1
|
Lu L, Fong CHY, Zhang AJ, Wu WL, Li IC, Lee ACY, Dissanayake TK, Chen L, Hung IFN, Chan KH, Chu H, Kok KH, Yuen KY, To KKW. Repurposing of Miltefosine as an Adjuvant for Influenza Vaccine. Vaccines (Basel) 2020; 8:vaccines8040754. [PMID: 33322574 PMCID: PMC7768360 DOI: 10.3390/vaccines8040754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
We previously reported that topical imiquimod can improve the immunogenicity of the influenza vaccine. This study investigated another FDA-approved drug, miltefosine (MTF), as a vaccine adjuvant. Mice immunized with an influenza vaccine with or without MTF adjuvant were challenged by a lethal dose of influenza virus 3 or 7 days after vaccination. Survival, body weight, antibody response, histopathological changes, viral loads, cytokine levels, and T cell frequencies were compared. The MTF-adjuvanted vaccine (MTF-VAC) group had a significantly better survival rate than the vaccine-only (VAC) group, when administered 3 days (80% vs. 26.7%, p = 0.0063) or 7 days (96% vs. 65%, p = 0.0041) before influenza virus challenge. Lung damage was significantly ameliorated in the MTF-VAC group. Antibody response was significantly augmented in the MTF-VAC group against both homologous and heterologous influenza strains. There was a greater T follicular helper cell (TFH) response and an enhanced germinal center (GC) reaction in the MTF-VAC group. MTF-VAC also induced both TH1 and TH2 antigen-specific cytokine responses. MTF improved the efficacy of the influenza vaccine against homologous and heterologous viruses by improving the TFH and antibody responses. Miltefosine may also be used for other vaccines, including the upcoming vaccines for COVID-19.
Collapse
Affiliation(s)
- Lu Lu
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Carol Ho-Yan Fong
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Anna Jinxia Zhang
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Wai-Lan Wu
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Iris Can Li
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Andrew Chak-Yiu Lee
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Thrimendra Kaushika Dissanayake
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Linlei Chen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Ivan Fan-Ngai Hung
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Kwok-Hung Chan
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Hin Chu
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Kin-Hang Kok
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
- Correspondence:
| |
Collapse
|
2
|
Ng TWY, Perera RAPM, Fang VJ, Yau EM, Peiris JSM, Tam YH, Cowling BJ. The Effect of Influenza Vaccination History on Changes in Hemagglutination Inhibition Titers After Receipt of the 2015-2016 Influenza Vaccine in Older Adults in Hong Kong. J Infect Dis 2020; 221:33-41. [PMID: 31282541 DOI: 10.1093/infdis/jiz327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/25/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Immune responses to influenza vaccination can be weaker in older adults than in other age groups. We hypothesized that antibody responses would be particularly weak among repeat vaccinees when the current and prior season vaccine components are the same. METHODS An observational study was conducted among 827 older adults (aged ≥75 years) in Hong Kong. Serum samples were collected immediately before and 1 month after receipt of the 2015-2016 quadrivalent inactivated influenza vaccine. We measured antibody titers with the hemagglutination inhibition assay and compared the mean fold rise from prevaccination to postvaccination titers and the proportions with postvaccination titers ≥40 or ≥160. RESULTS Participants who reported receipt of vaccination during either of the previous 2 years had a lower mean fold rise against all strains than with those who did not. Mean fold rises for A(H3N2) and B/Yamagata were particularly weak after repeated vaccination with the same vaccine strain, but we did not generally find significant differences in the proportions of participants with postvaccination titers ≥40 and ≥160. CONCLUSIONS Overall, we found that reduced antibody responses in repeat vaccinees were particularly reduced among older adults who had received vaccination against the same strains in preceding years.
