1
|
Ramesh D, Sarkar D, Joji A, Singh M, Mohanty AK, G Vijayakumar B, Chatterjee M, Sriram D, Muthuvel SK, Kannan T. First-in-class pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones against leishmaniasis and tuberculosis: Rationale, in vitro, ex vivo studies and mechanistic insights. Arch Pharm (Weinheim) 2022; 355:e2100440. [PMID: 35106845 DOI: 10.1002/ardp.202100440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
Pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones were synthesized, for the first time, from indole chalcones and 6-aminouracil, and their ability to inhibit leishmaniasis and tuberculosis (Tb) infections was evaluated. The in vitro antileishmanial activity against promastigotes of Leishmania donovani revealed exceptional activities of compounds 3, 12 and 13, with IC50 values ranging from 10.23 ± 1.50 to 15.58 ± 1.67 µg/ml, which is better than the IC50 value of the standard drug pentostam of 500 μg/ml. The selectivity of the compounds towards Leishmania parasites was evaluated via ex vivo studies in Swiss albino mice. The efficiency of these compounds against Tb infection was then evaluated using the in vitro anti-Tb microplate Alamar Blue assay. Five compounds, 3, 7, 8, 9 and 12, showed MIC100 values against the Mycobacterium tuberculosis H37 Rv strain at 25 µg/ml, and compound 20 yielded an MIC100 value of 50 µg/ml. Molecular modelling of these compounds highlighted interactions with binding sites of dihydrofolate reductase, pteridine reductase and thymidylate kinase, thus establishing the rationale of their pharmacological activity against both pathogens, which is consistent with the in vitro results. From the above results, it is clear that compounds 3 and 12 are promising lead candidates for Leishmania and Mycobacterium infections and may be promising for coinfections.
Collapse
Affiliation(s)
- Deepthi Ramesh
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Deblina Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research (IPGME&R), Kolkata, West Bengal, India
| | - Annu Joji
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Monica Singh
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad, India
| | - Amaresh K Mohanty
- Department of Bioinformatics, Pondicherry University, Kalapet, Puducherry, India
| | | | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research (IPGME&R), Kolkata, West Bengal, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad, India
| | - Suresh K Muthuvel
- Department of Bioinformatics, Pondicherry University, Kalapet, Puducherry, India
| | | |
Collapse
|
2
|
Srivastava S, Shankar P, Mishra J, Singh S. Possibilities and challenges for developing a successful vaccine for leishmaniasis. Parasit Vectors 2016; 9:277. [PMID: 27175732 PMCID: PMC4866332 DOI: 10.1186/s13071-016-1553-y] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 04/28/2016] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis is a vector-borne disease caused by different species of protozoan parasites of the genus Leishmania. It is a major health problem yet neglected tropical diseases, with approximately 350 million people worldwide at risk and more than 1.5 million infections occurring each year. Leishmaniasis has different clinical manifestations, including visceral (VL or kala-azar), cutaneous (CL), mucocutaneous (MCL), diffuse cutaneous (DCL) and post kala-azar dermal leishmaniasis (PKDL). Currently, the only mean to treat and control leishmaniasis is by rational medications and vector control. However, the number of available drugs is limited and even these are either exorbitantly priced, have toxic side effects or prove ineffective due to the emergence of resistant strains. On the other hand, the vector control methods are not so efficient. Therefore, there is an urgent need for developing a safe, effective, and affordable vaccine for the prevention of leishmaniasis. Although in recent years a large body of researchers has concentrated their efforts on this issue, yet only three vaccine candidates have gone for clinical trial, until date. These are: (i) killed vaccine in Brazil for human immunotherapy; (ii) live attenuated vaccine for humans in Uzbekistan; and (iii) second-generation vaccine for dog prophylaxis in Brazil. Nevertheless, there are at least half a dozen vaccine candidates in the pipeline. One can expect that, in the near future, the understanding of the whole genome of Leishmania spp. will expand the vaccine discovery and strategies that may provide novel vaccines. The present review focuses on the development and the status of various vaccines and potential vaccine candidates against leishmaniasis.
Collapse
Affiliation(s)
- Saumya Srivastava
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Prem Shankar
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Jyotsna Mishra
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sarman Singh
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
3
|
Kumar A, Samant M. DNA vaccine against visceral leishmaniasis: a promising approach for prevention and control. Parasite Immunol 2016; 38:273-81. [DOI: 10.1111/pim.12315] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/21/2016] [Indexed: 01/23/2023]
Affiliation(s)
- A. Kumar
- Department of Biotechnology; National Institute of Technology; Raipur Chhattisgarh India
| | - M. Samant
- Cell and Molecular biology laboratory; Department of Zoology; Kumaun University SSJ Campus; Almora Uttarakhand India
| |
Collapse
|
4
|
Passero LFD, Carvalho AK, Bordon MLAC, Bonfim-Melo A, Carvalho K, Kallás EG, Santos BBA, Toyama MH, Paes-Leme A, Corbett CEP, Laurenti MD. Proteins of Leishmania (Viannia) shawi confer protection associated with Th1 immune response and memory generation. Parasit Vectors 2012; 5:64. [PMID: 22463817 PMCID: PMC3342111 DOI: 10.1186/1756-3305-5-64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 03/30/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Leishmania (Viannia) shawi parasite was first characterized in 1989. Recently the protective effects of soluble leishmanial antigen (SLA) from L. (V.) shawi promastigotes were demonstrated using BALB/c mice, the susceptibility model for this parasite. In order to identify protective fractions, SLA was fractionated by reverse phase HPLC and five antigenic fractions were obtained. METHODS F1 fraction was purified from L. (V.) shawi parasite extract by reverse phase HPLC. BALB/c mice were immunized once a week for two consecutive weeks by subcutaneous routes in the rump, using 25 μg of F1. After 1 and 16 weeks of last immunization, groups were challenged in the footpad with L. (V.) shawi promastigotes. After 2 months, those same mice were sacrificed and parasite burden, cellular and humoral immune responses were evaluated. RESULTS The F1 fraction induced a high degree of protection associated with an increase in IFN-γ, a decrease in IL-4, increased cell proliferation and activation of CD8+T lymphocytes. Long-term protection was acquired in F1-immunized mice, associated with increased CD4+ central memory T lymphocytes and activation of both CD4+ and CD8+ T cells. In addition, F1-immunized groups showed an increase in IgG2a levels. CONCLUSIONS The inductor capability of antigens to generate memory lymphocytes that can proliferate and secrete beneficial cytokines upon infection could be an important factor in the development of vaccine candidates against American Tegumentary Leishmaniasis.
