1
|
Bouzeyen R, Chugh S, Gosain TP, Barbouche MR, Haoues M, Rao KVS, Essafi M, Singh R. Co-Administration of Anticancer Candidate MK-2206 Enhances the Efficacy of BCG Vaccine Against Mycobacterium tuberculosis in Mice and Guinea Pigs. Front Immunol 2021; 12:645962. [PMID: 34122406 PMCID: PMC8190480 DOI: 10.3389/fimmu.2021.645962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/29/2021] [Indexed: 01/19/2023] Open
Abstract
The failure of M. bovis BCG to induce long-term protection has been endowed to its inability to escape the phagolysosome, leading to mild activation of CD8+ mediated T cell response. Induction of apoptosis in host cells plays an important role in potentiating dendritic cells-mediated priming of CD8+ T cells, a process defined as “cross-priming.” Moreover, IL-10 secretion by infected cells has been reported to hamper BCG-induced immunity against Tuberculosis (TB). Previously, we have reported that apoptosis of BCG-infected macrophages and inhibition of IL-10 secretion is FOXO3 dependent, a transcription factor negatively regulated by the pro-survival activated threonine kinase, Akt. We speculate that FOXO3-mediated induction of apoptosis and abrogation of IL-10 secretion along with M. bovis BCG immunization might enhance the protection imparted by BCG. Here, we have assessed whether co-administration of a known anti-cancer Akt inhibitor, MK-2206, enhances the protective efficacy of M. bovis BCG in mice model of infection. We observed that in vitro MK-2206 treatment resulted in FOXO3 activation, enhanced BCG-induced apoptosis of macrophages and inhibition of IL-10 secretion. Co-administration of M. bovis BCG along with MK-2206 also increased apoptosis of antigen-presenting cells in draining lymph nodes of immunized mice. Further, MK-2206 administration improved BCG-induced CD4+ and CD8+ effector T cells responses and its ability to induce both effector and central memory T cells. Finally, we show that co-administration of MK-2206 enhanced the protection imparted by M. bovis BCG against Mtb in aerosol infected mice and guinea pigs. Taken together, we provide evidence that MK-2206-mediated activation of FOXO3 potentiates BCG-induced immunity and imparts protection against Mtb through enhanced innate immune response.
Collapse
Affiliation(s)
- Rania Bouzeyen
- Institut Pasteur de Tunis, LTCII, LR11 IPT02, Tunis, Tunisia
| | - Saurabh Chugh
- Translational Health Science and Technology Institute, Faridabad, India
| | | | | | - Meriam Haoues
- Institut Pasteur de Tunis, LTCII, LR11 IPT02, Tunis, Tunisia
| | - Kanury V S Rao
- Translational Health Science and Technology Institute, Faridabad, India
| | - Makram Essafi
- Institut Pasteur de Tunis, LTCII, LR11 IPT02, Tunis, Tunisia
| | - Ramandeep Singh
- Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
2
|
Huang Q, Chen Y, Hao L, Zhou R, Li Y, Li Q, Zhu B, Cai X. Pegylated carbon nitride nanosheets for enhanced reactive oxygen species generation and photodynamic therapy under hypoxic conditions. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 25:102167. [PMID: 32006685 DOI: 10.1016/j.nano.2020.102167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/22/2019] [Accepted: 01/02/2020] [Indexed: 02/05/2023]
Abstract
The application of photodynamic therapy (PDT) is of ever-increasing importance in the treatment of malignant tumors; however, there are several major constraints that make it impossible to achieve optimal therapeutic effects. Our objective is to develop a novel photosensitizing drug for skin cancer. In the experiment, we fabricated four-arm-poly ethylene glycol modified amino-rich graphite phase carbon nitride nanosheets (AGCN-PEG), which have good stability in physiological solution and show selective accumulation in tumor cells. Under hypoxic conditions, the AGCN-PEG induced PDT can effectively inhibit growth on A431 human epidermoid carcinoma cells in vivo and in vitro. What's more, after being combined with TMPyP4, the therapeutic effect of AGCN-PEG was greatly improved.
