulations. Aluminum hydroxide adjuvants have not induced any pathogenic signs in a variety of formulations with glycolipids. A glycolipid, α-galactosyl ceramide, improved a stimulatory effect of distinct adjuvanted formulations on an anti-influenza A antibody response. In contrast to α-galactosyl ceramide, its synthetic analogue C34 was antagonistic toward a stimulatory effect of an aluminum hydroxide adjuvant on a specific antibody response. The aluminum hydroxide adjuvant alone could confer complete vaccine-induced protection against mortality as well as morbidity caused by a lethal challenge of the same strain of an influenza A virus. The research results indicated that adjuvants could reshape immune responses either to improve vaccine-induced immunity or to provoke an unexpected pathogenic consequence. On the basis of these observations, this research connotes the prominence to develop a precision adjuvant for innocuous vaccination aimed at generating a protective immunity without aberrant responses.
Collapse
Affiliation(s)
- Shiou-Chih Hsu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115201, Taiwan; (K.-H.L.); (Y.-C.T.); (Y.-Y.C.); (H.-H.M.); (J.-T.J.); (C.-Y.W.); (C.M.)
| | - Kun-Hsien Lin
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115201, Taiwan; (K.-H.L.); (Y.-C.T.); (Y.-Y.C.); (H.-H.M.); (J.-T.J.); (C.-Y.W.); (C.M.)
| | - Yung-Chieh Tseng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115201, Taiwan; (K.-H.L.); (Y.-C.T.); (Y.-Y.C.); (H.-H.M.); (J.-T.J.); (C.-Y.W.); (C.M.)
| | - Yang-Yu Cheng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115201, Taiwan; (K.-H.L.); (Y.-C.T.); (Y.-Y.C.); (H.-H.M.); (J.-T.J.); (C.-Y.W.); (C.M.)
| | - Hsiu-Hua Ma
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115201, Taiwan; (K.-H.L.); (Y.-C.T.); (Y.-Y.C.); (H.-H.M.); (J.-T.J.); (C.-Y.W.); (C.M.)
| | - Ying-Chun Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115201, Taiwan;
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115201, Taiwan; (K.-H.L.); (Y.-C.T.); (Y.-Y.C.); (H.-H.M.); (J.-T.J.); (C.-Y.W.); (C.M.)
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115201, Taiwan; (K.-H.L.); (Y.-C.T.); (Y.-Y.C.); (H.-H.M.); (J.-T.J.); (C.-Y.W.); (C.M.)
| | - Che Ma
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115201, Taiwan; (K.-H.L.); (Y.-C.T.); (Y.-Y.C.); (H.-H.M.); (J.-T.J.); (C.-Y.W.); (C.M.)
| |
Collapse
|
2
|
Bangaru S, Madhu G, Srinivasan M, Manivannan P. Exploring flexibility, intermolecular interactions and ADMET profiles of anti-influenza agent isorhapontigenin: A quantum chemical and molecular docking study. Heliyon 2022; 8:e10122. [PMID: 36039137 PMCID: PMC9418217 DOI: 10.1016/j.heliyon.2022.e10122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/07/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Isorhapontigenin (IRPG) drug emerges as promising efficient inhibitor for H1N1 and H3N2 subtypes which belong to influenza A virus; reported with IC50 value of 35.62 and 63.50 μM respectively. When experimental data are compared to the predicted geometrical parameters and vibrational assignments (FT-IR and FT-Raman), the findings indicated a strong correlation. The absorption bands of π→π∗ transitions are revealed through UV-Vis electronic properties; this confirms that the IRPG molecule shows strong bands. Through NBO and HOMO-LUMO analysis, the kinetic stability and chemical reactivity of the IRPG molecule were investigated. By using an MEP map, the IRPG's electrophilic and nucleophilic site selectivity was assessed. In a molecular docking investigation, the IRPG molecule shows a stronger inhibition constant and binding affinity for the H1N1 and H3N2 influenza virus. The IRPG molecule thus reveals good biological actions in nature and can be used as a potential therapeutic drug candidate for H1N1 and H3N2 virus A influenza.