Collapse
Affiliation(s)
- Luiz Felipe D Passero
- Depto. de Patologia da Faculdade de Medicina da Universidade de São Paulo, Laboratório de Patologia de Moléstias Infecciosas (LIM-50), São Paulo, Brazil
- Campus Experimental do Litoral Paulista, Universidade Estadual Paulista, São Vicente, São Paulo, Brazil
- Depto. de Patologia da Faculdade de Medicina da Universidade de São Paulo, Laboratório de Patologia de Moléstias Infecciosas (LIM-50), Av. Dr. Arnaldo, 455, Cerqueira César, SP 01246-903, Brazil
| | - Ana Kely Carvalho
- Depto. de Patologia da Faculdade de Medicina da Universidade de São Paulo, Laboratório de Patologia de Moléstias Infecciosas (LIM-50), São Paulo, Brazil
| | - Maria LAC Bordon
- Depto. de Patologia da Faculdade de Medicina da Universidade de São Paulo, Laboratório de Patologia de Moléstias Infecciosas (LIM-50), São Paulo, Brazil
| | - Alexis Bonfim-Melo
- Campus Experimental do Litoral Paulista, Universidade Estadual Paulista, São Vicente, São Paulo, Brazil
| | - Karina Carvalho
- Division of Clinical Immunology and Allergy, (LIM-60), University of São Paulo, São Paulo, Brazil
| | - Esper G Kallás
- Division of Clinical Immunology and Allergy, (LIM-60), University of São Paulo, São Paulo, Brazil
| | - Bianca BA Santos
- Division of Clinical Immunology and Allergy, (LIM-60), University of São Paulo, São Paulo, Brazil
| | - Marcos H Toyama
- Campus Experimental do Litoral Paulista, Universidade Estadual Paulista, São Vicente, São Paulo, Brazil
| | | | - Carlos EP Corbett
- Depto. de Patologia da Faculdade de Medicina da Universidade de São Paulo, Laboratório de Patologia de Moléstias Infecciosas (LIM-50), São Paulo, Brazil
| | - Márcia D Laurenti
- Depto. de Patologia da Faculdade de Medicina da Universidade de São Paulo, Laboratório de Patologia de Moléstias Infecciosas (LIM-50), São Paulo, Brazil
| |
Collapse
|
5
|
Tyagi AK, Nangpal P, Satchidanandam V. Development of vaccines against tuberculosis. Tuberculosis (Edinb) 2011; 91:469-78. [DOI: 10.1016/j.tube.2011.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/14/2011] [Accepted: 01/16/2011] [Indexed: 12/20/2022]
|
6
|
Immunogenicity and protective efficacy against murine tuberculosis of a prime-boost regimen with BCG and a DNA vaccine expressing ESAT-6 and Ag85A fusion protein. Clin Dev Immunol 2011; 2011:617892. [PMID: 21461375 PMCID: PMC3065234 DOI: 10.1155/2011/617892] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 12/30/2010] [Indexed: 11/17/2022]
Abstract
Heterologous prime-boost regimens utilizing BCG as a prime vaccine probably represent the best hope for the development of novel tuberculosis (TB) vaccines. In this study, we examined the immunogenicity and protective efficacy of DNA vaccine (pcD685A) expressing the fusion protein of Ag85A and ESAT-6 (r685A) and its booster effects in BCG-immunized mice. The recombinant r685A fusion protein stimulated higher level of antigen-specific IFN-γ release in tuberculin skin test- (TST-) positive healthy household contacts of active pulmonary TB patients than that in TST-negative population. Vaccination of C57BL/6 mice with pcD685A resulted in significant protection against challenge with virulent Mycobacterium tuberculosis H37Rv when compared with the control group. Most importantly, pcD685A could act as a BCG booster and amplify Th1-type cell-mediated immunity in the lung of BCG-vaccinated mice as shown the increased expression of IFN-γ. The most significant reduction in bacterial load of both spleen and lung was obtained in mice vaccinated with BCG prime and pcD685A DNA booster when compared with BCG or pcD685A alone. Thus, our study indicates that pcD685A may be an efficient booster vaccine against TB with a strong ability to enhance prior BCG immunity.
Collapse
|