1
|
Bull JJ, Nuismer SL, Remien CH, Griffiths ME, Antia R. Recombinant transmissible vaccines will be intrinsically contained despite the ability to superinfect. Expert Rev Vaccines 2024; 23:294-302. [PMID: 38372241 PMCID: PMC11003445 DOI: 10.1080/14760584.2024.2320845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Transmissible vaccines offer a novel approach to suppressing viruses in wildlife populations, with possible applications against viruses that infect humans as zoonoses - Lassa, Ebola, rabies. To ensure safety, current designs propose a recombinant vector platform in which the vector is isolated from the target wildlife population. Because using an endemic vector creates the potential for preexisting immunity to block vaccine transmission, these designs focus on vector viruses capable of superinfection, spreading throughout the host population following vaccination of few individuals. AREAS COVERED We present original theoretical arguments that, regardless of its R0 value, a recombinant vaccine using a superinfecting vector is not expected to expand its active infection coverage when released into a wildlife population that already carries the vector. However, if superinfection occurs at a high rate such that individuals are repeatedly infected throughout their lives, the immunity footprint in the population can be high despite a low incidence of active vaccine infections. Yet we provide reasons that the above expectation is optimistic. EXPERT OPINION High vaccine coverage will typically require repeated releases or release into a population lacking the vector, but careful attention to vector choice and vaccine engineering should also help improve transmissible vaccine utility.
Collapse
Affiliation(s)
- James J Bull
- Department of Biological Sciences, U. Idaho, Moscow, ID 83844 USA
| | - Scott L Nuismer
- Department of Biological Sciences. University of Idaho. Moscow, ID 83844
- Department of Mathematics. University of Idaho. Moscow, ID 83844
| | | | - Megan E Griffiths
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, Georgia, 30322 USA
| |
Collapse
|
2
|
Yang J, Zhou Z, Li G, Dong Z, Li Q, Fu K, Liu H, Zhong Z, Fu H, Ren Z, Gu W, Peng G. Oral immunocontraceptive vaccines: A novel approach for fertility control in wildlife. Am J Reprod Immunol 2023; 89:e13653. [PMID: 36373212 DOI: 10.1111/aji.13653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The overabundant populations of wildlife have caused many negative impacts, such as human-wildlife conflicts and ecological degradation. The existing approaches like injectable immunocontraceptive vaccines and lethal methods have limitations in many aspects, which has prompted the advancement of oral immunocontraceptive vaccine. There is growing interest in oral immunocontraceptive vaccines for reasons including high immunization coverage, easier administration, frequent boosting, the ability to induce systemic and mucosal immune responses, and cost-effectiveness. Delivery systems have been developed to protect oral antigens and enhance the immunogenicity, including live vectors, microparticles and nanoparticles, bacterial ghosts, and mucosal adjuvants. However, currently, no effective oral immunocontraceptive vaccine is available for field trials because of the enormous development challenges, including biological and physicochemical barriers of the gastrointestinal tract, mucosal tolerance, pre-existing immunity, antigen residence time in the small intestine, species specificity and other safety issues. To overcome these challenges, this article summarizes achievements in delivery systems and contraceptive antigens in oral immunocontraceptive vaccines and explores the potential barriers for future vaccine design and application.
Collapse
Affiliation(s)
- Jinpeng Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gangshi Li
- Chengdu Ruipeng Changjiang Road Pet Hospital, Chengdu, Sichuan, China
| | - Zhiyou Dong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qianlan Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keyi Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hualin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wuyang Gu
- Chengdu Ruipeng Changjiang Road Pet Hospital, Chengdu, Sichuan, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Bruce K, Ma J, Lawler C, Xie W, Stevenson PG, Farrell HE. Recent Advancements in Understanding Primary Cytomegalovirus Infection in a Mouse Model. Viruses 2022; 14:v14091934. [PMID: 36146741 PMCID: PMC9505653 DOI: 10.3390/v14091934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Animal models that mimic human infections provide insights in virus–host interplay; knowledge that in vitro approaches cannot readily predict, nor easily reproduce. Human cytomegalovirus (HCMV) infections are acquired asymptomatically, and primary infections are difficult to capture. The gap in our knowledge of the early events of HCMV colonization and spread limits rational design of HCMV antivirals and vaccines. Studies of natural infection with mouse cytomegalovirus (MCMV) have demonstrated the olfactory epithelium as the site of natural colonization. Systemic spread from the olfactory epithelium is facilitated by infected dendritic cells (DC); tracking dissemination uncovered previously unappreciated DC trafficking pathways. The olfactory epithelium also provides a unique niche that supports efficient MCMV superinfection and virus recombination. In this review, we summarize recent advances to our understanding of MCMV infection and spread and the tissue-specific mechanisms utilized by MCMV to modulate DC trafficking. As these mechanisms are likely conserved with HCMV, they may inform new approaches for preventing HCMV infections in humans.