Collapse
Affiliation(s)
- Sathya Bangaru
- Department of Physics, Periyar University PG Extension Centre, Dharmapuri, 636 701, Tamilnadu, India.,SSN Research Centre, SSN College of Engineering, Kalavakkam, Chennai, 603 110, Tamilnadu, India
| | - Govindammal Madhu
- Department of Physics, Periyar University PG Extension Centre, Dharmapuri, 636 701, Tamilnadu, India
| | - M Srinivasan
- SSN Research Centre, SSN College of Engineering, Kalavakkam, Chennai, 603 110, Tamilnadu, India
| | - Prasath Manivannan
- Department of Physics, Periyar University PG Extension Centre, Dharmapuri, 636 701, Tamilnadu, India
| |
Collapse
|
3
|
Cox A, Schmierer J, D’Angelo J, Smith A, Levenson D, Treanor J, Kim B, Dewhurst S. A Mutated PB1 Residue 319 Synergizes with the PB2 N265S Mutation of the Live Attenuated Influenza Vaccine to Convey Temperature Sensitivity. Viruses 2020; 12:E1246. [PMID: 33142846 PMCID: PMC7693792 DOI: 10.3390/v12111246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 01/07/2023] Open
Abstract
Current influenza vaccines have modest efficacy. This is especially true for current live attenuated influenza vaccines (LAIV), which have been inferior to the inactivated versions in recent years. Therefore, a new generation of live vaccines may be needed. We previously showed that a mutation at PB1 residue 319 confers enhanced temperature sensitivity and attenuation in an LAIV constructed in the genetic background of the mouse-adapted Influenza A Virus (IAV) strain A/PR/8/34 (PR8). Here, we describe the origin/discovery of this unique mutation and demonstrate that, when combined with the PB2 N265S mutation of LAIV, it conveys an even greater level of temperature sensitivity and attenuation on PR8 than the complete set of attenuating mutations from LAIV. Furthermore, we show that the combined PB1 L319Q and PB2 N265S mutations confer temperature sensitivity on IAV polymerase activity in two different genetic backgrounds, PR8 and A/Cal/04/09. Collectively, these findings show that the PB2 LAIV mutation synergizes with a mutation in PB1 and may have potential utility for improving LAIVs.
Collapse
Affiliation(s)
- Andrew Cox
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA; (A.C.); (J.S.); (J.D.); (A.S.); (D.L.); (J.T.); (B.K.)
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA
- Department of Pediatrics, Pediatric Residency Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jordana Schmierer
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA; (A.C.); (J.S.); (J.D.); (A.S.); (D.L.); (J.T.); (B.K.)
| | - Josephine D’Angelo
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA; (A.C.); (J.S.); (J.D.); (A.S.); (D.L.); (J.T.); (B.K.)
- Upstate Medical School, State University of New York, Syracuse, NY 13210, USA
| | - Andrew Smith
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA; (A.C.); (J.S.); (J.D.); (A.S.); (D.L.); (J.T.); (B.K.)
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA
| | - Dustyn Levenson
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA; (A.C.); (J.S.); (J.D.); (A.S.); (D.L.); (J.T.); (B.K.)
- M.D./Ph.D. Training Program, Wayne State University, Detroit, MI 48202, USA
| | - John Treanor
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA; (A.C.); (J.S.); (J.D.); (A.S.); (D.L.); (J.T.); (B.K.)
- Division of Infectious Diseases, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA
- Biomedical Advanced Research and Development Authority (BARDA)/HHS/ASPR, Influenza and Emerging Diseases Division 21J14, 200 C St SW, Washington, DC 20515, USA
| | - Baek Kim
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA; (A.C.); (J.S.); (J.D.); (A.S.); (D.L.); (J.T.); (B.K.)
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA; (A.C.); (J.S.); (J.D.); (A.S.); (D.L.); (J.T.); (B.K.)