Collapse
Affiliation(s)
- Qian Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Implant Dentistry, Stomatologic Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yang Chen
- Department of Liver Surgery& Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qirong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, PR China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Role of Interferons in the Development of Diagnostics, Vaccines, and Therapy for Tuberculosis. J Immunol Res 2017; 2017:5212910. [PMID: 28713838 PMCID: PMC5496129 DOI: 10.1155/2017/5212910] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/09/2017] [Indexed: 01/14/2023] Open
Abstract
Tuberculosis (TB) is an airborne infection caused by Mycobacterium tuberculosis (Mtb). About one-third of the world's population is latently infected with TB and 5–15% of them will develop active TB in their lifetime. It is estimated that each case of active TB may cause 10–20 new infections. Host immune response to Mtb is influenced by interferon- (IFN-) signaling pathways, particularly by type I and type II interferons (IFNs). The latter that consists of IFN-γ has been associated with the promotion of Th1 immune response which is associated with protection against TB. Although this aspect remains controversial at present due to the lack of established correlates of protection, currently, there are different prophylactic, diagnostic, and immunotherapeutic approaches in which IFNs play an important role. This review summarizes the main aspects related with the biology of IFNs, mainly associated with TB, as well as presents the main applications of these cytokines related to prophylaxis, diagnosis, and immunotherapy of TB.
Collapse
|
4
|
Muir E, Raza M, Ellis C, Burnside E, Love F, Heller S, Elliot M, Daniell E, Dasgupta D, Alves N, Day P, Fawcett J, Keynes R. Trafficking and processing of bacterial proteins by mammalian cells: Insights from chondroitinase ABC. PLoS One 2017; 12:e0186759. [PMID: 29121057 PMCID: PMC5679598 DOI: 10.1371/journal.pone.0186759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 10/06/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND There is very little reported in the literature about the relationship between modifications of bacterial proteins and their secretion by mammalian cells that synthesize them. We previously reported that the secretion of the bacterial enzyme Chondroitinase ABC by mammalian cells requires the strategic removal of at least three N-glycosylation sites. The aim of this study was to determine if it is possible to enhance the efficacy of the enzyme as a treatment for spinal cord injury by increasing the quantity of enzyme secreted or by altering its cellular location. METHODOLOGY/PRINCIPAL FINDINGS To determine if the efficiency of enzyme secretion could be further increased, cells were transfected with constructs encoding the gene for chondroitinase ABC modified for expression by mammalian cells; these contained additional modifications of strategic N-glycosylation sites or alternative signal sequences to direct secretion of the enzyme from the cells. We show that while removal of certain specific N-glycosylation sites enhances enzyme secretion, N-glycosylation of at least two other sites, N-856 and N-773, is essential for both production and secretion of active enzyme. Furthermore, we find that the signal sequence directing secretion also influences the quantity of enzyme secreted, and that this varies widely amongst the cell types tested. Last, we find that replacing the 3'UTR on the cDNA encoding Chondroitinase ABC with that of β-actin is sufficient to target the enzyme to the neuronal growth cone when transfected into neurons. This also enhances neurite outgrowth on an inhibitory substrate. CONCLUSION/SIGNIFICANCE Some intracellular trafficking pathways are adversely affected by cryptic signals present in the bacterial gene sequence, whilst unexpectedly others are required for efficient secretion of the enzyme. Furthermore, targeting chondroitinase to the neuronal growth cone promotes its ability to increase neurite outgrowth on an inhibitory substrate. These findings are timely in view of the renewed prospects for gene therapy, and of direct relevance to strategies aimed at expressing foreign proteins in mammalian cells, in particular bacterial proteins.