Collapse
Affiliation(s)
- Tiffany W Y Ng
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ranawaka A P M Perera
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Vicky J Fang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Emily M Yau
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - J S Malik Peiris
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yat Hung Tam
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
3
|
McCarty JM, Lock MD, Bennett S, Hunt KM, Simon JK, Gurwith M. Age-related immunogenicity and reactogenicity of live oral cholera vaccine CVD 103-HgR in a randomized, controlled clinical trial. Vaccine 2019; 37:1389-1397. [PMID: 30772070 DOI: 10.1016/j.vaccine.2019.01.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/12/2019] [Accepted: 01/30/2019] [Indexed: 12/20/2022]
Abstract
Aging is accompanied by a decline in immune function which can lead to decreased responses to vaccines. Attenuated recombinant Vibrio cholerae O1 vaccine strain CVD 103-HgR elicits a rapid serum vibriocidal antibody (SVA) response and protects against cholera diarrhea in volunteer challenge studies but has not been studied in older adults. We evaluated CVD 103-HgR (PXVX0200) in adults age 46-64, compared them to previously studied adults age 18-45, and studied age-related immunogenicity across adults 18-64 years of age. Volunteers were randomized to receive a single dose of 1 × 109 CFU of PXVX0200 or placebo. Immunogenicity endpoints included SVA and anti-cholera toxin (CT) antibody levels on days 1, 11, 29, 91 and 181 and lipopolysaccharide (LPS) and CT-specific IgA and IgG memory B cells on days 1, 91 and 181. Safety was assessed by comparing solicited signs and symptoms on days 1-8 and other adverse events through day 181. 2979 volunteers received vaccine, including 291 age 45-64. Day 11 seroconversion occurred in 90.4% of older adults vs 93.5%% of younger adults and met the endpoint of demonstrating non-inferiority between the two groups. Significant increases in LPS-specific IgG and IgA and CT-specific memory IgG memory B cells were seen at days 91 and 181. There appeared to be a continuous age-related decline in SVA seroconversion and geometric mean titers, but not memory B cell responses, across the 18-64 year age range. Most reactogenicity was mild and was more common in the placebo group. PXVX0200 appears safe and immunogenic in older adults. Clinical Trials Registration: clinicaltrials.gov NCT02100631.
Collapse
Affiliation(s)
- James M McCarty
- Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305 USA.
| | - Michael D Lock
- PaxVax, Inc., 555 Twin Dolphin Drive, Ste. 360, Redwood City, CA 94065 USA
| | - Sean Bennett
- PaxVax, Inc., 555 Twin Dolphin Drive, Ste. 360, Redwood City, CA 94065 USA
| | - Kristin M Hunt
- PaxVax, Inc., 555 Twin Dolphin Drive, Ste. 360, Redwood City, CA 94065 USA
| | - Jakub K Simon
- PaxVax, Inc., 555 Twin Dolphin Drive, Ste. 360, Redwood City, CA 94065 USA
| | - Marc Gurwith
- PaxVax, Inc., 555 Twin Dolphin Drive, Ste. 360, Redwood City, CA 94065 USA
| |
Collapse
|
4
|
Dauner A, Agrawal P, Salvatico J, Tapia T, Dhir V, Shaik SF, Drake DR, Byers AM. The in vitro MIMIC® platform reflects age-associated changes in immunological responses after influenza vaccination. Vaccine 2017; 35:5487-5494. [PMID: 28413134 DOI: 10.1016/j.vaccine.2017.03.099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/25/2017] [Accepted: 03/31/2017] [Indexed: 11/16/2022]
Abstract
Increasing research and development costs coupled with growing concerns over healthcare expenditures necessitate the generation of pre-clinical testing models better able to predict the efficacy of vaccines, drugs and biologics. An ideal system for evaluating vaccine immunogenicity will not only be reliable but also physiologically relevant, able to be influenced by immunomodulatory characteristics such as age or previous exposure to pathogens. We have previously described a fully autologous human cell-based MIMIC® (Modular IMmune In vitro Construct) platform which enables the evaluation of innate and adaptive immunity in vitro, including naïve and recall responses. Here, we establish the ability of this module to display reduced antibody production and T cell activation upon in vitro influenza vaccination of cells from elderly adults. In the MIMIC® system, we observe a 2.7-4.2-fold reduction in strain-specific IgG production to seasonal trivalent influenza vaccine (TIV) in the elderly when compared to adults, as well as an age-dependent decline in the generation of functional antibodies. A parallel decline in IgG production with increasing age was detected via short-term ex vivo stimulation of B cells after in vivo TIV vaccination in the same cohort. Using MIMIC®, we also detect a reduction in the number but not proportion of TIV-specific multifunctional CD154+IFNγ+IL-2+TNFα+ CD4+ T cells in elderly adults. Inefficient induction of multifunctional helper T cells with TIV stimulation in MIMIC® despite a normalized number of initial CD4+ T cells suggests a possible mechanism for an impaired anti-TIV IgG response in elderly adults. The ability of the MIMIC® system to recapitulate differential age-associated responses in vitro provides a dynamic platform for the testing of vaccine candidates and vaccine enhancement strategies in a fully human model including the ability to interrogate specific populations, such as elderly adults.