| |
Collapse
|
4
|
Lessons from the 1918 Influenza Pandemic for the COVID-19 Pandemic. ANADOLU KLINIĞI TIP BILIMLERI DERGISI 2020. [DOI: 10.21673/anadoluklin.716868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
Pushko P, Tretyakova I, Hidajat R, Sun X, Belser JA, Tumpey TM. Multi-clade H5N1 virus-like particles: Immunogenicity and protection against H5N1 virus and effects of beta-propiolactone. Vaccine 2018; 36:4346-4353. [PMID: 29885769 PMCID: PMC6070352 DOI: 10.1016/j.vaccine.2018.05.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/14/2018] [Accepted: 05/19/2018] [Indexed: 12/13/2022]
Abstract
During the past decade, H5N1 highly pathogenic avian influenza (HPAI) viruses have diversified genetically and antigenically, suggesting the need for multiple H5N1 vaccines. However, preparation of multiple vaccines from live H5N1 HPAI viruses is difficult and economically not feasible representing a challenge for pandemic preparedness. Here we evaluated a novel multi-clade recombinant H5N1 virus-like particle (VLP) design, in which H5 hemagglutinins (HA) and N1 neuraminidase (NA) derived from four distinct clades of H5N1 virus were co-localized within the VLP structure. The multi-clade H5N1 VLPs were prepared by using a recombinant baculovirus expression system and evaluated for functional hemagglutination and neuraminidase enzyme activities, particle size and morphology, as well as for the presence of baculovirus in the purified VLP preparations. To remove residual baculovirus, VLP preparations were treated with beta-propiolactone (BPL). Immunogenicity and efficacy of multi-clade H5N1 VLPs were determined in an experimental ferret H5N1 HPAI challenge model, to ascertain the effect of BPL on immunogenicity and protective efficacy against lethal challenge. Although treatment with BPL reduced immunogenicity of VLPs, all vaccinated ferrets were protected from lethal challenge with influenza A/VietNam/1203/2004 (H5N1) HPAI virus, indicating that multi-clade VLP preparations treated with BPL represent a potential approach for pandemic preparedness vaccines.
Collapse
Affiliation(s)
- Peter Pushko
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA.
| | - Irina Tretyakova
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Rachmat Hidajat
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Xiangjie Sun
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E, Atlanta, GA, USA
| | - Jessica A Belser
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E, Atlanta, GA, USA
| | - Terrence M Tumpey
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E, Atlanta, GA, USA
| |
Collapse
|
6
|
Lambkin-Williams R, Noulin N, Mann A, Catchpole A, Gilbert AS. The human viral challenge model: accelerating the evaluation of respiratory antivirals, vaccines and novel diagnostics. Respir Res 2018; 19:123. [PMID: 29929556 PMCID: PMC6013893 DOI: 10.1186/s12931-018-0784-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022] Open
Abstract
The Human Viral Challenge (HVC) model has, for many decades, helped in the understanding of respiratory viruses and their role in disease pathogenesis. In a controlled setting using small numbers of volunteers removed from community exposure to other infections, this experimental model enables proof of concept work to be undertaken on novel therapeutics, including vaccines, immunomodulators and antivirals, as well as new diagnostics.Crucially, unlike conventional phase 1 studies, challenge studies include evaluable efficacy endpoints that then guide decisions on how to optimise subsequent field studies, as recommended by the FDA and thus licensing studies that follow. Such a strategy optimises the benefit of the studies and identifies possible threats early on, minimising the risk to subsequent volunteers but also maximising the benefit of scarce resources available to the research group investing in the research. Inspired by the principles of the 3Rs (Replacement, Reduction and Refinement) now commonly applied in the preclinical phase, HVC studies allow refinement and reduction of the subsequent development phase, accelerating progress towards further statistically powered phase 2b studies. The breadth of data generated from challenge studies allows for exploration of a wide range of variables and endpoints that can then be taken through to pivotal phase 3 studies.We describe the disease burden for acute respiratory viral infections for which current conventional development strategies have failed to produce therapeutics that meet clinical need. The Authors describe the HVC model's utility in increasing scientific understanding and in progressing promising therapeutics through development.The contribution of the model to the elucidation of the virus-host interaction, both regarding viral pathogenicity and the body's immunological response is discussed, along with its utility to assist in the development of novel diagnostics.Future applications of the model are also explored.
Collapse
Affiliation(s)
- Rob Lambkin-Williams
- hVIVO Services Limited, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London, England, E1 2AX, UK.