Collapse
Affiliation(s)
- Elizabeth Muir
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Mansoor Raza
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Clare Ellis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Emily Burnside
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Fiona Love
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Simon Heller
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Elliot
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Esther Daniell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Debayan Dasgupta
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Nuno Alves
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- John Van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Cambridge, United Kingdom
| | - Priscilla Day
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - James Fawcett
- John Van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Cambridge, United Kingdom
| | - Roger Keynes
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Li G, Liu G, Song N, Kong C, Huang Q, Su H, Bi A, Luo L, Zhu L, Xu Y, Wang H. A novel recombinant BCG-expressing pro-apoptotic protein BAX enhances Th1 protective immune responses in mice. Mol Immunol 2015; 66:346-56. [PMID: 25942359 DOI: 10.1016/j.molimm.2015.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/16/2015] [Accepted: 04/01/2015] [Indexed: 02/09/2023]
Abstract
One-third of the world's population is infected with Mycobacterium tuberculosis (MTB). The protective efficacy of bacille Calmette Guérin (BCG) vaccine against tuberculosis (TB) in adults is highly controversial even though the BCG vaccine has been available for more than 90 years. Because BCG is effective against infantile tuberculosis meningitis and miliary tuberculosis in young children and provides cost-effective prevention from tuberculosis for developing countries, it would be desirable to modify the existing BCG vaccine to provide more comprehensive protection. In our study, we constructed a novel recombinant BCG strain expressing pro-apoptotic BAX (rBCG::BAX) and demonstrated that it significantly induced the apoptosis of macrophages infected with rBCG::BAX both in vitro and in vivo. In addition, it significantly enhanced Ag85B-specific IFN-γ enzyme-linked immunospot responses, IFN-γ secretion, IL-2 secretion and the ratio of Ag85B-specific IgG2b/IgG1, and it significantly decreased Ag85B-specific IL-4. Furthermore, it presumably facilitated antigen presentation by inducing a significant up-regulation in the expression of MHC-II and B7.1 (CD80) co-stimulatory molecules on macrophages. In conclusion, these results suggest that the rBCG::BAX strain elicited predominantly a Th1 protective immune responses and might be a potential tuberculosis vaccine candidate for further study.
Collapse
Affiliation(s)
- Guanghua Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China; Medical College, Hexi University, Zhangye, Gansu 734000, People's Republic of China
| | - Guoyuan Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, People's Republic of China
| | - Na Song
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Cong Kong
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Qi Huang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Haibo Su
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Aixiao Bi
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Liulin Luo
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China; Shanghai Pulmonary Hospital, Medical School, Tongji University, Shanghai 200433, People's Republic of China
| | - Lin Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China.
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China.
| |
Collapse
|
6
|
Abstract
INTRODUCTION Tuberculosis (TB) remains a major health problem and novel vaccination regimens are urgently needed. AREAS COVERED DNA vaccines against TB have been tested in various preclinical models and strategies have been developed to increase their immunogenicity in large animal species. DNA vaccines are able to induce a wide variety of immune responses, including CD8(+) T-cell-mediated cytolytic and IFN-γ responses. DNA vaccination may be valuable in heterologous prime-boost strategies with the currently used bacillus Calmette-Guérin (BCG) vaccine. This approach could broaden the antigenic repertoire of BCG and enhance its weak induction of MHC class I-restricted immune responses. EXPERT OPINION DNA vaccines offer a number of advantages over certain other types of vaccines, such as the induction of robust MHC class I-restricted cytotoxic T lymphocyte (CTL), their generic manufacturing platform and their relatively low manufacturing costs. Because of their strong potential for inducing memory responses, DNA vaccines are particularly suited for priming immune responses. Furthermore, DNA vaccine technology may help antigen discovery by facilitating screening of candidate vaccines. Co-administration of BCG with plasmid DNA coding for immunodominant, subdominant and phase-specific antigens, poorly expressed by BCG, may lead to the development of improved TB vaccines.
