1
|
Arega AM, Dhal AK, Pattanaik KP, Nayak S, Mahapatra RK. An Immunoinformatics-Based Study of Mycobacterium tuberculosis Region of Difference-2 Uncharacterized Protein (Rv1987) as a Potential Subunit Vaccine Candidate for Preliminary Ex Vivo Analysis. Appl Biochem Biotechnol 2024; 196:2367-2395. [PMID: 37498378 DOI: 10.1007/s12010-023-04658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/28/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is the pathogen that causes tuberculosis and develops resistance to many of the existing drugs. The sole licensed TB vaccine, BCG, is unable to provide a comprehensive defense. So, it is crucial to maintain the immunological response to eliminate tuberculosis. Our previous in silico study reported five uncharacterized proteins as potential vaccine antigens. In this article, we considered the uncharacterized Mtb H37Rv regions of difference (RD-2) Rv1987 protein as a promising vaccine candidate. The vaccine quality of the protein was analyzed using reverse vaccinology and immunoinformatics-based quality-checking parameters followed by an ex vivo preliminary investigation. In silico analysis of Rv1987 protein predicted it as surface localized, secretory, single helix, antigenic, non-allergenic, and non-homologous to the host protein. Immunoinformatics analysis of Rv1987 by CD4 + and CD8 + T-cells via MHC-I and MHC-II binding affinity and presence of B-cell epitope predicted its immunogenicity. The docked complex analysis of the 3D model structure of the protein with immune cell receptor TLR-4 revealed the protein's capability for potential interaction. Furthermore, the target protein-encoded gene Rv1987 was cloned, over-expressed, purified, and analyzed by mass spectrometry (MS) to report the target peptides. The qRT-PCR gene expression analysis shows that it is capable of activating macrophages and significantly increasing the production of a number of key cytokines (TNF-α, IL-1β, and IL-10). Our in-silico analysis and ex vivo preliminary investigations revealed the immunogenic potential of the target protein. These findings suggest that the Rv1987 be undertaken as a potent subunit vaccine antigen and that further animal model immuno-modulation studies would boost the novel TB vaccine discovery and/or BCG vaccine supplement pipeline.
Collapse
Affiliation(s)
- Aregitu Mekuriaw Arega
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha, India
- National Veterinary Institute, Debre Zeit, Ethiopia
| | - Ajit Kumar Dhal
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha, India
| | | | - Sasmita Nayak
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha, India
| | | |
Collapse
|
2
|
Namvarpour M, Tebianian M, Mansouri R, Ebrahimi SM, Kashkooli S. Comparison of different immunization routes on the immune responses induced by Mycobacterium tuberculosis ESAT-6/CFP-10 recombinant protein. Biologicals 2019; 59:6-11. [PMID: 31014910 DOI: 10.1016/j.biologicals.2019.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/20/2018] [Accepted: 04/14/2019] [Indexed: 01/09/2023] Open
Abstract
According to some difficulties against tuberculosis (TB) vaccination, development of new TB vaccines has been noted in recent years. Selection of proper route for vaccination is one of the most important factors for induction of good immune responses. Hence, in this study, the effects of different administration routes, including intranasal (I.N), subcutaneous (S.C) and intramuscular (I.M) on immune responses against Mycobacterium tuberculosis ESAT-6/CFP-10 recombinant protein has been considered. Recombinant ESAT-6/CFP-10 protein with or without adjuvant (MF59 or cholera toxin B (CTB)) was administered by three routes of I.M, I.N and S.C to mice for three times. Then, the levels of specific antibodies, lymphocyte proliferation and IFN-γ/IL-5 cytokine profile have been carried out to evaluate the humoral and cellular responses. The results showed that the titers of specific antibodies were quickly elevated in S.C and I.M groups after first immunization. Otherwise, the raise of antibody has delay in the I.N immunized animals. The levels of IFN-γ and lymphocyte proliferation have been increased in all of vaccinated groups. However, the I.N immunized mice have lower levels of IL-5 production. Based on our finding, the ESAT-6/CFP-10 recombinant protein is a potent stimulator of immune responses in all of three immunization strategies. However intranasal administration of this antigen has tended to reinforcement of cellular immune responses.