Collapse
Affiliation(s)
- Allison Dauner
- Sanofi Pasteur, VaxDesign Campus, 2501 Discovery Drive Suite 300, Orlando, FL 32826, United States.
| | - Pankaj Agrawal
- Sanofi Pasteur, VaxDesign Campus, 2501 Discovery Drive Suite 300, Orlando, FL 32826, United States.
| | - Jose Salvatico
- Sanofi Pasteur, VaxDesign Campus, 2501 Discovery Drive Suite 300, Orlando, FL 32826, United States.
| | - Tenekua Tapia
- Sanofi Pasteur, VaxDesign Campus, 2501 Discovery Drive Suite 300, Orlando, FL 32826, United States.
| | - Vipra Dhir
- Sanofi Pasteur, VaxDesign Campus, 2501 Discovery Drive Suite 300, Orlando, FL 32826, United States.
| | - S Farzana Shaik
- Sanofi Pasteur, VaxDesign Campus, 2501 Discovery Drive Suite 300, Orlando, FL 32826, United States.
| | - Donald R Drake
- Sanofi Pasteur, VaxDesign Campus, 2501 Discovery Drive Suite 300, Orlando, FL 32826, United States.
| | - Anthony M Byers
- Sanofi Pasteur, VaxDesign Campus, 2501 Discovery Drive Suite 300, Orlando, FL 32826, United States.
| |
Collapse
|
5
|
Wijnans L, Voordouw B. A review of the changes to the licensing of influenza vaccines in Europe. Influenza Other Respir Viruses 2016; 10:2-8. [PMID: 26439108 PMCID: PMC4687503 DOI: 10.1111/irv.12351] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2015] [Indexed: 01/25/2023] Open
Abstract
In 2014, the European Committee for Medicinal Products for Human Use (CHMP) published a draft regulatory guideline for the evaluation of influenza vaccines. Following a public consultation round, the final guidance will be published in the near future. Here, we highlight the main changes in the clinical section in this guideline and discuss the background to these changes and whether the new consolidated guidance document can be expected to achieve a better understanding of the performance of seasonal, zoonotic and pandemic influenza vaccines during the regulatory licensing process. The new influenza guideline reflects a changed approach to the regulatory assessment of influenza vaccines, resulting in the abolition of serological criteria, known as the CHMP criteria, which have been the mainstay for evaluating the influenza vaccine immunogenicity for several decades. The new guideline adopts a more diversified approach to the measurement and reporting of the immune response to influenza vaccines and sets a requirement to conduct clinical outcome trials in young children. Importantly, more emphasis is placed on the post‐licensure monitoring of the benefit risk of influenza vaccines, including a request for continuous monitoring of efficacy and enhanced safety surveillance. Despite the improvements these new requirements will expectedly bring to the regulatory assessment of influenza vaccines, major challenges remain which cannot be overcome by new guidance alone. Ongoing initiatives in which academia, manufacturers, public health institutes and regulators work together to address these challenges are central to the development of robust tools to evaluate and monitor performance of influenza vaccines in the future.