| | - Nicolas Noulin
- hVIVO Services Limited, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London, England, E1 2AX, UK
| | - Alex Mann
- hVIVO Services Limited, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London, England, E1 2AX, UK
| | - Andrew Catchpole
- hVIVO Services Limited, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London, England, E1 2AX, UK
| | - Anthony S Gilbert
- hVIVO Services Limited, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London, England, E1 2AX, UK
| |
Collapse
|
7
|
Siemens N, Oehmcke-Hecht S, Mettenleiter TC, Kreikemeyer B, Valentin-Weigand P, Hammerschmidt S. Port d'Entrée for Respiratory Infections - Does the Influenza A Virus Pave the Way for Bacteria? Front Microbiol 2017; 8:2602. [PMID: 29312268 PMCID: PMC5742597 DOI: 10.3389/fmicb.2017.02602] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022] Open
Abstract
Bacterial and viral co-infections of the respiratory tract are life-threatening and present a global burden to the global community. Staphylococcus aureus, Streptococcus pneumoniae, and Streptococcus pyogenes are frequent colonizers of the upper respiratory tract. Imbalances through acquisition of seasonal viruses, e.g., Influenza A virus, can lead to bacterial dissemination to the lower respiratory tract, which in turn can result in severe pneumonia. In this review, we summarize the current knowledge about bacterial and viral co-infections of the respiratory tract and focus on potential experimental models suitable for mimicking this disease. Transmission of IAV and pneumonia is mainly modeled by mouse infection. Few studies utilizing ferrets, rats, guinea pigs, rabbits, and non-human primates are also available. The knowledge gained from these studies led to important discoveries and advances in understanding these infectious diseases. Nevertheless, mouse and other infection models have limitations, especially in translation of the discoveries to humans. Here, we suggest the use of human engineered lung tissue, human ex vivo lung tissue, and porcine models to study respiratory co-infections, which might contribute to a greater translation of the results to humans and improve both, animal and human health.
Collapse
Affiliation(s)
- Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Peter Valentin-Weigand
- Center for Infection Medicine, Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Pushko P, Sun X, Tretyakova I, Hidajat R, Pulit-Penaloza JA, Belser JA, Maines TR, Tumpey TM. Mono- and quadri-subtype virus-like particles (VLPs) containing H10 subtype elicit protective immunity to H10 influenza in a ferret challenge model. Vaccine 2016; 34:5235-5242. [PMID: 27663671 DOI: 10.1016/j.vaccine.2016.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
Avian-origin influenza represents a global public health concern. In 2013, the H10N8 virus caused documented human infections for the first time. Currently, there is no approved vaccine against H10 influenza. Recombinant virus-like particles (VLPs) represent a promising vaccine approach. In this study, we evaluated H10 VLPs containing hemagglutinin from H10N8 virus as an experimental vaccine in a ferret challenge model. In addition, we evaluated quadri-subtype VLPs co-localizing H5, H7, H9 and H10 subtypes. Both vaccines elicited serum antibody that reacted with the homologous H10 derived from H10N8 virus and cross-reacted with the heterologous H10N1 virus. Quadri-subtype vaccine also elicited serum antibody to the homologous H5, H7, and H9 antigens and cross-reacted with multiple clades of H5N1 virus. After heterologous challenge with the H10N1 virus, all vaccinated ferrets showed significantly reduced titers of replicating virus in the respiratory tract indicating protective effect of vaccination with either H10 VLPs or with quadri-subtype VLPs.
Collapse
Affiliation(s)
- Peter Pushko
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA.
| | - Xiangjie Sun
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA, USA
| | - Irina Tretyakova
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Rachmat Hidajat
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Joanna A Pulit-Penaloza
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA, USA
| | - Jessica A Belser
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA, USA
| | - Taronna R Maines
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA, USA
| | - Terrence M Tumpey
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA, USA
| |
Collapse
|
9
|
Oxford J, Lambkin-Williams R, Mann A. The Threat of Avian Influenza H5N1: ‘Do We Have the Tools for the Job?’. ACTA ACUST UNITED AC 2016; 18:71-4. [PMID: 17542151 DOI: 10.1177/095632020701800202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For the first time in human history virologists have the knowledge about the avian origin of pandemic influenza A viruses. Furthermore, in the last two decades a new class of anti influenza drugs, the neuraminidase inhibitors (NIs), has been developed from an academic discovery to a series of antiviral drugs to be used in the clinic. At present vaccinologists are producing influenza A (H5N1) vaccines to be stockpiled alongside the NIs to combat the first wave of an anticipated influenza pandemic. Studies from the 1918 infection calamity, the Spanish influenza, and the succeeding pandemics of 1957 and 1968, all caused by avian influenza A viruses, have shown how quickly such a virus can mutate to become less virulent (starting with 50% case fatality) and more infectious. Such a mutation cluster could lead to a rapid increase in world deaths, currently 170, to many millions. However there are optimistic analyses: judicious and swift application of NIs, vaccine and hygiene to an outbreak epicentre, most likely in South-East Asia, could break the chain of transmission.
