1
|
Ganguly N, Das T, Bhuniya A, Guha I, Chakravarti M, Dhar S, Sarkar A, Bera S, Dhar J, Dasgupta S, Saha A, Ghosh T, Das J, Sk UH, Banerjee S, Laskar S, Bose A, Baral R. Neem leaf glycoprotein binding to Dectin-1 receptors on dendritic cell induces type-1 immunity through CARD9 mediated intracellular signal to NFκB. Cell Commun Signal 2024; 22:237. [PMID: 38649988 PMCID: PMC11036628 DOI: 10.1186/s12964-024-01576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/16/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND A water-soluble ingredient of mature leaves of the tropical mahogany 'Neem' (Azadirachta indica), was identified as glycoprotein, thus being named as 'Neem Leaf Glycoprotein' (NLGP). This non-toxic leaf-component regressed cancerous murine tumors (melanoma, carcinoma, sarcoma) recurrently in different experimental circumstances by boosting prime antitumor immune attributes. Such antitumor immunomodulation, aid cytotoxic T cell (Tc)-based annihilation of tumor cells. This study focused on identifying and characterizing the signaling gateway that initiate this systemic immunomodulation. In search of this gateway, antigen-presenting cells (APCs) were explored, which activate and induce the cytotoxic thrust in Tc cells. METHODS Six glycoprotein-binding C-type lectins found on APCs, namely, MBR, Dectin-1, Dectin-2, DC-SIGN, DEC205 and DNGR-1 were screened on bone marrow-derived dendritic cells from C57BL/6 J mice. Fluorescence microscopy, RT-PCR, flow cytometry and ELISA revealed Dectin-1 as the NLGP-binding receptor, followed by verifications through RNAi. Following detection of β-Glucans in NLGP, their interactions with Dectin-1 were explored in silico. Roles of second messengers and transcription factors in the downstream signal were studied by co-immunoprecipitation, western blotting, and chromatin-immunoprecipitation. Intracellularization of FITC-coupled NLGP was observed by processing confocal micrographs of DCs. RESULTS Considering extents of hindrance in NLGP-driven transcription rates of the cytokines IL-10 and IL-12p35 by receptor-neutralization, Dectin-1 receptors on dendritic cells were found to bind NLGP through the ligand's peripheral β-Glucan chains. The resulting signal phosphorylates PKCδ, forming a trimolecular complex of CARD9, Bcl10 and MALT1, which in turn activates the canonical NFκB-pathway of transcription-regulation. Consequently, the NFκB-heterodimer p65:p50 enhances Il12a transcription and the p50:p50 homodimer represses Il10 transcription, bringing about a cytokine-based systemic-bias towards type-1 immune environment. Further, NLGP gets engulfed within dendritic cells, possibly through endocytic activities of Dectin-1. CONCLUSION NLGP's binding to Dectin-1 receptors on murine dendritic cells, followed by the intracellular signal, lead to NFκB-mediated contrasting regulation of cytokine-transcriptions, initiating a pro-inflammatory immunopolarization, which amplifies further by the responding immune cells including Tc cells, alongside their enhanced cytotoxicity. These insights into the initiation of mammalian systemic immunomodulation by NLGP at cellular and molecular levels, may help uncovering its mode of action as a novel immunomodulator against human cancers, following clinical trials.
Collapse
Affiliation(s)
- Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Tapasi Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Mohona Chakravarti
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Sukanya Dhar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Anirban Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Saurav Bera
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Jesmita Dhar
- Jubilant Biosys Limited, 96, Digital Park Rd, Yesvantpur Industrial Suburb, Bengaluru, Karnataka, 560022, India
| | - Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Juhina Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Ugir Hossain Sk
- Department of Clinical and Translational Research, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Subrata Laskar
- Department of Chemistry, University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India.
- Department of Pharmaceutical Technology-Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER),-S.A.S. Nagar, Mohali, Punjab, 160062, India.
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
2
|
Sriraman N, Sarkar A, Naskar S, Mahajan N, Mukherjee O, Pradeep R, George M, Sarkar K. Immunomodulatory effects of Diospyros peregrina fruit preparation (DFP) in non-small cell lung cancer (NSCLC) by utilizing dendritic cell-mediated antigen presentation and T helper (TH) cell differentiation. Med Oncol 2024; 41:107. [PMID: 38580762 DOI: 10.1007/s12032-024-02331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/12/2024] [Indexed: 04/07/2024]
Abstract
Diospyros peregrina is a dioecious plant which is native to India. It belongs to the family of Ebenaceae and is extensively used to treat various ailments, such as leucorrhoea and other uterine-related problems. Though few studies have been on D. peregrina for their anti-tumour response, little is known. Therefore, this intrigued us to understand its immunomodulator capabilities on various types of cancer extensively. Our primary focus is on NSCLC (Non-Small Cell Lung Cancer), which is ranked as the second largest form of cancer in the world, and the treatments demand non-invasive agents to target NSCLC effectively. In an objective to generate an efficient Lung Cancer Associated Antigen (LCA) specific anti-tumour immune response, LCA was presented using dendritic cells (DCs) in the presence of D. peregrina fruit preparation (DFP). Moreover, we also investigated DFP's role in the differentiation of T-helper (TH) cells. Therefore, this study aimed at better LCA presentation mediated by DFP by activating the LCA pulsed DCs and T helper cell differentiation for better immune response. DCs were pulsed with LCA for tumour antigen presentation in vitro, with and without DFP. Differentially pulsed DCs were irradiated to co-culture with autologous and allogeneic lymphocytes. Extracellular supernatants were collected for the estimation of cytokine levels by ELISA. LDH release assay was performed to test Cytotoxic T lymphocytes (CTLs) mediated lung tumour cell cytotoxicity. Thus, DFP may be a potential vaccine to generate anti-LCA immune responses to restrict NSCLC.
