1
|
Hib Vaccines: Past, Present, and Future Perspectives. J Immunol Res 2016; 2016:7203587. [PMID: 26904695 PMCID: PMC4745871 DOI: 10.1155/2016/7203587] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/24/2015] [Indexed: 12/31/2022] Open
Abstract
Haemophilus influenzae type b (Hib) causes many severe diseases, including epiglottitis, pneumonia, sepsis, and meningitis. In developed countries, the annual incidence of meningitis caused by bacteria is approximately 5–10 cases per population of 100,000. The Hib conjugate vaccine is considered protective and safe. Adjuvants, molecules that can enhance and/or regulate the fundamental immunogenicity of an antigen, comprise a wide range of diverse compounds. While earlier developments of adjuvants created effective products, there is still a need to create new generations, rationally designed based on recent discoveries in immunology, mainly in innate immunity. Many factors may play a role in the immunogenicity of Hib conjugate vaccines, such as the polysaccharides and proteins carrier used in vaccine construction, as well as the method of conjugation. A Hib conjugate vaccine has been constructed via chemical synthesis of a Hib saccharide antigen. Two models of carbohydrate-protein conjugate have been established, the single ended model (terminal amination-single method) and cross-linked lattice matrix (dual amination method). Increased knowledge in the fields of immunology, molecular biology, glycobiology, glycoimmunology, and the biology of infectious microorganisms has led to a dramatic increase in vaccine efficacy.
Collapse
|
2
|
Vaccines for TB: Lessons from the Past Translating into Future Potentials. J Immunol Res 2015; 2015:916780. [PMID: 26146643 PMCID: PMC4469767 DOI: 10.1155/2015/916780] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/11/2015] [Accepted: 05/18/2015] [Indexed: 01/20/2023] Open
Abstract
Development of vaccines for infectious diseases has come a long way with recent advancements in adjuvant developments and discovery of new antigens that are capable of eliciting strong immunological responses for sterile eradication of disease. Tuberculosis (TB) that kills nearly 2 million of the population every year is also one of the highlights of the recent developments. The availability or not of diagnostic methods for infection has implications for the control of the disease by the health systems but is not related to the immune surveillance, a phenomenon derived from the interaction between the bacteria and their host. Here, we will review the immunology of TB and current vaccine candidates for TB. Current strategies of developing new vaccines against TB will also be reviewed in order to further discuss new insights into immunotherapeutic approaches involving adjuvant and antigens combinations that might be of potential for the control of TB.
Collapse
|
3
|
Phillips R, Williams JN, Tan WM, Bielecka MK, Thompson H, Hung MC, Heckels JE, Christodoulides M. Immunization with recombinant Chaperonin60 (Chp60) outer membrane protein induces a bactericidal antibody response against Neisseria meningitidis. Vaccine 2013; 31:2584-90. [PMID: 23566947 DOI: 10.1016/j.vaccine.2013.03.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 12/30/2022]
Abstract
Sera from individuals colonized with Neisseria meningitidis and from patients with meningococcal disease contain antibodies specific for the neisserial heat-shock/chaperonin (Chp)60 protein. In this study, immunization of mice with recombinant (r)Chp60 in saline; adsorbed to aluminium hydroxide; in liposomes and detergent micelles, with and without the adjuvant MonoPhosphoryl Lipid A (MPLA), induced high and similar (p>0.05) levels of antibodies that recognized Chp60 in outer membranes (OM). FACS analysis and immuno-fluorescence experiments demonstrated that Chp60 was surface-expressed on meningococci. By western blotting, murine anti-rChp60 sera recognized a protein of Mr 60kDa in meningococcal cell lysates. However, cross-reactivity with human HSP60 protein was also observed. By comparing translated protein sequences of strains, 40 different alleles were found in meningococci in the Bacterial Isolate Genome Sequence database with an additional 5 new alleles found in our selection of 13 other strains from colonized individuals and patients. Comparison of the non-redundant translated amino acid sequences from all the strains revealed ≥97% identity between meningococcal Chp60 proteins, and in our 13 strains the protein was expressed to high and similar levels. Bactericidal antibodies (median reciprocal titres of 32-64) against the homologous strain MC58 were induced by immunization with rChp60 in liposomes, detergent micelles and on Al(OH)3. Bactericidal activity was influenced by the addition of MPLA and the delivery formulation used. Moreover, the biological activity of anti-Chp60 antisera did not extend significantly to heterologous meningococcal strains. Thus, in order to provide broad coverage, vaccines based on Chp60 would require multiple proteins and specific bactericidal epitope identification.