Collapse
Affiliation(s)
- John Oxford
- Centre for Infectious Diseases, Retroscreen Virology Ltd, London, UK.
| | | | | |
Collapse
|
10
|
Kapczynski DR, Tumpey TM, Hidajat R, Zsak A, Chrzastek K, Tretyakova I, Pushko P. Vaccination with virus-like particles containing H5 antigens from three H5N1 clades protects chickens from H5N1 and H5N8 influenza viruses. Vaccine 2016; 34:1575-1581. [PMID: 26868083 DOI: 10.1016/j.vaccine.2016.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 12/28/2022]
Abstract
Highly pathogenic avian influenza (HPAI) viruses, especially H5N1 strains, represent a public health threat and cause widespread morbidity and mortality in domestic poultry. Recombinant virus-like particles (VLPs) represent a promising novel vaccine approach to control avian influenza including HPAI strains. Influenza VLPs contain viral hemagglutinin (HA), which can be expressed in cell culture within highly immunogenic VLPs that morphologically and antigenically resemble influenza virions, except VLPs are non-infectious. Here we describe a recombinant VLP containing HA proteins derived from three distinct clades of H5N1 viruses as an experimental, broadly protective H5 avian influenza vaccine. A baculovirus vector was configured to co-express the H5 genes from recent H5N1 HPAI isolates A/chicken/Germany/2014 (clade 2.3.4.4), A/chicken/West Java/Subang/29/2007 (clade 2.1.3) and A/chicken/Egypt/121/2012 (clade 2.2.1). Co-expression of these genes in Sf9 cells along with influenza neuraminidase (NA) and retrovirus gag genes resulted in production of triple-clade H555 VLPs that exhibited hemagglutination activity and morphologically resembled influenza virions. Vaccination of chickens with these VLPs resulted in induction of serum antibody responses and efficient protection against experimental challenges with three different viruses including the recent U.S. H5N8 HPAI isolate. We conclude that these novel triple-clade VLPs represent a feasible strategy for simultaneously evoking protective antibodies against multiple variants of H5 influenza virus.
Collapse
Affiliation(s)
| | - Terrence M Tumpey
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA, USA
| | - Rachmat Hidajat
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD, USA
| | | | | | | | - Peter Pushko
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD, USA.
| |
Collapse
|
11
|
Fast PE, Cox JH. An influenza vaccine pill-can we swallow it? THE LANCET. INFECTIOUS DISEASES 2015; 15:992-993. [PMID: 26333316 DOI: 10.1016/s1473-3099(15)00252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Patricia E Fast
- International AIDS Vaccine Initiative, 125 Broad Street, New York, NY 10004, USA.
| | - Josephine H Cox
- International AIDS Vaccine Initiative, 125 Broad Street, New York, NY 10004, USA
| |
Collapse
|
12
|
Tretyakova I, Pearce MB, Florese R, Tumpey TM, Pushko P. Intranasal vaccination with H5, H7 and H9 hemagglutinins co-localized in a virus-like particle protects ferrets from multiple avian influenza viruses. Virology 2013; 442:67-73. [PMID: 23618102 DOI: 10.1016/j.virol.2013.03.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/14/2013] [Accepted: 03/27/2013] [Indexed: 11/26/2022]
Abstract
Avian influenza H5, H7 and H9 viruses top the World Health Organization's (WHO) list of subtypes with the greatest pandemic potential. Here we describe a recombinant virus-like particle (VLP) that co-localizes hemagglutinin (HA) proteins derived from H5N1, H7N2, and H9N2 viruses as an experimental vaccine against these viruses. A baculovirus vector was configured to co-express the H5, H7, and H9 genes from A/Viet Nam/1203/2004 (H5N1), A/New York/107/2003 (H7N2) and A/Hong Kong/33982/2009 (H9N2) viruses, respectively, as well as neuraminidase (NA) and matrix (M1) genes from A/Puerto Rico/8/1934 (H1N1) virus. Co-expression of these genes in Sf9 cells resulted in production of triple-subtype VLPs containing HA molecules derived from the three influenza viruses. The triple-subtype VLPs exhibited hemagglutination and neuraminidase activities and morphologically resembled influenza virions. Intranasal vaccination of ferrets with the VLPs resulted in induction of serum antibody responses and efficient protection against experimental challenges with H5N1, H7N2, and H9N2 viruses.