Collapse
|
6
|
Mosterín Höpping A, McElhaney J, Fonville JM, Powers DC, Beyer WEP, Smith DJ. The confounded effects of age and exposure history in response to influenza vaccination. Vaccine 2015; 34:540-546. [PMID: 26667611 DOI: 10.1016/j.vaccine.2015.11.058] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/31/2015] [Accepted: 11/19/2015] [Indexed: 01/12/2023]
Abstract
Numerous studies have explored whether the antibody response to influenza vaccination in elderly adults is as strong as it is in young adults. Results vary, but tend to indicate lower post-vaccination titers (antibody levels) in the elderly, supporting the concept of immunosenescence-the weakening of the immunological response related to age. Because the elderly in such studies typically have been vaccinated against influenza before enrollment, a confounding of effects occurs between age, and previous exposures, as a potential extrinsic reason for immunosenescence. We conducted a four-year study of serial annual immunizations with inactivated trivalent influenza vaccines in 136 young adults (16 to 39 years) and 122 elderly adults (62 to 92 years). Compared to data sets of previously published studies, which were designed to investigate the effect of age, this detailed longitudinal study with multiple vaccinations allowed us to also study the effect of prior vaccination history on the response to a vaccine. In response to the first vaccination, young adults produced higher post-vaccination titers, accounting for pre-vaccination titers, than elderly adults. However, upon subsequent vaccinations the difference in response to vaccination between the young and elderly age groups declined rapidly. Although age is an important factor when modeling the outcome of the first vaccination, this term lost its relevance with successive vaccinations. In fact, when we examined the data with the assumption that the elderly group had received (on average) as few as two vaccinations prior to our study, the difference due to age disappeared. Our analyses therefore show that the initial difference between the two age groups in their response to vaccination may not be uniquely explained by immunosenescence due to ageing of the immune system, but could equally be the result of the different pre-study vaccination and infection histories in the elderly.
Collapse
Affiliation(s)
- Ana Mosterín Höpping
- Centre for Pathogen Evolution, University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK; World Health Organization Collaborating Center for Modeling, Evolution, and Control of Emerging Infectious Diseases, Cambridge CB2 3EJ, UK
| | - Janet McElhaney
- Advanced Medical Research Institute of Canada, Sudbury, ON, Canada P3E 5J1
| | - Judith M Fonville
- Centre for Pathogen Evolution, University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK; World Health Organization Collaborating Center for Modeling, Evolution, and Control of Emerging Infectious Diseases, Cambridge CB2 3EJ, UK
| | - Douglas C Powers
- Centre for Pathogen Evolution, University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK; World Health Organization Collaborating Center for Modeling, Evolution, and Control of Emerging Infectious Diseases, Cambridge CB2 3EJ, UK; Erasmus MC, Department of Viroscience, P.O. Box 2040, Ee1726, 3000 CA Rotterdam, The Netherlands; Advanced Medical Research Institute of Canada, Sudbury, ON, Canada P3E 5J1
| | - Walter E P Beyer
- Erasmus MC, Department of Viroscience, P.O. Box 2040, Ee1726, 3000 CA Rotterdam, The Netherlands
| | - Derek J Smith
- Centre for Pathogen Evolution, University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK; World Health Organization Collaborating Center for Modeling, Evolution, and Control of Emerging Infectious Diseases, Cambridge CB2 3EJ, UK; Erasmus MC, Department of Viroscience, P.O. Box 2040, Ee1726, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Reber AJ, Kim JH, Biber R, Talbot HK, Coleman LA, Chirkova T, Gross FL, Steward-Clark E, Cao W, Jefferson S, Veguilla V, Gillis E, Meece J, Bai Y, Tatum H, Hancock K, Stevens J, Spencer S, Chen J, Gargiullo P, Braun E, Griffin MR, Sundaram M, Belongia EA, Shay DK, Katz JM, Sambhara S. Preexisting Immunity, More Than Aging, Influences Influenza Vaccine Responses. Open Forum Infect Dis 2015; 2:ofv052. [PMID: 26380344 DOI: 10.1093/ofid/ofv052] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/14/2015] [Indexed: 12/30/2022] Open
Abstract