Collapse
Affiliation(s)
- Nawaneetan Sriraman
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Ankita Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sohom Naskar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Nitika Mahajan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Oishi Mukherjee
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - R Pradeep
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Melvin George
- Department of Clinical Pharmacology, SRM Medical College Hospital and Research Centre, Kattankulathur, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
3
|
Mahalakshmi Surendran A, Rai A, Rakshit S, George M, Sarkar K. Immunomodulatory Role of Diospyros peregrina Fruit Preparation in Breast Cancer by Utilizing Macrophage Mediated Antigen Presentation and T Helper Cell (Th) Differentiation. Clin Breast Cancer 2023; 23:e95-e102. [PMID: 36641322 DOI: 10.1016/j.clbc.2022.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Diospyros peregrina is dioecious plant native to India and belonging to the family of Ebenaceae, is largely utilized in treatment of various ailments. Little has been known about the antitumor activity of Diospyros peregrina with only 1 previous study on Ehrlich Ascites Carcinoma in mice. Therefore, it prompted us to extensively explore the immunomodulatory effect in various cancer forms. The focal point of this study revolves around breast cancer, which is the second most common cancer in the world. In view of the increasing demands for noninvasive treatments, natural plant-based agents open up promising applications in cancer immunotherapy METHODS: CD4+ lymphocytes were isolated from the peripheral blood mononuclear cells (PBMCs) of breast cancer patients and normal donor blood samples using magnetic-activated cell sorting (MACS) and cultured separately. Utilizing the plastic surface adherence property, the macrophages were isolated from CD4 negative lymphocytes of both breast cancer patients and normal donors. For the presentation of tumor antigens invitro, macrophages were pulsed with breast tumor associated antigen (BTAA) in presence or absence of Diospyros peregrina fruit preparation (DFP). Differentially pulsed and irradiated macrophages were co-cultured with autologous and allogenic lymphocytes. Supernatants hence collected from CD4+ lymphocytes were utilized for cytokine profiling using ELISA and proliferation was assessed by MTT assay. Cytotoxic T lymphocytes (CTLs) generated from CD4 negative lymphocytes culture (2 × 105) was incubated with MCF-7 (2 × 104) to check cytotoxicity using LDH release assay. CD4+ lymphocytes were treated in presence or absence of DFP, were analyzed using immunoblotting and RT-qPCR, to check DFP mediated T helper (Th) cell differentiation through investigation of signatory cytokines and transcription factors. RESULTS It was found that DFP elevated the proliferation of CD4+ T lymphocytes (Th) in response to BTAA. DFP also helped in presenting BTAA pulsed macrophages directing in the cytotoxic T-lymphocyte mediated immune response. Results indicated that DFP preferentially highlighted Th1 commitment with type-1 specific cytokines IFN-g and IL-12 and was indifferent in Th2 manifestation. DFP was not only involved in the upregulation of Tbet mounted type-1 mediated immune response and activation of STAT1 but also it downregulated STAT6 and GATA3, the functional activators and regulators of type-2 immune response. Moreover, it was observed that DFP inhibited the tumor-promoting environment modulated through Tregs by downregulating Foxp3 and STAT5. Further, it was detected that DFP directs Th1 bias and results in attainment of better suppression of breast tumor CONCLUSION: The results collectively pointed out that DFP favored cell-mediated immune response from BTAA antigen presentation on macrophages and also helping in the robust proliferation of an entire spectrum of T helper lymphocytes which furthermore strengthen the underlying immune responses, hence, fencing the body, of the progression of breast cancer.
Collapse
Affiliation(s)
| | - Akanksha Rai
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Melvin George
- Department of Clinical Pharmacology, SRM Medical College Hospital and Research Center, Kattankulathur, Tamil Nadu, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
4
|
Singh A, Chatterjee A, Rakshit S, Shanmugam G, Mohanty LM, Sarkar K. Neem Leaf Glycoprotein in immunoregulation of cancer. Hum Immunol 2022; 83:768-777. [DOI: 10.1016/j.humimm.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/04/2022]
|
5
|
Dasgupta S, Saha A, Ganguly N, Bhuniya A, Dhar S, Guha I, Ghosh T, Sarkar A, Ghosh S, Roy K, Das T, Banerjee S, Pal C, Baral R, Bose A. NLGP regulates RGS5-TGFβ axis to promote pericyte-dependent vascular normalization during restricted tumor growth. FASEB J 2022; 36:e22268. [PMID: 35363396 DOI: 10.1096/fj.202101093r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/05/2022] [Accepted: 03/09/2022] [Indexed: 12/25/2022]
Abstract
Altered RGS5-associated intracellular pericyte signaling and its abnormal crosstalk with endothelial cells (ECs) result chaotic tumor-vasculature, prevent effective drug delivery, promote immune-evasion and many more to ensure ultimate tumor progression. Moreover, the frequency of lethal-RGS5high pericytes within tumor was found to increase with disease progression, which signifies the presence of altered cell death pathway within tumor microenvironment (TME). In this study, we checked whether and how neem leaf glycoprotein (NLGP)-immunotherapy-mediated tumor growth restriction is associated with modification of pericytes' signaling, functions and its interaction with ECs. Analysis of pericytes isolated from tumors of NLGP treated mice suggested that NLGP treatment promotes apoptosis of NG2+ RGS5high -fuctionally altered pericytes by downregulating intra-tumoral TGFβ, along with maintenance of more matured RGS5neg pericytes. NLGP-mediated inhibition of TGFβ within TME rescues binding of RGS5 with Gαi and thereby termination of PI3K-AKT mediated survival signaling by downregulating Bcl2 and initiating pJNK mediated apoptosis. Limited availability of TGFβ also prevents complex-formation between RGS5 and Smad2 and rapid RGS5 nuclear translocation to mitigate alternate immunoregulatory functions of RGS5high tumor-pericytes. We also observed binding of Ang1 from pericytes with Tie2 on ECs in NLGP-treated tumor, which support re-association of pericytes with endothelium and subsequent vessel stabilization. Furthermore, NLGP-therapy- associated RGS5 deficiency relieved CD4+ and CD8+ T cells from anergy by regulating 'alternate-APC-like' immunomodulatory characters of tumor-pericytes. Taken together, present study described the mechanisms of NLGP's effectiveness in normalizing tumor-vasculature by chiefly modulating pericyte-biology and EC-pericyte interactions in tumor-host to further strengthen its translational potential as single modality treatment.