Collapse
|
4
|
Quantifying the effectiveness of betaherpesvirus-vectored transmissible vaccines. Proc Natl Acad Sci U S A 2022; 119:2108610119. [PMID: 35046024 PMCID: PMC8794881 DOI: 10.1073/pnas.2108610119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 11/26/2022] Open
Abstract
Spillover of infectious diseases from wildlife populations into humans is an increasing threat to human health and welfare. Current approaches to manage these emerging infectious diseases are largely reactive, leading to deadly and costly time lags between emergence and control. Here, we use mathematical models and data from previously published experimental and field studies to evaluate the scope for a more proactive approach based on transmissible vaccines that eliminates pathogens from wild animal populations before spillover can occur. Our models are focused on transmissible vaccines designed using herpes virus vectors and demonstrate that these vaccines—currently under development for several important human pathogens—may have the potential to rapidly control zoonotic pathogens within the reservoir hosts. Transmissible vaccines have the potential to revolutionize how zoonotic pathogens are controlled within wildlife reservoirs. A key challenge that must be overcome is identifying viral vectors that can rapidly spread immunity through a reservoir population. Because they are broadly distributed taxonomically, species specific, and stable to genetic manipulation, betaherpesviruses are leading candidates for use as transmissible vaccine vectors. Here we evaluate the likely effectiveness of betaherpesvirus-vectored transmissible vaccines by developing and parameterizing a mathematical model using data from captive and free-living mouse populations infected with murine cytomegalovirus (MCMV). Simulations of our parameterized model demonstrate rapid and effective control for a range of pathogens, with pathogen elimination frequently occurring within a year of vaccine introduction. Our results also suggest, however, that the effectiveness of transmissible vaccines may vary across reservoir populations and with respect to the specific vector strain used to construct the vaccine.
Collapse
|
5
|
Natural killer cell dependent within-host competition arises during multiple MCMV infection: consequences for viral transmission and evolution. PLoS Pathog 2013; 9:e1003111. [PMID: 23300458 PMCID: PMC3536701 DOI: 10.1371/journal.ppat.1003111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/18/2012] [Indexed: 11/18/2022] Open
Abstract
It is becoming increasingly clear that many diseases are the result of infection from multiple genetically distinct strains of a pathogen. Such multi-strain infections have the capacity to alter both disease and pathogen dynamics. Infection with multiple strains of human cytomegalovirus (HCMV) is common and has been linked to enhanced disease. Suggestions that disease enhancement in multi-strain infected patients is due to complementation have been supported by trans-complementation studies in mice during co-infection of wild type and gene knockout strains of murine CMV (MCMV). Complementation between naturally circulating strains of CMV has, however, not been assessed. In addition, many models of multi-strain infection predict that co-infecting strains will compete with each other and that this competition may contribute to selective transmission of more virulent pathogen strains. To assess the outcome of multi-strain infection, C57BL/6 mice were infected with up to four naturally circulating strains of MCMV. In this study, profound within-host competition was observed between co-infecting strains of MCMV. This competition was MCMV strain specific and resulted in the complete exclusion of certain strains of MCMV from the salivary glands of multi-strain infected mice. Competition was dependent on Ly49H+ natural killer (NK) cells as well as the expression of the ligand for Ly49H, the MCMV encoded product, m157. Strains of MCMV which expressed an m157 gene product capable of ligating Ly49H were outcompeted by strains of MCMV expressing variant m157 genes. Importantly, within-host competition prevented the shedding of the less virulent strains of MCMV, those recognized by Ly49H, into the saliva of multi-strain infected mice. These data demonstrate that NK cells have the strain specific recognition capacity required to meditate within-host competition between strains of MCMV. Furthermore, this within-host competition has the capacity to shape the dynamics of viral shedding and potentially select for the transmission of more virulent virus strains. Infection of the host with multiple strains of a pathogen is common and occurs with the herpesvirus, human cytomegalovirus (HCMV). However the effects of multi-strain infection on the host and the pathogen remain poorly studied. Here we show, in a mouse model, that infection of C57BL/6 mice with multiple strains of murine CMV (MCMV) results in profound within-host competition. Competition between the strains of MCMV is dependent on Ly49H+ natural killer (NK) cells. The NK cell activation receptor Ly49H receptor targets certain genotypes of the viral protein, m157. During multi-strain infection, strains of MCMV encoding an m157 capable of binding Ly49H are excluded from the salivary gland and the saliva of C57BL/6 mice, allowing for the shedding of only non-Ly49H binding strains of MCMV in the saliva. This within-host competition could therefore have significant impacts on the circulation of MCMV strains, as only the most virulent MCMV strains were present in the saliva.