Background. Influenza disproportionately impacts older adults while current vaccines have reduced effectiveness in the older population. Methods. We conducted a comprehensive evaluation of cellular and humoral immune responses of adults aged 50 years and older to the 2008-2009 seasonal trivalent inactivated influenza vaccine and assessed factors influencing vaccine response. Results. Vaccination increased hemagglutination inhibition and neutralizing antibody; however, 66.3% of subjects did not reach hemagglutination inhibition titers ≥ 40 for H1N1, compared with 22.5% for H3N2. Increasing age had a minor negative impact on antibody responses, whereas prevaccination titers were the best predictors of postvaccination antibody levels. Preexisting memory B cells declined with age, especially for H3N2. However, older adults still demonstrated a significant increase in antigen-specific IgG(+) and IgA(+) memory B cells postvaccination. Despite reduced frequency of preexisting memory B cells associated with advanced age, fold-rise in memory B cell frequency in subjects 60+ was comparable to subjects age 50-59. Conclusions. Older adults mounted statistically significant humoral and cell-mediated immune responses, but many failed to reach hemagglutination inhibition titers ≥40, especially for H1N1. Although age had a modest negative effect on vaccine responses, prevaccination titers were the best predictor of postvaccination antibody levels, irrespective of age.
Collapse
Affiliation(s)
- Adrian J Reber
- Influenza Division, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Jin Hyang Kim
- Influenza Division, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Renata Biber
- Influenza Division, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | - H Keipp Talbot
- Vanderbilt University Medical Center , Nashville, Tennessee
| | | | - Tatiana Chirkova
- Influenza Division, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | - F Liaini Gross
- Influenza Division, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Evelene Steward-Clark
- Influenza Division, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Weiping Cao
- Influenza Division, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Stacie Jefferson
- Influenza Division, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Vic Veguilla
- Influenza Division, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Eric Gillis
- Influenza Division, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | | | - Yaohui Bai
- Influenza Division, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Heather Tatum
- Influenza Division, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Kathy Hancock
- Influenza Division, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Sarah Spencer
- Influenza Division, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Jufu Chen
- Influenza Division, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Paul Gargiullo
- Influenza Division, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Elise Braun
- Influenza Division, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Marie R Griffin
- Vanderbilt University Medical Center , Nashville, Tennessee ; Mid-South Geriatric Research Education and Clinical Center , VA TN Valley Healthcare System , Nashville, Tennessee
| | | | | | - David K Shay
- Influenza Division, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Jacqueline M Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention , Atlanta, Georgia
| |
Collapse
|
8
|
Santuccio C, Trotta F, Felicetti P. Ongoing pharmacovigilance on vaccines. Pharmacol Res 2015; 92:2-5. [DOI: 10.1016/j.phrs.2014.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 11/16/2022]
|
9
|
Coelingh KL, Wu XW, Mallory RM, Ambrose CS. An integrated multi-study analysis of serum HAI antibody responses to Ann Arbor strain live attenuated influenza vaccine in children and adults. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.trivac.2014.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Reber A, Katz J. Immunological assessment of influenza vaccines and immune correlates of protection. Expert Rev Vaccines 2013; 12:519-36. [PMID: 23659300 DOI: 10.1586/erv.13.35] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Influenza vaccines remain the primary public health tool in reducing the ever-present burden of influenza and its complications. In seeking more immunogenic, more effective and more broadly cross-protective influenza vaccines, the landscape of influenza vaccines is rapidly expanding, both in near-term advances and next-generation vaccine design. Although the first influenza vaccines were licensed over 60 years ago, the hemagglutination-inhibition antibody titer is currently the only universally accepted immune correlate of protection against influenza. However, hemagglutination-inhibition titers appear to be less effective at predicting protection in populations at high risk for severe influenza disease; older adults, young children and those with certain medical conditions. The lack of knowledge and validated methods to measure alternate immune markers of protection against influenza remain a substantial barrier to the development of more immunogenic, broadly cross-reactive and effective influenza vaccines. Here, the authors review the knowledge of immune effectors of protection against influenza and discuss assessment methods for a broader range of immunological parameters that could be considered in the evaluation of traditional or new-generation influenza vaccines.