Collapse
Affiliation(s)
- Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sukanya Dhar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anirban Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Kamalika Roy
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Tapasi Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Chiranjib Pal
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
6
|
Human‐lymphocyte cell friendly starch–hydroxyapatite biodegradable composites: Hydrophilic mechanism, mechanical, and structural impact. J Appl Polym Sci 2019. [DOI: 10.1002/app.48913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Ghosh T, Nandi P, Ganguly N, Guha I, Bhuniya A, Ghosh S, Sarkar A, Saha A, Dasgupta S, Baral R, Bose A. NLGP counterbalances the immunosuppressive effect of tumor-associated mesenchymal stem cells to restore effector T cell functions. Stem Cell Res Ther 2019; 10:296. [PMID: 31547863 PMCID: PMC6757425 DOI: 10.1186/s13287-019-1349-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background A dynamic interaction between tumor cells and its surrounding stroma promotes the initiation, progression, metastasis, and chemoresistance of solid tumors. Emerging evidences suggest that targeting the stromal events could improve the efficacies of current therapeutics. Within tumor microenvironment (TME), stromal progenitor cells, i.e., MSCs, interact and eventually modulate the biology and functions of cancer and immune cells. Our recent finding disclosed a novel mechanism stating that tumor-associated MSCs inhibit the T cell proliferation and effector functions by blocking cysteine transport to T cells by dendritic cells (DCs), which makes MSCs as a compelling candidate as a therapeutic target. Immunomodulation by nontoxic neem leaf glycoprotein (NLGP) on dysfunctional cancer immunity offers significant therapeutic benefits to murine tumor host; however, its modulation on MSCs and its impact on T cell functions need to be elucidated. Methods Bone marrow-derived primary MSCs or murine 10 T1/2 MSCs were tumor-conditioned (TC-MSCs) and co-cultured with B16 melanoma antigen-specific DCs and MACS purified CD4+ and CD8+ T cells. T cell proliferation of T cells was checked by Ki67-based flow-cytometric and thymidine-incorporation assays. Cytokine secretion was measured by ELISA. The expression of cystathionase in DCs was assessed by RT-PCR. The STAT3/pSTAT3 levels in DCs were assessed by western blot, and STAT3 function was confirmed using specific SiRNA. Solid B16 melanoma tumor growth was monitored following adoptive transfer of conditioned CD8+ T cells. Results NLGP possesses an ability to restore anti-tumor T cell functions by modulating TC-MSCs. Supplementation of NLGP in DC-T cell co-culture significantly restored the inhibition in T cell proliferation and IFNγ secretion almost towards normal in the presence of TC-MSCs. Adoptive transfer of NLGP-treated TC-MSC supernatant educated CD8+ T cells in solid B16 melanoma bearing mice resulted in better tumor growth restriction than TC-MSC conditioned CD8+ T cells. NLGP downregulates IL-10 secretion by TC-MSCs, and concomitantly, pSTAT3 expression was downregulated in DCs in the presence of NLGP-treated TC-MSC supernatant. As pSTAT3 negatively regulates cystathionase expression in DCs, NLGP indirectly helps to maintain an almost normal level of cystathionase gene expression in DCs making them able to export sufficient amount of cysteine required for optimum T cell proliferation and effector functions within TME. Conclusions NLGP could be a prospective immunotherapeutic agent to control the functions and behavior of highly immunosuppressive TC-MSCs providing optimum CD8+ T cell functions to showcase an important new approach that might be effective in overall cancer treatment. Electronic supplementary material The online version of this article (10.1186/s13287-019-1349-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Partha Nandi
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Anirban Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata, 700026, India.
| |
Collapse
|
8
|
Neem leaf glycoprotein regulates function of tumor associated M2 macrophages in hypoxic tumor core: Critical role of IL-10/STAT3 signaling. Mol Immunol 2016; 80:1-10. [DOI: 10.1016/j.molimm.2016.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 01/01/2023]
|
9
|
Ghosh S, Sarkar M, Ghosh T, Guha I, Bhuniya A, Biswas J, Mallick A, Bose A, Baral R. Absence of CD4(+) T cell help generates corrupt CD8(+) effector T cells in sarcoma-bearing Swiss mice treated with NLGP vaccine. Immunol Lett 2016; 175:31-9. [PMID: 27178306 DOI: 10.1016/j.imlet.2016.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 12/19/2022]
Abstract
One of the prime objectives of cancer immunology and immunotherapy is to study the issues related to rescue and/or maintenance of the optimum effector CD8(+) T cell functions by minimizing tumor-induced negative factors. In this regard the influence of host intrinsic CD4(+) helper T cells towards generation and maintenance of CD8(+) effector T cells appears controversial in different experimental settings. Therefore, the present study was aimed to re-analyze the influence of CD4(+) helper T cells towards effector T cells during neem leaf glycoprotein (NLGP)-vaccine-mediated tumor growth restriction. CD4 depletion (mAb; Clone GK1.5) surprisingly resulted in significant increase in CD8(+) T cells in different immune organs from NLGP-treated sarcoma-bearing mice. However, such CD8 surge could not restrict the sarcoma growth in NLGP-treated CD4-depleted mice. Furthermore, CD4 depletion in early phase hinders CD8(+) T cell activation and terminal differentiation by targeting crucial transcription factor Runx3. CD4 depletion decreases accumulation of CD8α(+) dendritic cells within tumor draining lymph node, hampers antigen cross priming and CD86-CD28 interactions for optimum CD8(+) T cell functions. In order to search the mechanism of CD4(+) T cell help on NLGP-mediated CD8 effector functions, the role of CD4(+) helper T cell-derived IL-2 on optimization of CD8 functions was found using STAT5 signaling, but complete response requires physical contact of CD4(+) helper T cells with its CD8 counterpart. In conclusion, it was found that CD4(+) T cell help is not required to generate CD8(+) T cells but was found to be an integral phenomenon in maintenance of its anti-tumor functions even in NLGP-vaccine-mediated sarcoma growth restriction.
Collapse
Affiliation(s)
- Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Madhurima Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Jaydip Biswas
- Department of Surgical Oncology and Medical Oncology, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Atanu Mallick
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India.
| |
Collapse
|
10
|
Neem leaf glycoprotein promotes dual generation of central and effector memory CD8(+) T cells against sarcoma antigen vaccine to induce protective anti-tumor immunity. Mol Immunol 2016; 71:42-53. [PMID: 26851529 DOI: 10.1016/j.molimm.2016.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/08/2016] [Accepted: 01/20/2016] [Indexed: 11/22/2022]
Abstract
We have previously shown that Neem Leaf Glycoprotein (NLGP) mediates sustained tumor protection by activating host immune response. Now we report that adjuvant help from NLGP predominantly generates CD44(+)CD62L(high)CCR7(high) central memory (TCM; in lymph node) and CD44(+)CD62L(low)CCR7(low) effector memory (TEM; in spleen) CD8(+) T cells of Swiss mice after vaccination with sarcoma antigen (SarAg). Generated TCM and TEM participated either to replenish memory cell pool for sustained disease free states or in rapid tumor eradication respectively. TCM generated after SarAg+NLGP vaccination underwent significant proliferation and IL-2 secretion following SarAg re-stimulation. Furthermore, SarAg+NLGP vaccination helps in greater survival of the memory precursor effector cells at the peak of the effector response and their maintenance as mature memory cells, in comparison to single modality treatment. Such response is corroborated with the reduced phosphorylation of FOXO in the cytosol and increased KLF2 in the nucleus associated with enhanced CD62L, CCR7 expression of lymph node-resident CD8(+) T cells. However, spleen-resident CD8(+) T memory cells show superior efficacy for immediate memory-to-effector cell conversion. The data support in all aspects that SarAg+NLGP demonstrate superiority than SarAg vaccination alone that benefits the host by rapid effector functions whenever required, whereas, central-memory cells are thought to replenish the memory cell pool for ultimate sustained disease free survival till 60 days following post-vaccination tumor inoculation.