Collapse
|
6
|
Abstract
Vaccination is mankind's greatest public health success story. By now vaccines to many of the viruses that once caused fatal childhood diseases are routinely used throughout the world. Traditional methods of vaccine development through inactivation or attenuation of viruses have failed for some of the most deadly human pathogens, necessitating new approaches. Genetic modification of viruses not only allows for their attenuation but also for incorporation of sequences from other viruses, turning one pathogen into a vaccine carrier for another. Recombinant viruses have pros and cons as vaccine carriers, as discussed below using vectors based on adenovirus, herpesvirus, flavivirus, and rhabdovirus as examples.
Collapse
Affiliation(s)
- Juliana C Small
- University of Pennsylvania Graduate Program, Philadelphia, PA, USA
| | | |
Collapse
|
7
|
Cross ML, Zheng T, Duckworth JA, Cowan PE. Could recombinant technology facilitate the realisation of a fertility-control vaccine for possums? NEW ZEALAND JOURNAL OF ZOOLOGY 2011. [DOI: 10.1080/03014223.2010.541468] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- ML Cross
- a Landcare Research – Manaaki Whenua , Lincoln, New Zealand
| | - T Zheng
- b AgResearch , Hopkirk Research Institute , Palmerston North, New Zealand
| | - JA Duckworth
- a Landcare Research – Manaaki Whenua , Lincoln, New Zealand
| | - PE Cowan
- c Landcare Research , Palmerston North, New Zealand
| |
Collapse
|
8
|
McLaughlin EA, Aitken RJ. Is there a role for immunocontraception? Mol Cell Endocrinol 2011; 335:78-88. [PMID: 20412833 DOI: 10.1016/j.mce.2010.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 03/31/2010] [Accepted: 04/06/2010] [Indexed: 11/15/2022]
Abstract
The world's population is continuing to grow at an alarming rate and yet no novel methods of contraception have been introduced since 1960s. The paucity of our current contraceptive armoury is indicated by the 46 million abortions that are performed each year, largely in developing countries where population growth is greatest. Thus, whatever new forms of fertility control we develop for the next millennium, the particular needs of developing countries should be borne in mind. Contraceptive vaccines have the potential to provide safe, effective, prolonged, reversible protection against pregnancy in a form that can be easily administered in the Third World. In this review we consider the contraceptive targets that might be pursued, how vaccines might be engineered and the problems generated by inter-individual variations in antibody titre. We conclude that the specifications for a safe, effective, reversible vaccine are more likely to be met in animals than man.
Collapse
Affiliation(s)
- E A McLaughlin
- Discipline of Biological Sciences, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
| | | |
Collapse
|
9
|
Nikolovski S, Lloyd ML, Harvey N, Hardy CM, Shellam GR, Redwood AJ. Overcoming innate host resistance to vaccination: employing a genetically distinct strain of murine cytomegalovirus avoids vector-mediated resistance to virally vectored immunocontraception. Vaccine 2009; 27:5226-32. [PMID: 19591797 DOI: 10.1016/j.vaccine.2009.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 01/07/2023]
Abstract
The laboratory strain of murine cytomegalovirus (MCMV), K181, has been successfully engineered as a vaccine expressing murine zona pellucida 3 (mZP3) for viral vectored immunocontraception (VVIC) in mice. However, certain laboratory strains of mice are resistant to infection with K181 and therefore demonstrate resistance to VVIC. Cmv1 is the best characterised innate resistance mechanism to MCMV and was first described in C57BL/6 mice. Resistance in C57BL/6 mice is due to early and strong activation of natural killer (NK) cells by an MCMV gene product, m157, that binds directly to the NK cell activating receptor Ly49H. In this study a wild strain of MCMV, G4, which expresses a variant m157 incapable of activating Ly49H, was engineered to express murine zona pellucida 3 (mZP3) and assessed for its ability to sterilise female C57BL/6 mice. When infected with K181-mZP3 female C57BL/6 mice remained fully fertile. In contrast, female C57BL/6 mice were sterilised by a single intraperitoneal inoculation of G4-mZP3. Infertility was induced by G4-mZP3 in three strains of mice that express Ly49H, on two different histocompatibility-2 (H-2) backgrounds. Finally, enhanced immunocontraception was observed in mice expressing H-2(k) mediated resistance to MCMV when infected with G4-mZP3 compared to K181-mZP3. These data indicate that when using viral vaccine vectors, variant vector strains may be used to circumvent powerful innate immune responses against the vector and promote effective vaccination. This study highlights the importance of vaccine vector genetics in vaccination strategies.
Collapse
Affiliation(s)
- Sonia Nikolovski
- Discipline of Microbiology and Immunology, School of Biomedical, Biomolecular and Chemical Sciences, M502, The University of Western Australia, Crawley, WA 6009, Australia
| | | | | | | | | | | |
Collapse
|