Collapse
Affiliation(s)
- Mozhdeh Namvarpour
- Department of Immunology, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Majid Tebianian
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Reza Mansouri
- Department of Immunology, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyyed Mahmoud Ebrahimi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 14155-3651, Tehran, Iran
| | - Shiva Kashkooli
- - Department of Biotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, (IAUPS), Tehran, Iran
| |
Collapse
|
3
|
Nandakumar S, Kannanganat S, Dobos KM, Lucas M, Spencer JS, Fang S, McDonald MA, Pohl J, Birkness K, Chamcha V, Ramirez MV, Plikaytis BB, Posey JE, Amara RR, Sable SB. O-mannosylation of the Mycobacterium tuberculosis adhesin Apa is crucial for T cell antigenicity during infection but is expendable for protection. PLoS Pathog 2013; 9:e1003705. [PMID: 24130497 PMCID: PMC3795050 DOI: 10.1371/journal.ppat.1003705] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/28/2013] [Indexed: 01/24/2023] Open
Abstract
Glycosylation is the most abundant post-translational polypeptide chain modification in nature. Although carbohydrate modification of protein antigens from many microbial pathogens constitutes important components of B cell epitopes, the role in T cell immunity is not completely understood. Here, using ELISPOT and polychromatic flow cytometry, we show that O-mannosylation of the adhesin, Apa, of Mycobacterium tuberculosis (Mtb) is crucial for its T cell antigenicity in humans and mice after infection. However, subunit vaccination with both mannosylated and non-mannosylated Apa induced a comparable magnitude and quality of T cell response and imparted similar levels of protection against Mtb challenge in mice. Both forms equally improved waning BCG vaccine-induced protection in elderly mice after subunit boosting. Thus, O-mannosylation of Apa is required for antigenicity but appears to be dispensable for its immunogenicity and protective efficacy in mice. These results have implications for the development of subunit vaccines using post-translationally modified proteins such as glycoproteins against infectious diseases like tuberculosis.
Collapse
Affiliation(s)
- Subhadra Nandakumar
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sunil Kannanganat
- Department of Microbiology and Immunology, Yerkes National Primate Research Center and Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Karen M. Dobos
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Megan Lucas
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - John S. Spencer
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sunan Fang
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Melissa A. McDonald
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jan Pohl
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kristin Birkness
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Venkateswarlu Chamcha
- Department of Microbiology and Immunology, Yerkes National Primate Research Center and Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Melissa V. Ramirez
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Bonnie B. Plikaytis
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James E. Posey
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Rama Rao Amara
- Department of Microbiology and Immunology, Yerkes National Primate Research Center and Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Suraj B. Sable
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
4
|
Ahn SS, Jeon BY, Park SJ, Choi DH, Ku SH, Cho SN, Sung YC. Nonlytic Fc-fused IL-7 synergizes with Mtb32 DNA vaccine to enhance antigen-specific T cell responses in a therapeutic model of tuberculosis. Vaccine 2013; 31:2884-90. [PMID: 23624092 DOI: 10.1016/j.vaccine.2013.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 03/20/2013] [Accepted: 04/09/2013] [Indexed: 11/16/2022]
Abstract
Improvement to the immunogenicity of DNA vaccines was evaluated in a Mycobacterium tuberculosis (MTB) infection mouse model examining the combined effects of nonlytic Fc-fused IL-7 DNA (IL-7-nFc) and Flt3-ligand fused Mtb32 (F-Mtb32) DNA. Mice were treated with conventional chemotherapy for 6 weeks from 4 weeks after aerosol infection of MTB. Following the start of chemotherapy, DNA immunizations were administered five times with 2-week intervals. Coadministration of IL-7-nFc and F-Mtb32 DNA given during chemotherapy synergistically enhanced the magnitude of Mtb32-specific T cell responses and sustained for one-year after the last immunization assessed by IFN-γ ELISPOT assay. After dexamethasone treatment, a significantly reduced MTB reactivation was observed in mice received both IL-7-nFc and F-Mtb32 DNA, compared with F-MTb32 DNA alone or with control mice. In addition, mice treated with IL-7-nFc and F-Mtb32 DNA together showed improved lung pathology and reduced pulmonary inflammation values relative to F-Mtb32 DNA or saline injected mice. Intracellular cytokine staining revealed that the protection levels induced by combination therapy with IL-7-nFc and F-Mtb32 DNA was associated with enhanced Mtb32-specific IFN-γ secreting CD4(+) T cell responses and CD8(+) T cell responses stimulated with CTL epitope peptide in the lungs and spleens. These data suggest that IL-7-nFc as a novel TB adjuvant may facilitate therapeutic TB DNA vaccine to the clinics through significant enhancement of codelivered DNA vaccine-induced T cell immunity.