Collapse
Affiliation(s)
- Nicolas Bruffaerts
- Scientific Institute of Public Health, O.D. CID-Immunology , Engelandstraat 642, Brussels, B1180 , Belgium
| | | | | |
Collapse
|
7
|
|
8
|
Induction of antigen-positive cell death by the expression of perforin, but not DTa, from a DNA vaccine enhances the immune response. Immunol Cell Biol 2013; 92:359-67. [PMID: 24323081 DOI: 10.1038/icb.2013.93] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/28/2013] [Accepted: 11/09/2013] [Indexed: 02/06/2023]
Abstract
The failure of traditional protein-based vaccines to prevent infection by viruses such as HIV or hepatitis C highlights the need for novel vaccine strategies. DNA vaccines have shown promise in small animal models, and are effective at generating anti-viral T cell-mediated immune responses; however, they have proved to be poorly immunogenic in clinical trials. We propose that the induction of necrosis will enhance the immune response to vaccine antigens encoded by DNA vaccines, as necrotic cells are known to release a range of intracellular factors that lead to dendritic cell (DC) activation and enhanced cross-presentation of antigen. Here we provide evidence that induction of cell death in DNA vaccine-targeted cells provides an adjuvant effect following intradermal vaccination of mice; however, this enhancement of the immune response is dependent on both the mechanism and timing of cell death after antigen expression. We report that a DNA vaccine encoding the cytolytic protein, perforin, resulted in DC activation, enhanced broad and multifunctional CD8 T-cell responses to the HIV-1 antigen GAG and reduced viral load following challenge with a chimeric virus, EcoHIV, compared with the canonical GAG DNA vaccine. This effect was not observed for a DNA vaccine encoding an apoptosis-inducing toxin, DTa, or when the level of perforin expression was increased to induce cell death sooner after vaccination. Thus, inducing lytic cell death following a threshold level of expression of a viral antigen can improve the immunogenicity of DNA vaccines, whereas apoptotic cell death has an inhibitory effect on the immune response.
Collapse
|
9
|
Reschner A, Scohy S, Vandermeulen G, Daukandt M, Jacques C, Michel B, Nauwynck H, Xhonneux F, Préat V, Vanderplasschen A, Szpirer C. Use of Staby(®) technology for development and production of DNA vaccines free of antibiotic resistance gene. Hum Vaccin Immunother 2013; 9:2203-10. [PMID: 24051431 DOI: 10.4161/hv.25086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The appearance of new viruses and the cost of developing certain vaccines require that new vaccination strategies now have to be developed. DNA vaccination seems to be a particularly promising method. For this application, plasmid DNA is injected into the subject (man or animal). This plasmid DNA encodes an antigen that will be expressed by the cells of the subject. In addition to the antigen, the plasmid also encodes a resistance to an antibiotic, which is used during the construction and production steps of the plasmid. However, regulatory agencies (FDA, USDA and EMA) recommend to avoid the use of antibiotics resistance genes. Delphi Genetics developed the Staby(®) technology to replace the antibiotic-resistance gene by a selection system that relies on two bacterial genes. These genes are small in size (approximately 200 to 300 bases each) and consequently encode two small proteins. They are naturally present in the genomes of bacteria and on plasmids. The technology is already used successfully for production of recombinant proteins to achieve higher yields and without the need of antibiotics. In the field of DNA vaccines, we have now the first data validating the innocuousness of this Staby(®) technology for eukaryotic cells and the feasibility of an industrial production of an antibiotic-free DNA vaccine. Moreover, as a proof of concept, mice have been successfully vaccinated with our antibiotic-free DNA vaccine against a deadly disease, pseudorabies (induced by Suid herpesvirus-1).
Collapse
Affiliation(s)
- Anca Reschner
- University of Liège; Immunology-Vaccinology; Faculty of Veterinary Medicine; Liège, Belgium
| | | | - Gaëlle Vandermeulen
- Université catholique de Louvain; Louvain Drug Research Institute; Pharmaceutics and Drug Delivery; Brussels, Belgium
| | | | | | | | - Hans Nauwynck
- Ghent University; Laboratory of Virology, Faculty of Veterinary Medicine; Merelbeke, Belgium
| | | | - Véronique Préat
- Université catholique de Louvain; Louvain Drug Research Institute; Pharmaceutics and Drug Delivery; Brussels, Belgium
| | - Alain Vanderplasschen
- University of Liège; Immunology-Vaccinology; Faculty of Veterinary Medicine; Liège, Belgium
| | | |
Collapse
|
10
|
Elnekave M, Furmanov K, Hovav AH. Intradermal naked plasmid DNA immunization: mechanisms of action. Expert Rev Vaccines 2012; 10:1169-82. [PMID: 21854310 DOI: 10.1586/erv.11.66] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plasmid DNA is a promising vaccine modality that is regularly examined in prime-boost immunization regimens. Recent advances in skin immunity increased our understanding of the sophisticated cutaneous immune network, which revived scientific interest in delivering vaccines to the skin. Intradermal administration of plasmid DNA via needle injection is a simple and inexpensive procedure that exposes the plasmid and its encoded antigen to the dermal immune surveillance system. This triggers unique mechanisms for eliciting local and systemic immunity that can confer protection against pathogens and tumors. Understanding the mechanisms of intradermal plasmid DNA immunization is essential for enhancing and modulating its immunogenicity. With regard to vaccination, this is of greater importance as this routine injection technique is highly desirable for worldwide immunization. This article will focus on the current understanding of the mechanisms involved in antigen expression and presentation during primary and secondary syringe and needle intradermal plasmid DNA immunization.