Collapse
Affiliation(s)
- Adrian Reber
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road Atlanta, GA 30333, USA
| | | |
Collapse
|
11
|
Silva M, Humar A, Shapiro AMJ, Senior P, Hoschler K, Baluch A, Wilson LE, Kumar D. Humoral Immune Response following Seasonal Influenza Vaccine in Islet Transplant Recipients. Cell Transplant 2013; 22:469-76. [DOI: 10.3727/096368912x656135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Annual influenza vaccine is recommended for organ transplant recipients, but immunogenicity is known to be suboptimal. Islet transplant recipients receive immunosuppressive therapy, but there are no data on the immunogenicity of influenza vaccine in this population. In this prospective cohort study, adult islet transplant recipients at least 3 months posttransplant were enrolled. All patients received the 2010–2011 seasonal influenza vaccine. Serum was obtained pre- and postvaccination to determine humoral response to each of the three influenza strains included in the vaccine. Adverse effects of vaccine were also noted. A total of 61 islet transplant recipients were enrolled and completed the study protocol. The median time from last transplant was 1.9 years (range 0.26–11.4 years), and most patients had undergone multiple prior islet transplant procedures (90.2%). Overall immunogenicity of the vaccine was poor. Seroconversion rates to H1N1, H3N2, and B antigens were 34.4%, 29.5%, and 9.8%, respectively. In the subset not seroprotected at baseline, a protective antibody titer postvaccination was achieved in 58.6%, 41.9%, and 34.5% of patients, respectively. Patients within the first year of transplant were significantly less likely to seroconvert to at least one antigen (23.5% vs. 54.5%; p = 0.029). Alemtuzumab recipients trended toward lower seroconversion rates (25% vs. 51%; p = 0.11). No vaccine-related safety concerns were identified. Seasonal influenza vaccine had suboptimal immunogenicity in islet transplant recipients especially those who were less than 1 year posttransplant or had received alemtuzumab induction. Novel strategies for protection in this group of patients need further study.
Collapse
Affiliation(s)
- Moacyr Silva
- Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Atul Humar
- Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - A. M. James Shapiro
- Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Senior
- Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Katja Hoschler
- Health Protection Agency, Center for Infections, London, UK
| | - Aliyah Baluch
- Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Leticia E. Wilson
- Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Deepali Kumar
- Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Montomoli E, Khadang B, Piccirella S, Trombetta C, Mennitto E, Manini I, Stanzani V, Lapini G. Cell culture-derived influenza vaccines from Vero cells: a new horizon for vaccine production. Expert Rev Vaccines 2012; 11:587-94. [PMID: 22827244 DOI: 10.1586/erv.12.24] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the 20th century, three influenza pandemics killed approximately 100 million people. The traditional method of influenza vaccine manufacturing is based on using chicken eggs. However, the necessity of the availability of millions of fertile eggs in the event of a pandemic has led research to focus on the development of cell culture-derived vaccines, which offer shorter lead-in times and greater flexibility of production. So far, the cell substrates being evaluated and in use include Vero, Madin-Darby canine kidney, PER.C6 and insect cells. However, Vero cells are the most widely accepted among others. This review introduces briefly the concepts of advanced cell culture-derived influenza vaccine production and highlights the advantages of these vaccines in terms of efficiency, speed and immunogenicity based on the clinical data obtained from different studies.