Collapse
Affiliation(s)
- So-Shin Ahn
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
5
|
Johnston C, Douarre PE, Soulimane T, Pletzer D, Weingart H, MacSharry J, Coffey A, Sleator RD, O'Mahony J. Codon optimisation to improve expression of a Mycobacterium avium ssp. paratuberculosis-specific membrane-associated antigen by Lactobacillus salivarius. Pathog Dis 2013; 68:27-38. [PMID: 23620276 DOI: 10.1111/2049-632x.12040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/11/2013] [Accepted: 03/20/2013] [Indexed: 01/15/2023] Open
Abstract
Subunit and DNA-based vaccines against Mycobacterium avium ssp. paratuberculosis (MAP) attempt to overcome inherent issues associated with whole-cell formulations. However, these vaccines can be hampered by poor expression of recombinant antigens from a number of disparate hosts. The high G+C content of MAP invariably leads to a codon bias throughout gene expression. To investigate if the codon bias affects recombinant MAP antigen expression, the open reading frame of a MAP-specific antigen MptD (MAP3733c) was codon optimised for expression against a Lactobacillus salivarius host. Of the total 209 codons which constitute MAP3733c, 172 were modified resulting in a reduced G+C content from 61% for the native gene to 32.7% for the modified form. Both genes were placed under the transcriptional control of the PnisA promoter; allowing controlled heterologous expression in L. salivarius. Expression was monitored using fluorescence microscopy and microplate fluorometry via GFP tags translationally fused to the C-termini of the two MptD genes. A > 37-fold increase in expression was observed for the codon-optimised MAP3733synth variant over the native gene. Due to the low cost and improved expression achieved, codon optimisation significantly improves the potential of L. salivarius as an oral vaccine stratagem against Johne's disease.
Collapse
Affiliation(s)
- Christopher Johnston
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Barat S, Willer Y, Rizos K, Claudi B, Mazé A, Schemmer AK, Kirchhoff D, Schmidt A, Burton N, Bumann D. Immunity to intracellular Salmonella depends on surface-associated antigens. PLoS Pathog 2012; 8:e1002966. [PMID: 23093937 PMCID: PMC3475680 DOI: 10.1371/journal.ppat.1002966] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/14/2012] [Indexed: 01/05/2023] Open
Abstract
Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens. Salmonella infections cause extensive morbidity and mortality worldwide. A vaccine that prevents systemic Salmonella infections is urgently needed but suitable antigens remain largely unknown. In this study we identified several antigen candidates that mediated protective immunity to Salmonella in a mouse typhoid fever model. Interestingly, all these antigens were associated with the Salmonella surface. This suggested that similar antigen properties might be relevant for CD4 T cell dependent immunity to intracellular pathogens like Salmonella, as for antibody-dependent immunity to extracellular pathogens. Detailed analysis revealed that Salmonella surface antigens were not generally more immunogenic compared to internal antigens. However, internal antigens were inaccessible for CD4 T cell recognition of a substantial number of infected host cells that contained exclusively live intact Salmonella. Together, these results might pave the way for development of an efficacious Salmonella vaccine, and provide a basis to facilitate antigen identification for Salmonella and possibly other intracellular pathogens.