Collapse
|
11
|
Das A, Mondal B, Bose A, Biswas J, Baral R, Pal S. Therapeutic anti-NLGP monoclonal antibody for carcinoembryonic antigen expressing tumors is nontoxic to Swiss and BALB/c mice. Int Immunopharmacol 2015; 28:785-93. [PMID: 26283593 DOI: 10.1016/j.intimp.2015.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/25/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
Abstract
A murine monoclonal antibody (mAb), 1C8 was developed against a novel glycoprotein NLGP and its unique property to recognize carcinoembryonic antigen (CEA) was reported. Utilizing this CEA recognizing property, 1C8 is successful to restrict the growth of CEA(+) murine and human cancers both in vitro and in vivo. Here, we have thoroughly evaluated the toxicity profile of this mAb 1C8 on different physiological systems of both tumor-free and tumor-bearing Swiss and BALB/c mice. Effective concentration (25 μg/mice) of 1C8 caused no behavioral changes in animals and no death was recorded. Moreover, little increase in the body and organ weights in all mice groups was noted. MAb 1C8 showed no adverse effect on the hematological system, but little hematostimulation was noticed, as evidenced by increased hemoglobin content, leukocyte count and lymphocyte numbers. Liver enzymes like alkaline phosphatase, SGOT, SGPT and nephrological products like urea and creatinine assessment confirmed no abnormalities in both hepatic and renal functions. Number of T cells, B cells, NK cells, macrophages and dendritic cells was upregulated in vivo by mAb treatment with significant downregulation of regulatory T cells. During this treatment serum levels of type 1 cytokines were upregulated over type 2 cytokines. This mAb 1C8 also did not induce any significant increase in antibody titer following treatment. Accumulated evidences from Swiss and BALB/c mice strongly suggest that this mAb 1C8 is completely safe, thus, can be recommended for further clinical trial for the therapy of CEA(+) tumors.
Collapse
Affiliation(s)
- Arnab Das
- Clinical Biochemistry Unit, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata 700026, India; Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Bipasa Mondal
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Jaydip Biswas
- Department of Surgical Oncology and Medical Oncology, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Smarajit Pal
- Clinical Biochemistry Unit, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
12
|
Barik S, Banerjee S, Sarkar M, Bhuniya A, Roy S, Bose A, Baral R. Neem leaf glycoprotein optimizes effector and regulatory functions within tumor microenvironment to intervene therapeutically the growth of B16 melanoma in C57BL/6 mice. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.trivac.2013.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
A Monoclonal Antibody Against Neem Leaf Glycoprotein Recognizes Carcinoembryonic Antigen (CEA) and Restricts CEA Expressing Tumor Growth. J Immunother 2014; 37:394-406. [DOI: 10.1097/cji.0000000000000050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Hao F, Kumar S, Yadav N, Chandra D. Neem components as potential agents for cancer prevention and treatment. Biochim Biophys Acta Rev Cancer 2014; 1846:247-57. [PMID: 25016141 DOI: 10.1016/j.bbcan.2014.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/08/2014] [Accepted: 07/03/2014] [Indexed: 02/05/2023]
Abstract
Azadirachta indica, also known as neem, is commonly found in many semi-tropical and tropical countries including India, Pakistan, and Bangladesh. The components extracted from neem plant have been used in traditional medicine for the cure of multiple diseases including cancer for centuries. The extracts of seeds, leaves, flowers, and fruits of neem have consistently shown chemopreventive and antitumor effects in different types of cancer. Azadirachtin and nimbolide are among the few bioactive components in neem that have been studied extensively, but research on a great number of additional bioactive components is warranted. The key anticancer effects of neem components on malignant cells include inhibition of cell proliferation, induction of cell death, suppression of cancer angiogenesis, restoration of cellular reduction/oxidation (redox) balance, and enhancement of the host immune responses against tumor cells. While the underlying mechanisms of these effects are mostly unclear, the suppression of NF-κB signaling pathway is, at least partially, involved in the anticancer functions of neem components. Importantly, the anti-proliferative and apoptosis-inducing effects of neem components are tumor selective as the effects on normal cells are significantly weaker. In addition, neem extracts sensitize cancer cells to immunotherapy and radiotherapy, and enhance the efficacy of certain cancer chemotherapeutic agents. This review summarizes the current updates on the anticancer effects of neem components and their possible impact on managing cancer incidence and treatment.
Collapse
Affiliation(s)
- Fang Hao
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Sandeep Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Neelu Yadav
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
15
|
Mallick A, Barik S, Ghosh S, Roy S, Sarkar K, Bose A, Baral R. Immunotherapeutic targeting of established sarcoma in Swiss mice by tumor-derived antigen-pulsed NLGP matured dendritic cells is CD8+ T-cell dependent. Immunotherapy 2014; 6:821-31. [DOI: 10.2217/imt.14.53] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Neem leaf glycoprotein (NLGP) matures human myeloid and mouse bone marrow-derived dendritic cells (DCs). (NLGP) also therapeutically restricts the mouse established sarcoma growth by activating CD8+ T cells along with increased proportion of tumor residing CD11c+ DCs. Here, we intended to find out whether CD8+ T cells become cytotoxic to sarcoma cells after presentation of sarcoma antigen by NLGP-matured DCs to restrict murine sarcoma growth. Materials & methods: NLGP was prepared from matured neem(Azadirachta indica) leaves. Solid sarcoma tumor in Swiss mice was developed by subcutaneous inoculation of sarcoma cells. GMCSF-IL-4 generated DCs were matured with NLGP and pulsed with sarcoma antigen for immunotherapy. Status of CD8+CD69+T cells was studied by flow cytometry and secretion of cytokines was measured by ELISA. RT-PCR was used to monitor the status of perforin, granzyme B. Results: NLGP-matured sarcoma antigen-pulsed DCs (DCNLGPTAg) inhibit mouse sarcoma growth. DCNLGPTAg immunization enhances CD8+ T-cell number within tumor-infiltrating lymphocytes and tumor-draining lymph nodes along with increased perforin and granzyme B expression. Antigen-specific T-cell proliferation and IFN-γ secretion were significantly higher in DCNLGP- and DCNLGPTAg-immunized mice groups. In vivo CD8+ T-cell depletion abrogated the DCNLGPTAg-mediated tumor growth restriction. Conclusion: DCNLGPTAg restricts CD8+ T-cell-dependent mouse established sarcoma growth, related to the optimum antigen presentation by DCs to CD8+ T cells.