Collapse
Affiliation(s)
- Emanuele Montomoli
- Department of Physiopathology, Experimental Medicine and Public Health, University of Siena, Via Aldo Moro 3, 53100 Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Intanza(®) 15 mcg intradermal influenza vaccine elicits cross-reactive antibody responses against heterologous A(H3N2) influenza viruses. Vaccine 2012; 30:2908-13. [PMID: 22342501 DOI: 10.1016/j.vaccine.2012.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/30/2012] [Accepted: 02/01/2012] [Indexed: 11/21/2022]
Abstract
The aim of the present study was to explore the ability of Intanza(®) 15 μg, the intradermal (ID) trivalent inactivated split-virion influenza vaccine containing 15 μg hemagglutinin per strain, to enhance the antibody responses against heterologous circulating H3N2 strains in adults 60 years and older. During the 2006-2007 influenza season, subjects aged 60 years or older were randomly assigned to receive one dose of ID or an intramuscular (IM, Vaxigrip(®)) influenza vaccine, which contained the reassortant A/Wisconsin/67/05(H3N2) strain as the H3N2 component. Antibody responses were assessed against the homologous vaccine strain, against the A/Brisbane/10/07(H3N2) reassortant strain and against four heterologous H3N2 field isolates (A/Genoa/62/05(H3N2), A/Genoa/3/07(H3N2), A/Genoa/2/07(H3N2), A/Genoa/3/06(H3N2)). The viruses tested belonged to three different clades that were closely related antigenically to A/California/7/04(H3N2), A/Nepal/921/06(H3N2) and A/Brisbane/10/07(H3N2). Antibody responses to these viruses were measured in 25 subjects per group using both haemagglutination inhibition (HI) and neutralization (NT) assays. At least one Committee for Medicinal Products for Human Use (CHMP) immunogenicity criteria for vaccine approval in the elderly was reached by both vaccines against all the viruses used in the study. All three CHMP criteria were reached against A/California/7/04(H3N2)-like, A/Nepal/921/06(H3N2)-like and A/Brisbane/10/07(H3N2)-like viruses by Intanza(®) 15 μg ID vaccine, while IM vaccination did not meet seroprotection criteria against circulating A/Nepal/921/06(H3N2)-like and A/Brisbane/10/07(H3N2)-like viruses or seroconversion criteria against A/Brisbane/10/07(H3N2)-like viruses. Post-vaccination HI titer, seroconversion, and seroprotection rates were higher against all viruses in subjects who received Intanza(®) 15 μg. The superiority of the seroprotection rate against the A/Nepal/921/06(H3N2)-like strain attained statistical significance despite the small sample size. Upon Beyer correction for pre-vaccination status, post-immunization HI titers against A/California/7/04(H3N2)-like and A/Brisbane/10/07(H3N2)-like strains and NT post-immunization titers against A/Wisconsin/67/05(H3N2), A/California/7/04(H3N2)-like, A/Brisbane/10/07(H3N2)-like strains were significantly higher in subjects immunized with Intanza(®) 15 μg than in individuals receiving IM vaccine. This study, although limited in the size of study population, demonstrated the broader immune response elicited by an ID influenza vaccine vs. a standard IM influenza vaccine against heterologous viruses including field isolates.
Collapse
|
14
|
Ehrlich HJ, Berezuk G, Fritsch S, Aichinger G, Singer J, Portsmouth D, Hart MK, El-Amin W, Kistner O, Barrett PN. Clinical development of a Vero cell culture-derived seasonal influenza vaccine. Vaccine 2011; 30:4377-86. [PMID: 22172502 DOI: 10.1016/j.vaccine.2011.11.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 11/21/2011] [Accepted: 11/30/2011] [Indexed: 02/02/2023]
Abstract
BACKGROUND Cell culture technologies have the potential to improve the robustness and flexibility of influenza vaccine supply and to substantially shorten manufacturing timelines. We investigated the safety, immunogenicity and efficacy of a Vero cell culture-derived seasonal influenza vaccine and utilized these studies to establish a serological correlate of vaccine protection. METHODS Two multicenter, randomized, double-blind phase III trials were undertaken in the US during the 2008-2009 Northern hemisphere influenza season, in young (18-49 years) and older (50-64 years and ≥ 65 years) adult subjects. 7250 young adults were randomized 1:1 to receive either Vero-derived vaccine or placebo. 3210 older adult subjects were randomized 8:1 to receive either Vero-derived vaccine or a licensed egg-derived vaccine. Serum hemagglutination inhibition antibody titers were assessed 21 days post-vaccination. Vaccine efficacy in preventing cell culture-confirmed influenza infection was determined for the young adult population. Local and systemic adverse events were recorded in both studies. RESULTS The Vero-derived vaccine was safe and well tolerated in both young and older adults. All US and European immunological licensing thresholds were comfortably met in both populations. Vaccine efficacy in young adults was 79% against A/H1N1 viruses antigenically matching the corresponding vaccine strain and 78.5% for all antigenically matched influenza viruses. A hemagglutination inhibition antibody titer of ≥ 1:15 provided a reliable correlate of protection for the Vero-derived influenza vaccine, with no additional benefit at titers >1:30. Bridging of the correlate of protection established in the young adult population to the older adult immunogenicity data demonstrated the likely effectiveness of the Vero-derived vaccine in the older adult population. CONCLUSIONS A Vero cell culture-derived seasonal influenza vaccine is safe, immunogenic and protects against infection with influenza virus. The novel vaccine technology has the potential to make a substantial contribution to improving influenza vaccine supply. CLINICAL TRIAL REGISTRATION The studies are registered with ClinicalTrials.gov, numbers NCT00566345 and NCT00782431.