Collapse
Affiliation(s)
- Mazal Elnekave
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine, PO Box 122722, Jerusalem 91120, Israel
| | | | | |
Collapse
|
11
|
Garrido JM, Sevilla IA, Beltrán-Beck B, Minguijón E, Ballesteros C, Galindo RC, Boadella M, Lyashchenko KP, Romero B, Geijo MV, Ruiz-Fons F, Aranaz A, Juste RA, Vicente J, de la Fuente J, Gortázar C. Protection against tuberculosis in Eurasian wild boar vaccinated with heat-inactivated Mycobacterium bovis. PLoS One 2011; 6:e24905. [PMID: 21935486 PMCID: PMC3173485 DOI: 10.1371/journal.pone.0024905] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/19/2011] [Indexed: 11/18/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium bovis and closely related members of the Mycobacterium tuberculosis complex continues to affect humans and animals worldwide and its control requires vaccination of wildlife reservoir species such as Eurasian wild boar (Sus scrofa). Vaccination efforts for TB control in wildlife have been based primarily on oral live BCG formulations. However, this is the first report of the use of oral inactivated vaccines for controlling TB in wildlife. In this study, four groups of 5 wild boar each were vaccinated with inactivated M. bovis by the oral and intramuscular routes, vaccinated with oral BCG or left unvaccinated as controls. All groups were later challenged with a field strain of M. bovis. The results of the IFN-gamma response, serum antibody levels, M. bovis culture, TB lesion scores, and the expression of C3 and MUT genes were compared between these four groups. The results suggested that vaccination with heat-inactivated M. bovis or BCG protect wild boar from TB. These results also encouraged testing combinations of BCG and inactivated M. bovis to vaccinate wild boar against TB. Vaccine formulations using heat-inactivated M. bovis for TB control in wildlife would have the advantage of being environmentally safe and more stable under field conditions when compared to live BCG vaccines. The antibody response and MUT expression levels can help differentiating between vaccinated and infected wild boar and as correlates of protective response in vaccinated animals. These results suggest that vaccine studies in free-living wild boar are now possible to reveal the full potential of protecting against TB using oral M. bovis inactivated and BCG vaccines.