Collapse
Affiliation(s)
- Atanu Mallick
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Subhasis Barik
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Sarbari Ghosh
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Soumyabrata Roy
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Koustav Sarkar
- Pediatric Hematology Oncology, University of Iowa Children’s Hospital, IA, USA
| | - Anamika Bose
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Rathindranath Baral
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| |
Collapse
|
16
|
Barik S, Banerjee S, Mallick A, Goswami KK, Roy S, Bose A, Baral R. Normalization of tumor microenvironment by neem leaf glycoprotein potentiates effector T cell functions and therapeutically intervenes in the growth of mouse sarcoma. PLoS One 2013; 8:e66501. [PMID: 23785504 PMCID: PMC3681973 DOI: 10.1371/journal.pone.0066501] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/06/2013] [Indexed: 11/18/2022] Open
Abstract
We have observed restriction of the murine sarcoma growth by therapeutic intervention of neem leaf glycoprotein (NLGP). In order to evaluate the mechanism of tumor growth restriction, here, we have analyzed tumor microenvironment (TME) from sarcoma bearing mice with NLGP therapy (NLGP-TME, in comparison to PBS-TME). Analysis of cytokine milieu within TME revealed IL-10, TGFβ, IL-6 rich type 2 characters was switched to type 1 microenvironment with dominance of IFNγ secretion within NLGP-TME. Proportion of CD8(+) T cells was increased within NLGP-TME and these T cells were protected from TME-induced anergy by NLGP, as indicated by higher expression of pNFAT and inhibit related downstream signaling. Moreover, low expression of FasR(+) cells within CD8(+) T cell population denotes prevention from activation induced cell death. Using CFSE as a probe, better migration of T cells was noted within TME from NLGP treated mice than PBS cohort. CD8(+) T cells isolated from NLGP-TME exhibited greater cytotoxicity to sarcoma cells in vitro and these cells show higher expression of cytotoxicity related molecules, perforin and granzyme B. Adoptive transfer of NLGP-TME exposed T cells, but not PBS-TME exposed cells in mice, is able to significantly inhibit the growth of sarcoma in vivo. Such tumor growth inhibition by NLGP-TME exposed T cells was not observed when mice were depleted for CD8(+) T cells. Accumulated evidences strongly suggest NLGP mediated normalization of TME allows T cells to perform optimally to inhibit the tumor growth.
Collapse
Affiliation(s)
- Subhasis Barik
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI); Kolkata, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI); Kolkata, India
| | - Atanu Mallick
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI); Kolkata, India
| | - Kuntal Kanti Goswami
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI); Kolkata, India
| | - Soumyabrata Roy
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI); Kolkata, India
| | - Anamika Bose
- Department of Molecular Medicine, Bose Institute, C.I.T. Scheme, Kolkata, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI); Kolkata, India
- * E-mail:
| |
Collapse
|
17
|
Barik S, Bhuniya A, Banerjee S, Das A, Sarkar M, Paul T, Ghosh T, Ghosh S, Roy S, Pal S, Bose A, Baral R. Neem leaf glycoprotein is superior than cisplatin and sunitinib malate in restricting melanoma growth by normalization of tumor microenvironment. Int Immunopharmacol 2013; 17:42-9. [PMID: 23747315 DOI: 10.1016/j.intimp.2013.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/27/2013] [Accepted: 05/07/2013] [Indexed: 12/21/2022]
Abstract
We have observed earlier that therapeutic treatment with neem leaf glycoprotein (NLGP) inhibits murine B16-melanoma growth in vivo and improves survivability of treated mice. Anti-tumor effect of NLGP is directly associated with enhanced CD8(+) T cell activity and downregulation of suppressive cellular functions. Objective of this present study is to know the efficacy of NLGP in comparison to two popular drugs, Cisplatin and Sunitinib malate (Sutent) in relation to the modulation of tumor microenvironment (TME). Analysis of cytokine milieu within TME revealed IL-10, TGFβ, IL-6 rich type 2 characters was significantly switched to type 1 microenvironment with dominance of IFNγ and IL-2 within NLGP-TME, which was not found in other cases; however Cisplatin-TME appeared better in type 2 to type 1 conversion than Sutent-TME as evidenced by RT-PCR, ELISA and immunohistochemical analysis. NLGP-TME educated CD8(+) T cells exhibited greater cytotoxicity to B16 Melanoma cells in vitro and these cells showed comparatively higher expression of cytotoxicity related molecules, perforin and granzyme B than Cisplatin-TME and Sutent-TME educated T cells. Adoptive transfer of NLGP-TME exposed T cells, but not PBS-TME exposed cells in mice, is able to significantly inhibit the growth of melanoma in vivo. Such tumor growth inhibition was in significantly lower extent when therapeutic CD8(+) T cells were exposed to either Cisplatin-TME or Sutent-TME or control-TME. Accumulated evidences strongly suggest that non toxic NLGP normalized TME allows T cells to perform optimally than other TMEs under study to inhibit the melanoma growth.
Collapse
Affiliation(s)
- Subhasis Barik
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata 700026, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mallick A, Barik S, Goswami KK, Banerjee S, Ghosh S, Sarkar K, Bose A, Baral R. Neem leaf glycoprotein activates CD8(+) T cells to promote therapeutic anti-tumor immunity inhibiting the growth of mouse sarcoma. PLoS One 2013; 8:e47434. [PMID: 23326300 PMCID: PMC3543399 DOI: 10.1371/journal.pone.0047434] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/17/2012] [Indexed: 11/18/2022] Open
Abstract
In spite of sufficient data on Neem Leaf Glycoprotein (NLGP) as a prophylactic vaccine, little knowledge currently exists to support the use of NLGP as a therapeutic vaccine. Treatment of mice bearing established sarcomas with NLGP (25 µg/mice/week subcutaneously for 4 weeks) resulted in tumor regression or dormancy (Tumor free/Regressor, 13/24 (NLGP), 4/24 (PBS)). Evaluation of CD8+ T cell status in blood, spleen, TDLN, VDLN and tumor revealed increase in cellular number. Elevated expression of CD69, CD44 and Ki67 on CD8+ T cells revealed their state of activation and proliferation by NLGP. Depletion of CD8+ T cells in mice at the time of NLGP treatment resulted in partial termination of tumor regression. An expansion of CXCR3+ and CCR5+ T cells was observed in the TDLN and tumor, along with their corresponding ligands. NLGP treatment enhances type 1 polarized T-bet expressing T cells with downregulation of GATA3. Treg cell population was almost unchanged. However, T∶Treg ratios significantly increased with NLGP. Enhanced secretion/expression of IFNγ was noted after NLGP therapy. In vitro culture of T cells with IL-2 and sarcoma antigen resulted in significant enhancement in cytotoxic efficacy. Consistently higher expression of CD107a was also observed in CD8+ T cells from tumors. Reinoculation of sarcoma cells in tumor regressed NLGP-treated mice maintained tumor free status in majority. This is correlated with the increment of CD44hiCD62Lhi central memory T cells. Collectively, these findings support a paradigm in which NLGP dynamically orchestrates the activation, expansion, and recruitment of CD8+ T cells into established tumors to operate significant tumor cell lysis.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/immunology
- Antineoplastic Agents/pharmacology
- Azadirachta/chemistry
- Azadirachta/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cytotoxicity, Immunologic/drug effects
- Cytotoxicity, Immunologic/immunology
- Female
- Glycoproteins/immunology
- Glycoproteins/pharmacology
- Immunohistochemistry