Collapse
Affiliation(s)
- Somedutta Barat
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Yvonne Willer
- Junior Group “Mucosal Infections”, Hannover Medical School, Hannover, Germany
| | - Konstantin Rizos
- Department of Molecular Biology, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Beatrice Claudi
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Alain Mazé
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Anne K. Schemmer
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Dennis Kirchhoff
- Immunomodulation Group, Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Neil Burton
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
- Junior Group “Mucosal Infections”, Hannover Medical School, Hannover, Germany
- Department of Molecular Biology, Max-Planck-Institute for Infection Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|
7
|
Cho YS, Dobos KM, Prenni J, Yang H, Hess A, Rosenkrands I, Andersen P, Ryoo SW, Bai GH, Brennan MJ, Izzo A, Bielefeldt-Ohmann H, Belisle JT. Deciphering the proteome of the in vivo diagnostic reagent "purified protein derivative" from Mycobacterium tuberculosis. Proteomics 2012; 12:979-91. [PMID: 22522804 DOI: 10.1002/pmic.201100544] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Purified protein derivative (PPD) has served as a safe and effective diagnostic reagent for 60 years and is the only broadly available material to diagnose latent tuberculosis infections. This reagent is also used as a standard control for a number of in vitro immunological assays. Nevertheless, the molecular composition and specific products that contribute to the extraordinary immunological reactivity of PPD are poorly defined. Here, a proteomic approach was applied to elucidate the gene products in the U.S. Food and Drug Administration (FDA) standard PPD-S2. Many known Mycobacterium tuberculosis T-cell antigens were detected. Of significance, four heat shock proteins (HSPs) (GroES, GroEL2, HspX, and DnaK) dominated the composition of PPD. The chaperone activities and capacity of these proteins to influence immunological responses may explain the exquisite solubility and immunological potency of PPD. Spectral counting analysis of three separate PPD reagents revealed significant quantitative variances. Gross delayed-type hypersensitivity (DTH) responses in M. tuberculosis infected guinea pigs were comparable among these PPD preparations; however, detailed histopathology of the DTH lesions exposed unique differences, which may be explained by the variability observed in the presence and abundance of early secretory system (Esx) proteins. Variability in PPD reagents may explain differences in DTH responses reported among populations.
Collapse
Affiliation(s)
- Yun Sang Cho
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Billeskov R, Grandal MV, Poulsen C, Christensen JP, Winther N, Vingsbo-Lundberg C, Hoang TTKT, van Deurs B, Song YH, Aagaard C, Andersen P, Dietrich J. Difference in TB10.4 T-cell epitope recognition following immunization with recombinant TB10.4, BCG or infection with Mycobacterium tuberculosis. Eur J Immunol 2010; 40:1342-54. [PMID: 20186878 DOI: 10.1002/eji.200939830] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most novel vaccines against infectious diseases are based on recombinant Ag; however, only few studies have compared Ag-specific immune responses induced by natural infection with that induced by the same Ag in a recombinant form. Here, we studied the epitope recognition pattern of the tuberculosis vaccine Ag, TB10.4, in a recombinant form, or when expressed by the pathogen Mycobacterium tuberculosis (M.tb), or by the current anti-tuberculosis vaccine, Mycobacterium bovis BCG. We showed that BCG and M.tb induced a similar CD4+ T-cell specific TB10.4 epitope-pattern, which differed completely from that induced by recombinant TB10.4. This difference was not due to post-translational modifications of TB10.4 or because TB10.4 is secreted from BCG and M.tb as a complex with Rv0287. In addition, BCG and TB10.4/CAF01 were both taken up by DC and macrophages in vivo, and in vitro uptake experiments revealed that both TB10.4 and BCG were transported to Lamp+-compartments. BCG and TB10.4 however, were directed to different types of Lamp+-compartments in the same APC, which may lead to different epitope recognition patterns. In conclusion, we show that different vectors can induce completely different recognition of the same protein.
Collapse
Affiliation(s)
- Rolf Billeskov
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gao H, Li K, Yu S, Xiong S. A novel DNA vaccine containing multiple TB-specific epitopes cast in a natural structure elicits enhanced Th1 immunity compared with BCG. Microbiol Immunol 2009; 53:541-9. [PMID: 19780967 DOI: 10.1111/j.1348-0421.2009.00157.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vaccination is expected to make a major contribution to the goal of eliminating tuberculosis worldwide by 2050. Because the protection afforded by the currently available tuberculosis vaccine, BCG, is insufficient, new vaccine strategies are urgently needed. Protective immunity against MTB depends on generation of a Th1-type cellular immune response characterized by secretion of IFN-gamma from antigen-specific T cells. Epitope-driven vaccines are created from sub-sequences of proteins (epitopes) derived by scanning the protein sequences of pathogens and selecting epitopes with patterns of amino acids which permit binding to human MHC molecules. Guided by the crystal structure of HSP65 and its characteristics, four functional T cell epitopes elaborately elicited from ESAT-6, Ag85A, CFP-10 and Ag85B were cast into the intermediate domain of HSP65. A panel of a novel chimeric vaccine, ECANS, expressing HSP65 and combined T cell epitopes was created. Gene cloning and sequencing, DNA vaccination and humoral and cellular responses were studied. After being immunized with DNA vaccine three times, all mice injected with ECANS had specific cellular immune responses. In addition, lymphocytes obtained from the spleen of ECANS immunized mice at week eight exhibited significantly greater specific lymphocyte proliferation, IFN-gamma secretion and CTL activity than those of mice that had been immunized with BCG. DNA vaccine with ECANS can successfully induce enhanced specific cellular immune response to PPD, and further study of its protective effects against Mycobacterium tuberculosis in vivo is needed.