Collapse
Affiliation(s)
| | - Iker A. Sevilla
- NEIKER-Tecnalia, Animal Health Department, Derio, Bizkaia, Spain
| | - Beatriz Beltrán-Beck
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC – UCLM – JCCM), Ciudad Real, Spain
| | | | - Cristina Ballesteros
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC – UCLM – JCCM), Ciudad Real, Spain
| | - Ruth C. Galindo
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC – UCLM – JCCM), Ciudad Real, Spain
| | - Mariana Boadella
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC – UCLM – JCCM), Ciudad Real, Spain
| | | | - Beatriz Romero
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Francisco Ruiz-Fons
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC – UCLM – JCCM), Ciudad Real, Spain
| | - Alicia Aranaz
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Ramón A. Juste
- NEIKER-Tecnalia, Animal Health Department, Derio, Bizkaia, Spain
| | - Joaquín Vicente
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC – UCLM – JCCM), Ciudad Real, Spain
| | - José de la Fuente
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC – UCLM – JCCM), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Christian Gortázar
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC – UCLM – JCCM), Ciudad Real, Spain
- * E-mail:
| |
Collapse
|
12
|
Seimon TA, Kim MJ, Blumenthal A, Koo J, Ehrt S, Wainwright H, Bekker LG, Kaplan G, Nathan C, Tabas I, Russell DG. Induction of ER stress in macrophages of tuberculosis granulomas. PLoS One 2010; 5:e12772. [PMID: 20856677 PMCID: PMC2939897 DOI: 10.1371/journal.pone.0012772] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 08/26/2010] [Indexed: 12/15/2022] Open
Abstract
Background The endoplasmic reticulum (ER) stress pathway known as the Unfolded Protein Response (UPR) is an adaptive survival pathway that protects cells from the buildup of misfolded proteins, but under certain circumstances it can lead to apoptosis. ER stress has been causally associated with macrophage apoptosis in advanced atherosclerosis of mice and humans. Because atherosclerosis shares certain features with tuberculosis (TB) with regard to lesional macrophage accumulation, foam cell formation, and apoptosis, we investigated if the ER stress pathway is activated during TB infection. Principal Findings Here we show that ER stress markers such as C/EBP homologous protein (CHOP; also known as GADD153), phosphorylated inositol-requiring enzyme 1 alpha (Ire1α) and eukaryotic initiation factor 2 alpha (eIF2α), and activating transcription factor 3 (ATF3) are expressed in macrophage-rich areas of granulomas in lungs of mice infected with virulent Mycobacterium tuberculosis (Mtb). These areas were also positive for numerous apoptotic cells as assayed by TUNEL. Microarray analysis of human caseous TB granulomas isolated by laser capture microdissection reveal that 73% of genes involved in the UPR are upregulated at the mRNA transcript level. The expression of two ER stress markers, ATF3 and CHOP, were also increased in macrophages of human TB granulomas when assayed by immunohistochemistry. CHOP has been causally associated with ER stress-induced macrophage apoptosis. We found that apoptosis was more abundant in granulomas as compared to non-granulomatous tissue isolated from patients with pulmonary TB, and apoptosis correlated with CHOP expression in areas surrounding the centralized areas of caseation. Conclusions In summary, ER stress is induced in macrophages of TB granulomas in areas where apoptotic cells accumulate in mice and humans. Although macrophage apoptosis is generally thought to be beneficial in initially protecting the host from Mtb infection, death of infected macrophages in advanced granulomas might favor dissemination of the bacteria. Therefore future work is needed to determine if ER-stress is causative for apoptosis and plays a role in the host response to infection.
Collapse
Affiliation(s)
- Tracie A Seimon
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bamberger D, Jantzer N, Leidner K, Arend J, Efferth T. Fighting mycobacterial infections by antibiotics, phytochemicals and vaccines. Microbes Infect 2010; 13:613-23. [PMID: 20832501 DOI: 10.1016/j.micinf.2010.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
Abstract
Buruli ulcer is a neglected disease caused by Mycobacterium ulcerans and represents the world's third most common mycobacterial infection. It produces the polyketide toxins, mycolactones A, B, C and D, which induce apoptosis and necrosis. Clinical symptoms are subcutaneous nodules, papules, plaques and ulcerating oedemae, which can enlarge and destroy nerves and blood vessels and even invade bones by lymphatic or haematogenous spread (osteomyelitis). Patients usually do not suffer from pain or systematic inflammation. Surgery is the treatment of choice, although recurrence is common and wide surgical excisions including healthy tissues result in significant morbidity. Antibiotic therapy with rifamycins, aminoglycosides, macrolides and quinolones also improves cure rates. Still less exploited treatment options are phytochemicals from medicinal plants used in affected countries. Vaccination against Buruli ulcer is still in its infancy.
Collapse
Affiliation(s)
- Denise Bamberger
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | | | | | | | | |
Collapse
|
14
|
Bergmann-Leitner ES, Leitner WW, Duncan EH, Savranskaya T, Angov E. Molecular adjuvants for malaria DNA vaccines based on the modulation of host-cell apoptosis. Vaccine 2009; 27:5700-8. [DOI: 10.1016/j.vaccine.2009.06.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/29/2009] [Accepted: 06/12/2009] [Indexed: 11/17/2022]
|