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Mice
- Plant Leaves/chemistry
- Plant Leaves/immunology
- Plant Proteins/immunology
- Plant Proteins/pharmacology
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Receptors, CCR5/metabolism
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Receptors, CXCR3/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoma, Experimental/drug therapy
- Sarcoma, Experimental/immunology
- Sarcoma, Experimental/pathology
- Spleen/drug effects
- Spleen/immunology
- Spleen/pathology
- Survival Analysis
- Time Factors
- Tumor Burden/drug effects
- Tumor Burden/immunology
Collapse
Affiliation(s)
- Atanu Mallick
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Subhasis Barik
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Kuntal Kanti Goswami
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Koustav Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
- * E-mail:
| |
Collapse
|
19
|
Mallick A, Ghosh S, Banerjee S, Majumder S, Das A, Mondal B, Barik S, Goswami KK, Pal S, Laskar S, Sarkar K, Bose A, Baral R. Neem leaf glycoprotein is nontoxic to physiological functions of Swiss mice and Sprague Dawley rats: histological, biochemical and immunological perspectives. Int Immunopharmacol 2012. [PMID: 23178577 DOI: 10.1016/j.intimp.2012.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have evaluated the toxicity profile of a unique immunomodulator, neem leaf glycoprotein (NLGP) on different physiological systems of Swiss mice and Sprague Dawley rats. NLGP injection, even in higher doses than effective concentration caused no behavioral changes in animals and no death. NLGP injection increased the body weights of mice slightly without any change in organ weights. NLGP showed no adverse effect on the hematological system. Moreover, little hematostimulation was noticed, as evidenced by increased hemoglobin content, leukocyte count and lymphocyte numbers. Histological assessment of different organs revealed no alterations in the organ microstructure of the NLGP treated mice and rats. Histological normalcy of liver and kidney was further confirmed by the assessment of liver enzymes like alkaline phosphatase, SGOT, SGPT and nephrological products like urea and creatinine. NLGP has no apoptotic effect on immune cells but induces proliferation of mononuclear cells collected from mice and rats. Number of CD4(+), CD8(+) T cells, DX5(+) NK cells, CD11b(+) macrophages and CD11c(+) dendritic cells is upregulated by NLGP without a significant change in CD4(+)CD25(+)Foxp3(+) regulatory T cells. Type 1 cytokines, like IFNγ also increased in serum with a decrease in type 2 cytokines. Total IgG content, especially IgG2a increased in NLGP treated mice. These type 1 directed changes help to create an anti-tumor immune environment that results in the restriction of carcinoma growth in mice. Accumulated evidence strongly suggests the non-toxic nature of NLGP. Thus, it can be recommended for human use in anti-cancer therapy.
Collapse
Affiliation(s)
- Atanu Mallick
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chakraborty T, Bose A, Goswami KK, Goswami S, Chakraborty K, Baral R. Neem leaf glycoprotein suppresses regulatory T cell mediated suppression of monocyte/macrophage functions. Int Immunopharmacol 2012; 12:326-33. [DOI: 10.1016/j.intimp.2011.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/07/2011] [Accepted: 12/01/2011] [Indexed: 01/22/2023]
|
21
|
Chakraborty T, Bose A, Barik S, Goswami KK, Banerjee S, Goswami S, Ghosh D, Roy S, Chakraborty K, Sarkar K, Baral R. Neem leaf glycoprotein inhibits CD4+CD25+Foxp3+ Tregs to restrict murine tumor growth. Immunotherapy 2011; 3:949-69. [DOI: 10.2217/imt.11.81] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: The presence of Tregs in tumors is associated with compromised tumor-specific immune responses and has a clear negative impact on survival of cancer patients. Thus, downregulation of Tregs is considered as a promising cancer immunotherapeutic approach. We have reported previously that neem leaf glycoprotein (NLGP) prophylaxis restricts tumor growth in mice by immune activation. In continuation, here, involvement of NLGP in the modulation of Tregs in association with tumor growth restriction is investigated. Results: NLGP downregulates CD4+CD25+Foxp3+ Tregs within tumors. NLGP-mediated downregulation of CCR4 along with its ligand CCL22 restricts Treg migration at the tumor site. NLGP is not apoptotic to Tregs but significantly downregulates the expression of Foxp3, CTLA4 and GITR. It also reverses the functional impairment of T-effector cells by Tregs, in terms of IFN-γ secretion, cellular proliferation and tumor cell cytotoxicity. NLGP also facilitates reconditioning of tumor microenvironment (hostile) by increasing IFN-γ and IL-12 but decreasing IL-10, TGF-β, VEGF and IDO, creating an antitumor niche. Interaction between Foxp3, p-NFATc3 and p-Smad2/3, needed for successful Treg function, is also inhibited by NLGP. Conclusion: All of these coordinated events might result in inhibition of Treg associated-tumor growth and therefore increased survivability of mice having NLGP treatment before or/and after tumor inoculation. Thus, the possibility of NLGP being an excellent tool as a T-cell anergy breaker by abrogating the suppressor functions of Tregs in cancer needs to be explored further in the clinic.
Collapse
Affiliation(s)
- Tathagata Chakraborty
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Anamika Bose
- Department of Molecular Medicine, Bose Institute, CIT Scheme, Kolkata, India
| | - Subhasis Barik
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Kuntal Kanti Goswami
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Saptak Banerjee
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Shyamal Goswami
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Diptendu Ghosh
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Soumyabrata Roy
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | | | - Koustav Sarkar
- Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | | |
Collapse
|
22
|
Neem leaf glycoprotein partially rectifies suppressed dendritic cell functions and associated T cell efficacy in patients with stage IIIB cervical cancer. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:571-9. [PMID: 21307275 DOI: 10.1128/cvi.00499-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myeloid-derived dendritic cells (DCs) generated from monocytes obtained from stage IIIB cervical cancer (CaCx IIIB) patients show dysfunctional maturation; thus, antitumor T cell functions are dysregulated. In an objective to optimize these dysregulated immune functions, the present study is focused on the ability of neem leaf glycoprotein (NLGP), a nontoxic preparation of the neem leaf, to induce optimum maturation of dendritic cells from CaCx IIIB patients. In vitro NLGP treatment of immature DCs (iDCs) obtained from CaCx IIIB patients results in upregulated expression of various cell surface markers (CD40, CD83, CD80, CD86, and HLA-ABC), which indicates DC maturation. Consequently, NLGP-matured DCs displayed balanced cytokine secretions, with type 1 bias and noteworthy functional properties. These DCs displayed substantial T cell allostimulatory capacity and promoted the generation of cytotoxic T lymphocytes (CTLs). Although NLGP-matured DCs derived from CaCx monocytes are generally subdued compared to those with a healthy monocyte origin, considerable revival of the suppressed DC-based immune functions is noted in vitro at a fairly advanced stage of CaCx, and thus, further exploration of ex vivo and in vivo DC-based vaccines is proposed. Moreover, the DC maturating efficacy of NLGP might be much more effective in the earlier stages of CaCx, where the extent of immune dysregulation is less and, thus, the scope of further investigation may be explored.