Collapse
|
13
|
Morens DM, Taubenberger JK. Pandemic influenza: certain uncertainties. Rev Med Virol 2011; 21:262-84. [PMID: 21706672 PMCID: PMC3246071 DOI: 10.1002/rmv.689] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/16/2011] [Accepted: 03/16/2011] [Indexed: 12/14/2022]
Abstract
For at least five centuries, major epidemics and pandemics of influenza have occurred unexpectedly and at irregular intervals. Despite the modern notion that pandemic influenza is a distinct phenomenon obeying such constant (if incompletely understood) rules such as dramatic genetic change, cyclicity, "wave" patterning, virus replacement, and predictable epidemic behavior, much evidence suggests the opposite. Although there is much that we know about pandemic influenza, there appears to be much more that we do not know. Pandemics arise as a result of various genetic mechanisms, have no predictable patterns of mortality among different age groups, and vary greatly in how and when they arise and recur. Some are followed by new pandemics, whereas others fade gradually or abruptly into long-term endemicity. Human influenza pandemics have been caused by viruses that evolved singly or in co-circulation with other pandemic virus descendants and often have involved significant transmission between, or establishment of, viral reservoirs within other animal hosts. In recent decades, pandemic influenza has continued to produce numerous unanticipated events that expose fundamental gaps in scientific knowledge. Influenza pandemics appear to be not a single phenomenon but a heterogeneous collection of viral evolutionary events whose similarities are overshadowed by important differences, the determinants of which remain poorly understood. These uncertainties make it difficult to predict influenza pandemics and, therefore, to adequately plan to prevent them.
Collapse
Affiliation(s)
- David M Morens
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
14
|
Vance MA. Disease Mongering and the Fear of Pandemic Influenza. INTERNATIONAL JOURNAL OF HEALTH SERVICES 2011; 41:95-115. [DOI: 10.2190/hs.41.1.g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The catastrophic H1N1 pandemic of 1918, which killed tens of millions, is now legendary, and influenza policy has centered on preventing another such disaster. There is reason for concern about influenza A. It can rapidly alter its genetic makeup to increase virulence and can jump from other species to humans. Nonetheless, ignorance about influenza in 1918, the lack of effective vaccines or antibacterial and antiviral drugs, and the social disruption caused by World War I also contributed heavily to the lethality, and it is unlikely that influenza of similar destructiveness will recur. The stupefying publicity over the threat of influenza has been generated partly by those, such as the pharmaceutical industry and influenza researchers, who benefit from the increased expenditures the publicity provokes. It is, in effect, disease mongering, the promotion of disease or dread of disease for one's own gain. Huge expenditures on influenza preparedness have produced little demonstrable benefit and some harm, independent of the wasted resources. Disease mongering, including spreading fear of influenza, is widespread and unhealthy and should be vigorously opposed.
Collapse
|
15
|
Morimoto T, Ishikawa H. Evaluation of vaccination strategies to suppress a novel influenza pandemic using an individual-based model. Nihon Eiseigaku Zasshi 2010; 65:459-66. [PMID: 20508388 DOI: 10.1265/jjh.65.459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVES In this study, we aimed to evaluate vaccination strategies with regard to the impact of prioritization, coverage, and a delay in the vaccination program against a novel influenza pandemic with high-level fatality equivalent to Spanish flu using an individual-based model (IBM). Vaccination is one of the main measures to prevent infection, a serious condition, or death. METHODS We constructed an IBM for the transmission of a novel influenza virus utilizing personal information on the basis of demographic data from Sapporo City, thereby resulting in a more realistic model. We designed simulations for scenarios along the guidelines of the Ministry of Health, Labour and Welfare of Japan, which requests the prioritization of vaccination of pregnant women and persons with underlying diseases, among whom influenza would cause higher fatality than among healthy persons, infants, or their parents, as well as school-aged and old-aged persons. RESULTS A vaccination program fully taking into account the ordered priority groups would more effectively reduce the number of deaths in the priority groups and also the total number of deaths in comparison with a program shortening the transition time to the next priority or a non-priority group. A delay in the vaccination program would lower the effectiveness of reducing the numbers of patients and deaths. CONCLUSIONS According to the simulation-based results, when vaccination programs scheduled on the basis of priority groups start 90 and 150 days after outbreak, the total numbers of patients would be reduced to one-third-one-half, and two-thirds, respectively, in comparison with baseline of no vaccination, which leads to the necessity to conduct a vaccination program as soon as possible.