Collapse
Affiliation(s)
- Haifeng Gao
- Institute for Immunobiology, Department of Immunology, Shanghai Medical College of Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
10
|
Moreno-Mendieta SA, Rocha-Zavaleta L, Rodriguez-Sanoja R. Adjuvants in tuberculosis vaccine development. ACTA ACUST UNITED AC 2009; 58:75-84. [PMID: 20002177 DOI: 10.1111/j.1574-695x.2009.00629.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tuberculosis remains a major public health problem around the world. Because the Mycobacterium bovis Bacilli-Calmette-Guerin (BCG) vaccine fails to protect adults from pulmonary tuberculosis, there is an urgent need for improved vaccine formulations. Unlike BCG, recombinant vaccines purified from bacterial expression vectors, as well as naked DNA, require an additional adjuvant. Recent improvements in our understanding of disease immunopathology, together with advances in biochemical and molecular techniques, have permitted the successful development of promising tuberculosis vaccine delivery and adjuvant combinations for human use. Here, we summarize the current state of adjuvant development and its impact on tuberculosis vaccine progress.
Collapse
Affiliation(s)
- Silvia A Moreno-Mendieta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, México D.F., Mexico
| | | | | |
Collapse
|
11
|
Shi C, Yuan S, Zhang H, Zhang T, Wang L, Xu Z. Cell-Mediated Immune Responses and Protective Efficacy against Infection withMycobacterium tuberculosisInduced by Hsp65 and hIL-2 Fusion Protein in Mice. Scand J Immunol 2009; 69:140-9. [DOI: 10.1111/j.1365-3083.2008.02207.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
12
|
|
13
|
Zvi A, Ariel N, Fulkerson J, Sadoff JC, Shafferman A. Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses. BMC Med Genomics 2008; 1:18. [PMID: 18505592 PMCID: PMC2442614 DOI: 10.1186/1755-8794-1-18] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 05/28/2008] [Indexed: 12/19/2022] Open
Abstract
Background Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), infects ~8 million annually culminating in ~2 million deaths. Moreover, about one third of the population is latently infected, 10% of which develop disease during lifetime. Current approved prophylactic TB vaccines (BCG and derivatives thereof) are of variable efficiency in adult protection against pulmonary TB (0%–80%), and directed essentially against early phase infection. Methods A genome-scale dataset was constructed by analyzing published data of: (1) global gene expression studies under conditions which simulate intra-macrophage stress, dormancy, persistence and/or reactivation; (2) cellular and humoral immunity, and vaccine potential. This information was compiled along with revised annotation/bioinformatic characterization of selected gene products and in silico mapping of T-cell epitopes. Protocols for scoring, ranking and prioritization of the antigens were developed and applied. Results Cross-matching of literature and in silico-derived data, in conjunction with the prioritization scheme and biological rationale, allowed for selection of 189 putative vaccine candidates from the entire genome. Within the 189 set, the relative distribution of antigens in 3 functional categories differs significantly from their distribution in the whole genome, with reduction in the Conserved hypothetical category (due to improved annotation) and enrichment in Lipid and in Virulence categories. Other prominent representatives in the 189 set are the PE/PPE proteins; iron sequestration, nitroreductases and proteases, all within the Intermediary metabolism and respiration category; ESX secretion systems, resuscitation promoting factors and lipoproteins, all within the Cell wall category. Application of a ranking scheme based on qualitative and quantitative scores, resulted in a list of 45 best-scoring antigens, of which: 74% belong to the dormancy/reactivation/resuscitation classes; 30% belong to the Cell wall category; 13% are classical vaccine candidates; 9% are categorized Conserved hypotheticals, all potentially very potent T-cell antigens. Conclusion The comprehensive literature and in silico-based analyses allowed for the selection of a repertoire of 189 vaccine candidates, out of the whole-genome 3989 ORF products. This repertoire, which was ranked to generate a list of 45 top-hits antigens, is a platform for selection of genes covering all stages of M. tuberculosis infection, to be incorporated in rBCG or subunit-based vaccines.
Collapse
Affiliation(s)
- Anat Zvi
- Israel Institute for Biological Research, Ness Ziona 74100, Israel.
| | | | | | | | | |
Collapse
|