Collapse
|
23
|
Uno K, Okuno K, Kato T, Tada-Oikawa S, Kan N, Saotome H, Yagi K, Hamuro J. Pre-operative intracellular glutathione levels of peripheral monocytes as a biomarker to predict survival of colorectal cancer patients. Cancer Immunol Immunother 2010; 59:1457-65. [PMID: 20514541 PMCID: PMC11030285 DOI: 10.1007/s00262-010-0868-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 05/04/2010] [Indexed: 12/11/2022]
Abstract
The ability to predict anti-tumor immune responses at local tumor growing sites using only peripheral blood specimens would be helpful in determining therapeutic options for patients with solid tumors. Here, we show that the glutathione intracellular content (icGSH) of peripheral monocytes (Mo) correlates positively with T cell infiltration within tumor islets and overall survival in patients with colorectal carcinoma. IcGSH redox status was determined in CD14(+) Mo prior to surgery by staining with monochlorobimane. The tumor-infiltrating T cells (TIL) were quantified as CD45RO(+) T cells in resected tumors using paraffin sections. A positive association was found between the GSH index and TIL in tumor islets (P < 0.001). The 50% cut-off value for the GSH index, that is the determinant between TIL presence or absence in tumor islets, was calculated to be almost 0.7 through logistic regression analysis. Mo with a GSH index of > or =0.7 were termed reductive (R)-Mo, and those with <0.7 were designated as oxidative (O)-Mo. Cox's proportional hazards regression analysis of patients with R-Mo or O-Mo prior to surgery, and the presence or absence of TIL, was found to correlate significantly with the overall survival rate of stage II and III patients. Kaplan-Meier analysis also showed a significant correlation. These results indicate that the Mo icGSH index is a useful biomarker parameter for better understanding the host/tumor relationship prior to surgery, thereby enabling the development of an individual patient-oriented therapeutic strategy.
Collapse
Affiliation(s)
- Kazuko Uno
- Louis Pasteur Center for Medical Research, 103-5, Tanakamonzen-cho, Sakyo-ku, Kyoto City, Kyoto, 606-8225, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Neem leaf glycoprotein enhances carcinoembryonic antigen presentation of dendritic cells to T and B cells for induction of anti-tumor immunity by allowing generation of immune effector/memory response. Int Immunopharmacol 2010; 10:865-74. [DOI: 10.1016/j.intimp.2010.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/11/2010] [Accepted: 04/26/2010] [Indexed: 11/20/2022]
|
25
|
Chakraborty K, Bose A, Chakraborty T, Sarkar K, Goswami S, Pal S, Baral R. Restoration of dysregulated CC chemokine signaling for monocyte/macrophage chemotaxis in head and neck squamous cell carcinoma patients by neem leaf glycoprotein maximizes tumor cell cytotoxicity. Cell Mol Immunol 2010; 7:396-408. [PMID: 20622890 DOI: 10.1038/cmi.2010.29] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Previous studies have shown that the CC chemokine receptor CCR5 is downregulated on monocyte/macrophage (MO/Mphi) surfaces in head and neck squamous cell carcinoma (HNSCC) patients (stage IIIB). Ligands (RANTES, MIP-1alpha and MIP-1beta) of this chemokine receptor were also secreted in lesser quantity from MO/Mphi of HNSCC patients in comparison with healthy individuals. In an aim to restore this dysregulated receptor-ligand signaling, we have used neem leaf glycoprotein (NLGP), a novel immunomodulator reported from our laboratory. NLGP upregulated CCR5 expression, as evidenced from studies on MO/Mphi of peripheral blood from HNSCC patients as well as healthy individuals. Expression of RANTES, MIP-1alpha and MIP-1beta was also upregulated following NLGP treatment of these cells in vitro. Interestingly, NLGP has little effect on the expression of CCR5 and the ligand RANTES in oral cancer cells. This restored CCR5 receptor-ligand signaling seen in MO/Mphi was reflected in improved CCR5-dependent, p38 mitogen-activated protein kinase (MAPK)-mediated migration of MO/Mphi after NLGP treatment to a standard chemoattractant. NLGP also induces better antigen presentation and simultaneous costimulation to effector T cells by MO/Mphi by upregulating human leucocyte antigen (HLA)-ABC, CD80 and CD86. In addition, NLGP-treated MO/Mphi-primed T cells can effectively lyse tumor cells in vitro. The effects of NLGP on monocyte migration and T cell-mediated oral tumor cell killing were further demonstrated in transwell assays with or without CCR5 neutralization. These results suggest a new approach in cancer immunotherapy by modulating dysregulated CCR5 signals from MO/Mphi.
Collapse
Affiliation(s)
- Krishnendu Chakraborty
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | | | | | | | | | | | | |
Collapse
|
26
|
Goswami S, Bose A, Sarkar K, Roy S, Chakraborty T, Sanyal U, Baral R. Neem leaf glycoprotein matures myeloid derived dendritic cells and optimizes anti-tumor T cell functions. Vaccine 2010; 28:1241-52. [DOI: 10.1016/j.vaccine.2009.11.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 10/21/2009] [Accepted: 11/08/2009] [Indexed: 11/30/2022]
|
27
|
Bae MY, Cho NH, Seong SY. Protective anti-tumour immune responses by murine dendritic cells pulsed with recombinant Tat-carcinoembryonic antigen derived from Escherichia coli. Clin Exp Immunol 2009; 157:128-38. [PMID: 19659778 DOI: 10.1111/j.1365-2249.2009.03943.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Carcinoembryonic antigen (CEA) is over-expressed on various human cancer cells and has been the target of immunotherapies using dendritic cells (DCs) pulsed with CEA-specific RNA or peptides, or transduced by CEA-expressing adenovirus or vaccinia virus. Because activated DCs do not phagocytose soluble protein antigens efficiently and pure immature DCs are not obtained easily ex vivo, an efficacious whole CEA protein-loaded DC vaccine has not been reported. To improve the antigen delivery into DCs, we utilized CEA conjugated to a protein-transduction domain, human immunodeficiency virus transactivating Tat. Furthermore, we purified the truncated non-glycosylated CEA from Escherichia coli to overcome the safety concerns and immunosuppressive functions associated with the native CEA protein. Using confocal microscopy and fluorescence activating cell sorter analysis, we demonstrated that the Tat-CEA protein entered the cytoplasm of DCs efficiently within 10 min of co-culture, compared with the negligible amount of CEA into DCs 30 min later. CEA-specific T cell proliferation and cytotoxic T cell responses were enhanced significantly in mice immunized with Tat-CEA-pulsed DCs [DC (Tat-CEA)] compared with those immunized with CEA-pulsed DCs [DC (CEA)]. T helper type 1 responses were more prominent in the DC (Tat-CEA) immunized mice whose splenocytes secreted more interferon-gamma and less interleukin-4 than those from DC (CEA) immunized mice. In vivo, the DC (Tat-CEA) vaccine delayed tumour growth significantly and prolonged survival of tumour-bearing mice. These results suggest that protective epitopes are well preserved on bacteria-derived recombinant Tat-CEA. This strategy may provide a basic platform for DC-based anti-CEA vaccines that could be utilized in combination with advanced immune-enhancing therapeutics.