Collapse
Affiliation(s)
- Renee Phillips
- Neisseria Research Group, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Medical School, Southampton General Hospital, Southampton SO166YD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Nemirovsky A, Fisher Y, Baron R, Cohen IR, Monsonego A. Amyloid beta-HSP60 peptide conjugate vaccine treats a mouse model of Alzheimer's disease. Vaccine 2011; 29:4043-50. [PMID: 21473952 DOI: 10.1016/j.vaccine.2011.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 11/24/2022]
Abstract
Active vaccination with amyloid beta peptide (Aβ) to induce beneficial antibodies was found to be effective in mouse models of Alzheimer's disease (AD), but human vaccination trials led to adverse effects, apparently caused by exuberant T-cell reactivity. Here, we sought to develop a safer active vaccine for AD with reduced T-cell activation. We treated a mouse model of AD carrying the HLA-DR DRB1*1501 allele, with the Aβ B-cell epitope (Aβ 1-15) conjugated to the self-HSP60 peptide p458. Immunization with the conjugate led to the induction of Aβ-specific antibodies associated with a significant reduction of cerebral amyloid burden and of the accompanying inflammatory response in the brain; only a mild T-cell response specific to the HSP peptide but not to the Aβ peptide was found. This type of vaccination, evoking a gradual increase in antibody titers accompanied by a mild T-cell response is likely due to the unique adjuvant and T-cell stimulating properties of the self-HSP peptide used in the conjugate and might provide a safer approach to effective AD vaccination.
Collapse
Affiliation(s)
- Anna Nemirovsky
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | |
Collapse
|
5
|
Quintana FJ, Cohen IR. The HSP60 immune system network. Trends Immunol 2010; 32:89-95. [PMID: 21145789 DOI: 10.1016/j.it.2010.11.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/05/2010] [Accepted: 11/05/2010] [Indexed: 02/06/2023]
Abstract
Heat shock proteins (HSPs) were initially discovered as participants in the cellular response to stress. It is now clear, however, that self and microbial HSPs also play an important role in the control of the immune response. Here, we focus on HSP60 and its interactions with both the innate and adaptive immune system in mammals. We also consider that circulating HSP60 and the quantities and specificities of serum antibodies to HSP60 provide a biomarker to monitor the immune status of the individual. Thus, the dual role of HSP60 as an immune modulator and a biomarker, provides an opportunity to modulate immunity for therapeutic purposes, and to monitor the immune response in health and disease.
Collapse
Affiliation(s)
- Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston MA, USA.
| | | |
Collapse
|
6
|
Gupta SK, Smita S, Sarangi AN, Srivastava M, Akhoon BA, Rahman Q, Gupta SK. In silico CD4+ T-cell epitope prediction and HLA distribution analysis for the potential proteins of Neisseria meningitidis Serogroup B—A clue for vaccine development. Vaccine 2010; 28:7092-7. [DOI: 10.1016/j.vaccine.2010.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 07/22/2010] [Accepted: 08/02/2010] [Indexed: 01/11/2023]
|
7
|
Abstract
The capsular polysaccharides (CPSs) of most pathogenic bacteria are T cell-independent antigens whose conjugation to carrier proteins evokes a carbohydrate-specific response eliciting T cell help. However, certain bacterial CPSs, known as zwitterionic polysaccharides (ZPSs), activate the adaptive immune system through processing by antigen-presenting cells and presentation by the major histocompatibility complex class II pathway to CD4(+) T cells. This discovery was the first mechanistic insight into how carbohydrates-a class of biological molecules previously thought to be T cell independent-can in fact activate T cells. Through their ability to activate CD4(+) T cells, ZPSs direct the cellular and physical maturation of the developing immune system. In this review, we explore the still-enigmatic relations between CPSs and the adaptive immune machinery at the cellular and molecular levels, and we discuss how new insights into the biological impact of ZPSs expand our concepts of the role of carbohydrates in microbial interactions with the adaptive immune system.
Collapse
Affiliation(s)
- Fikri Y Avci
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
8
|
Wieten L, van der Zee R, Spiering R, Wagenaar-Hilbers J, van Kooten P, Broere F, van Eden W. A novel heat-shock protein coinducer boosts stress protein Hsp70 to activate T cell regulation of inflammation in autoimmune arthritis. ACTA ACUST UNITED AC 2010; 62:1026-35. [PMID: 20131272 DOI: 10.1002/art.27344] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Stress proteins, such as members of the heat-shock protein (HSP) family, are up-regulated by cells in inflamed tissue and can be viewed functionally as "biomarkers" for the immune system to monitor inflammation. Exogenous administration of stress proteins has induced immunoregulation in various models of inflammation and has also been shown to be effective in clinical trials in humans. This study was undertaken to test the hypothesis that boosting of endogenous HSP expression can restore effective immunoregulation through T cells specific for stress proteins. METHODS Stress protein expression was manipulated in vivo and in vitro with a food component (carvacrol), and immune recognition of stress proteins was studied. RESULTS Carvacrol, a major compound in the oil of many Origanum species, had a notable capacity to coinduce cellular Hsp70 expression in vitro and, upon intragastric administration, in Peyer's patches of mice in vivo. As a consequence, carvacrol specifically promoted T cell recognition of endogenous Hsp70, as demonstrated in vitro by the activation of an Hsp70-specific T cell hybridoma and in vivo by amplified T cell responses to Hsp70. Carvacrol administration also increased the number of CD4+CD25+FoxP3+ T cells, systemically in the spleen and locally in the joint, and almost completely suppressed proteoglycan-induced experimental arthritis. Furthermore, protection against arthritis could be transferred with T cells isolated from carvacrol-fed mice. CONCLUSION These findings illustrate that a food component can boost protective T cell responses to a self stress protein and down-regulate inflammatory disease, i.e., that the immune system can respond to diet.