Collapse
Affiliation(s)
- Tomoko Morimoto
- Department of Human Ecology, Graduate School of Environmental Science, Okayama University, Okayama, Japan
| | | |
Collapse
|
16
|
Madhi SA, Schoub B, Klugman KP. Interaction between influenza virus and Streptococcus pneumoniae in severe pneumonia. Expert Rev Respir Med 2010; 2:663-72. [PMID: 20477301 DOI: 10.1586/17476348.2.5.663] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The contribution of bacterial superinfection to influenza-associated pneumonia morbidity and mortality is evident from the 1918 and 1957 influenza pandemics, and is supported by a number of murine model studies. Murine model studies have also assisted in helping to expand our understanding of the pathogenesis of the interaction between the influenza virus and subsequent susceptibility to pneumococcal superinfections. The purported impact that the pneumococcal conjugate vaccine has had on reducing the burden of confirmed influenza-associated pneumonia, as well as upon all-cause clinical pneumonia, provides additional clinical evidence of the role of superimposed pneumococcal infections as a cause of severe pneumonia in children. Using this information together with the evidence for the effectiveness of influenza vaccination against influenza-associated pneumonia, it is imperative that preventive strategies for future influenza pandemic preparedness include broad-based vaccination against pneumococci, as well as ensuring that adequate antimicrobials are available for the early treatment of influenza virus, in addition to pneumococcal and other bacterial infections.
Collapse
Affiliation(s)
- Shabir A Madhi
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa.
| | | | | |
Collapse
|
17
|
Louz D, Bergmans HE, Loos BP, Hoeben RC. Emergence of viral diseases: mathematical modeling as a tool for infection control, policy and decision making. Crit Rev Microbiol 2010; 36:195-211. [DOI: 10.3109/10408411003604619] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Foley PB. Encephalitis lethargica and the influenza virus. II. The influenza pandemic of 1918/19 and encephalitis lethargica: epidemiology and symptoms. J Neural Transm (Vienna) 2009; 116:1295-308. [PMID: 19707848 PMCID: PMC2758910 DOI: 10.1007/s00702-009-0295-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Accepted: 08/06/2009] [Indexed: 11/28/2022]
Abstract
This is the first of two papers which critically examine the relationship between the 1918/19 influenza pandemic and encephalitis lethargica (EL). The role of influenza in the etiology of EL was vigorously debated until 1924. It is notable, however, that the unitarian camp were largely reactive in their argumentation; while the influenza skeptics provided detail descriptions of EL and the features they argued to be unique or at least unusual, influenza supporters focused on sequentially refuting the evidence of their opponents. The impression which emerges from this debate is that the individual features identified by the skeptics were not absolutely pathognomic for EL, but, on the other hand, their combination in one disorder had not previously been described for any other disease.
Collapse
Affiliation(s)
- Paul Bernard Foley
- Prince of Wales Medical Research Institute, Barker Street, Randwick, NSW, 2031, Australia.
| |
Collapse
|
19
|
Brundage JF, Shanks GD. Deaths from bacterial pneumonia during 1918-19 influenza pandemic. Emerg Infect Dis 2008; 14:1193-9. [PMID: 18680641 PMCID: PMC2600384 DOI: 10.3201/eid1408.071313] [Citation(s) in RCA: 265] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A sequential-infection hypothesis is consistent with characteristics of this pandemic. Deaths during the 1918–19 influenza pandemic have been attributed to a hypervirulent influenza strain. Hence, preparations for the next pandemic focus almost exclusively on vaccine prevention and antiviral treatment for infections with a novel influenza strain. However, we hypothesize that infections with the pandemic strain generally caused self-limited (rarely fatal) illnesses that enabled colonizing strains of bacteria to produce highly lethal pneumonias. This sequential-infection hypothesis is consistent with characteristics of the 1918–19 pandemic, contemporaneous expert opinion, and current knowledge regarding the pathophysiologic effects of influenza viruses and their interactions with respiratory bacteria. This hypothesis suggests opportunities for prevention and treatment during the next pandemic (e.g., with bacterial vaccines and antimicrobial drugs), particularly if a pandemic strain–specific vaccine is unavailable or inaccessible to isolated, crowded, or medically underserved populations.