Collapse
Affiliation(s)
- M-Y Bae
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
28
|
Yang H, Cho NH, Seong SY. The Tat-conjugated N-terminal region of mucin antigen 1 (MUC1) induces protective immunity against MUC1-expressing tumours. Clin Exp Immunol 2009; 158:174-85. [PMID: 19737144 DOI: 10.1111/j.1365-2249.2009.03997.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mucin antigen 1 (MUC1) is overexpressed on various human adenocarcinomas and haematological malignancies and has long been used as a target antigen for cancer immunotherapy. Most of the preclinical and clinical studies using MUC1 have used the tandem repeat region of MUC1, which could be presented by only a limited set of major histocompatibility complex haplotypes. Here, we evaluated N-terminal region (2-147 amino acids) of MUC1 (MUC1-N) for dendritic cell (DC)-based cancer immunotherapy. We used Esherichia coli-derived MUC1-N that was fused to the protein transduction domain of human immunodeficiency virus Tat protein for three reasons. First, mature DCs do not phagocytose soluble protein antigens. Secondly, tumour cells express underglycosylated MUC1, which can generate epitopes repertoire that differs from normal cells, which express hyperglycosylated MUC1. Finally, aberrantly glycosylated MUC1 has been known to impair DC function. In our study, Tat-MUC1-N-loaded DCs induced type 1 T cell responses as well as cytotoxic T lymphocytes efficiently. Furthermore, they could break tolerance in the transgenic breast tumour mouse model, where MUC1-positive breast cancers grow spontaneously. Compared with DCs pulsed with unconjugated MUC1-N, DCs loaded with Tat-conjugated MUC1-N could delay tumour growth more effectively in the transgenic tumour model as well as in the tumour injection model. These results suggest that the recombinant N-terminal part of MUC1, which may provide a diverse epitope repertoire, could be utilized as an effective tumour antigen for DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- H Yang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
29
|
Neem leaf glycoprotein induces perforin-mediated tumor cell killing by T and NK cells through differential regulation of IFNgamma signaling. J Immunother 2009; 32:42-53. [PMID: 19307993 DOI: 10.1097/cji.0b013e31818e997d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have demonstrated augmentation of the CD3-CD56+ natural killer (NK) and CD8+CD56_ T-cell-mediated tumor cell cytotoxicity by neem leaf glycoprotein (NLGP). These NK and T cells were isolated from the peripheral blood of head and neck squamous cell carcinoma patients with a state of immunosuppression. NLGP induces TCRalphabeta-associated cytotoxic T lymphocyte (CTL) reaction to kill oral cancer (KB) cells. This CTL reaction is assisted by NLGP-mediated up-regulation of CD28 on T cells and HLA-ABC, CD80/86 on monocytes. CTL-mediated killing of KB cells and NK-cell-mediated killing of K562 (erythroleukemic) cells are associated with activation of these cells by NLGP. This activation is evidenced by increased expression of early activation marker CD69 with altered expression of CD45RO/CD45RA. NLGP is a strong inducer of IFNgamma from both T and NK cells; however, IFNgamma regulates the T-cell-mediated cytotoxicity only without affecting NK-cell-mediated one. Reason of this differential regulation may lie within up-regulated expression of IFNgamma-receptor on T-cell surface, not on NK cells. This NLGP-induced cytotoxicity is dependent on up-regulated perforin/granzyme B expression in killer cells, which is again IFNgamma dependent in T cells and independent in NK cells. Although, FasL expression is increased by NLGP, it may not be truly linked with the cytotoxic functions, as brefeldin A could not block such NLGP-mediated cytotoxicity, like, concanamycin A, a perforin inhibitor. On the basis of these results, we conclude that NLGP might be effective to recover the suppressed cytotoxic functions of NK and T cells from head and neck squamous cell carcinoma patients.
Collapse
|
30
|
Sarkar K, Bose A, Haque E, Chakraborty K, Chakraborty T, Goswami S, Ghosh D, Baral R. Induction of type 1 cytokines during neem leaf glycoprotein assisted carcinoembryonic antigen vaccination is associated with nitric oxide production. Int Immunopharmacol 2009; 9:753-60. [PMID: 19285575 DOI: 10.1016/j.intimp.2009.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 02/25/2009] [Accepted: 02/27/2009] [Indexed: 11/19/2022]
Abstract
Involvement of the nitric oxide (NO) release in CEAM phi NLGP (carcinoembryonic antigen pulsed macrophages with neem leaf glycoprotein) vaccination and its relationship with vaccine induced type 1 immune response were aimed to study in the present communication. Vaccination with CEAM phi NLGP resulted in macrophage activation as evidenced by its increased number and expression of CD69 marker. Activated macrophages demonstrated upregulation in synthesis of IL-12 and downregulation in IL-10, along with excess IFN gamma production in splenic cells, as evidenced from mRNA analysis. Induction of such type 1 immunity was further confirmed by expression of type 1 specific transcription factor, T-bet and enhancement of intracellular glutathione content. Such vaccination also induced greater nitric oxide (NO) production from macrophages. Dependence of induced type 1 immune response on the NO release and vice versa was studied by in vitro neutralization of IFN gamma/IL-12 and in vivo inhibition of NO production by methylene blue. Obtained results clearly demonstrated the interdependence of two anti-tumor immune functions, namely, NO production and generation of type 1 immune response. Understanding of the mechanism of this NO related immune modulation would have great impact in proposing CEAM phi NLGP vaccine in clinic for the treatment of CEA+ tumors.
Collapse
Affiliation(s)
- Koustav Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S. P. Mukherjee Road, Kolkata-700026, India
| | | | | | | | | | | | | | | |
Collapse
|