Collapse
Affiliation(s)
- Lotte Wieten
- Institute of Infectious Diseases and Immunology, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
9
|
Gershoni-Yahalom O, Landes S, Kleiman-Shoval S, Ben-Nathan D, Kam M, Lachmi BE, Khinich Y, Simanov M, Samina I, Eitan A, Cohen IR, Rager-Zisman B, Porgador A. Chimeric vaccine composed of viral peptide and mammalian heat-shock protein 60 peptide protects against West Nile virus challenge. Immunology 2010; 130:527-35. [PMID: 20331473 DOI: 10.1111/j.1365-2567.2010.03251.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The protective efficacy and immunogenicity of a chimeric peptide against West Nile virus (WNV) was evaluated. This virus is the aetiological agent of West Nile fever, which has recently emerged in the western hemisphere. The rapid spread of WNV throughout North America, as well as the constantly changing epidemiology and transmission of the virus by blood transfusion and transplantation, have raised major public-health concerns. Currently, there are no effective treatments for WNV or vaccine for human use. We previously identified a novel, continuous B-cell epitope from domain III of the WNV envelope protein, termed Ep15. To test whether this epitope can protect against WNV infection, we synthesized a linear chimeric peptide composed of Ep15 and the heat-shock protein 60 peptide, p458. The p458 peptide is an effective carrier peptide for subunit vaccines against other infectious agents. We now report that mice immunized with the chimeric peptide, p458-Ep15, were resistant to lethal challenges with three different WNV strains. Moreover, their brains were free of viral genome and infectious virus. Mice immunized with Ep15 alone or with p431-Ep15, a control conjugate, were not protected. The chimeric p458-Ep15 peptide induced WNV-specific immunoglobulin G antibodies that neutralized the virus and induced the secretion of interferon-gammain vitro. Challenge of chimeric peptide-immunized mice considerably enhanced WNV-specific neutralizing antibodies. We conclude that this chimeric peptide can be used for formulation of a human vaccine against WNV.
Collapse
Affiliation(s)
- Orly Gershoni-Yahalom
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Neonatal and infantile immune responses to encapsulated bacteria and conjugate vaccines. Clin Dev Immunol 2008; 2008:628963. [PMID: 18825269 PMCID: PMC2553187 DOI: 10.1155/2008/628963] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2008] [Revised: 06/25/2008] [Accepted: 08/01/2008] [Indexed: 12/21/2022]
Abstract
Encapsulated bacteria are responsible for the majority of mortality among neonates and infants. The major components on the surface of these bacteria are polysaccharides which are important virulence factors. Immunity against these components protects against disease. However, most of the polysaccharides are thymus-independent (TI)-2 antigens which induce an inadequate immune response in neonates and infants. The mechanisms that are thought to play a role in the unresponsiveness of this age group to TI-2 stimuli will be discussed. The lack of immune response may be overcome by conjugating the polysaccharides to a carrier protein. This transforms bacterial polysaccharides from a TI-2 antigen into a thymus-dependent (TD) antigen, thereby inducing an immune response and immunological memory in neonates and infants. Such conjugated vaccines have been shown to be effective against the most common causes of invasive disease caused by encapsulated bacteria in neonates and children. These and several other approaches in current vaccine development will be discussed.
Collapse
|
11
|
Dziadek S, Jacques S, Bundle D. A Novel Linker Methodology for the Synthesis of Tailored Conjugate Vaccines Composed of Complex Carbohydrate Antigens and Specific TH‐Cell Peptide Epitopes. Chemistry 2008; 14:5908-17. [DOI: 10.1002/chem.200800065] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Cohen N, Stolarsky-Bennun M, Amir-Kroll H, Margalit R, Nussbaum G, Cohen-Sfady M, Pevsner-Fischer M, Fridkin M, Bercovier H, Eisenbach L, Jung S, Cohen IR. Pneumococcal Capsular Polysaccharide Is Immunogenic When Present on the Surface of Macrophages and Dendritic Cells: TLR4 Signaling Induced by a Conjugate Vaccine or by Lipopolysaccharide Is Conducive. THE JOURNAL OF IMMUNOLOGY 2008; 180:2409-18. [DOI: 10.4049/jimmunol.180.4.2409] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Abstract
Here I present the idea that the immune system uses a computational strategy to carry out its many functions in protecting and maintaining the body. Along the way, I define the concepts of computation, Turing machines and system states. I attempt to show that reframing our view of the immune system in computational terms is worth our while.
Collapse
Affiliation(s)
- Irun R Cohen
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|