Collapse
Affiliation(s)
- John F Brundage
- Armed Forces Health Surveillance Center, Silver Spring, Maryland 20910, USA.
| | | |
Collapse
|
20
|
Greger M. The Human/Animal Interface: Emergence and Resurgence of Zoonotic Infectious Diseases. Crit Rev Microbiol 2008; 33:243-99. [DOI: 10.1080/10408410701647594] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Tang JW. Pandemic influenza forecasting: does past performance indicate future performance? Am J Infect Control 2008; 36:466-7. [PMID: 18786447 PMCID: PMC7135387 DOI: 10.1016/j.ajic.2007.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 12/28/2007] [Indexed: 11/25/2022]
Affiliation(s)
- Julian W Tang
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR.
| |
Collapse
|
22
|
Krueger AC, Xu Y, Kati WM, Kempf DJ, Maring CJ, McDaniel KF, Molla A, Montgomery D, Kohlbrenner WE. Synthesis of potent pyrrolidine influenza neuraminidase inhibitors. Bioorg Med Chem Lett 2008; 18:1692-5. [PMID: 18242993 DOI: 10.1016/j.bmcl.2008.01.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 01/11/2008] [Accepted: 01/14/2008] [Indexed: 11/18/2022]
Abstract
The synthesis of several pyrrolidine inhibitor analogs is described that possess nanomolar in vitro potencies against the neuraminidase enzymes expressed by the B/Memphis/3/89 and A/N1/PR/8/34 influenza strains.
Collapse
Affiliation(s)
- A Chris Krueger
- Infectious Disease Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 200 Abbott Park Road, AP-52N, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Brundage JF, Shanks GD. What really happened during the 1918 influenza pandemic? The importance of bacterial secondary infections. J Infect Dis 2007; 196:1717-8; author reply 1718-9. [PMID: 18008258 DOI: 10.1086/522355] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
24
|
Hom GG, Chous AP. The prospect of pandemic influenza: why should the optometrist be concerned about a public health problem? OPTOMETRY (ST. LOUIS, MO.) 2007; 78:629-43. [PMID: 18054133 PMCID: PMC7106072 DOI: 10.1016/j.optm.2007.04.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 04/23/2007] [Accepted: 04/25/2007] [Indexed: 11/05/2022]
Abstract
BACKGROUND Optometrists are uniquely placed in the health care field because they provide both services as well as goods to patients. In the event of an influenza pandemic, optometrists may be challenged with a host of issues, including impediments to clinical patient care, manufacture and delivery of ophthalmic devices, and maintaining business continuity and infection control. OVERVIEW This report reviews pandemic influenza, the effect of a pandemic event on business survival, and response measures for the primary eye care provider. The ethical and legal issues surrounding control of a pandemic influenza and the prospect of telemedicine as a form of social distancing are also discussed. CONCLUSIONS Knowledge of the pharmacologic and nonpharmacologic measures to control a pandemic influenza will help prepare the eye care provider for addressing challenges to patient care and business continuity in the face of a highly contagious disease. Understanding the legal and ethical issues that arise during a pandemic event will help optometrists make informed choices as health care professionals and as citizens.
Collapse
|
25
|
Ceccaldi PF, Longuet P, Mandelbrot L. [Emerging viral infectious diseases and pregnancy]. ACTA ACUST UNITED AC 2007; 35:339-42. [PMID: 17368948 PMCID: PMC7118774 DOI: 10.1016/j.gyobfe.2007.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 02/19/2007] [Indexed: 11/23/2022]
Abstract
Diverses infections émergentes sont rapportées depuis la mise en place d'une surveillance épidémiologique accrue. Ces infections peuvent compromettre le bon déroulement d'une grossesse, en mettant en jeu le pronostic vital maternel ou le développement de l'enfant lors d'une transmission verticale. À travers une revue récente de la littérature, nous rapportons les conséquences de ces virus émergents les plus cités (H5N1, Coronavirus du SRAS, Chikungunya, virus du Nil occidental) et discutons la prise en charge périnatale.
Collapse
Affiliation(s)
- P-F Ceccaldi
- Service de gynécologie-obstétrique, CHU Louis-Mourier, APHP, université Paris-VII, 178, rue des Renouillers, 92701 Colombes, France.
| | | | | |
Collapse
|