Collapse
Affiliation(s)
- Hartmut J Ehrlich
- Global R&D, Baxter BioScience, IZD Tower, Wagramerstraße 17-19, A-1220 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Current trivalent inactivated influenza vaccines (TIV) for seasonal use have all been licensed in the EU based on serological data only. European Medicines Agency (EMA) guidelines for development of influenza vaccines and acceptance criteria are in place for adults but not for children. The Paediatric Committee initiated a review of the literature on influenza vaccines for children, which led to the conclusion that for new influenza vaccines the Paediatric Investigation Plan (PIP) will need to include an efficacy trial. A review of the serological assays raised questions on the relevance of the current assays for children and on the methodological differences in the performance of the neutralisation test. The basis for the current correlate for immune protection is been discussed and the role of antibodies to the neuraminidase for protection against disease has increasingly been recognised. These considerations, together with the experiences gathered during the pandemic, resulted in an ongoing revision of the EMA guidelines for influenza vaccines to be replaced by a single guideline with the aim of having better characterised influenza vaccines that will also address the needs of children.
Collapse
Affiliation(s)
- Marta Granström
- Department of Microbiology, Tumor- and Cellbiology, Karolinska Institutet and Clinical Microbiology, Karolinska University Hospital Solna, Stockholm, Sweden.
| | | |
Collapse
|
16
|
Barrett PN, Berezuk G, Fritsch S, Aichinger G, Hart MK, El-Amin W, Kistner O, Ehrlich HJ. Efficacy, safety, and immunogenicity of a Vero-cell-culture-derived trivalent influenza vaccine: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet 2011; 377:751-9. [PMID: 21329971 DOI: 10.1016/s0140-6736(10)62228-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The use of cell-culture technologies for the manufacture of influenza vaccines might contribute to improved strain selection and robust vaccine supplies. We investigated the safety, immunogenicity, and protective efficacy of a Vero-cell-culture-derived influenza vaccine, and assessed the correlation between vaccine efficacy and haemagglutination inhibition antibody titre. METHODS In a double-blind, placebo-controlled, phase 3 trial undertaken in 36 centres in the USA, healthy adults (aged 18-49 years) were randomly assigned in a 1:1 ratio to one injection of either placebo or Vero-cell-culture-derived influenza vaccine during the 2008-09 season. Randomisation was done in blocks by use of the random number generator algorithm, and participants were allocated by use of a centralised telephone system. The primary objective was the efficacy of the vaccine in preventing cell-culture-confirmed influenza infection with viruses that were antigenically matched to one of the vaccine strains. Analysis was by intention to treat. The study is registered with ClinicalTrials.gov, number NCT00566345. FINDINGS 7250 participants were randomly assigned to vaccine (n=3626) and placebo (n=3624). 7236 were analysed for the primary outcome (n=3619 and n=3617, respectively). Overall protective efficacy for antigenically matched influenza infection was 78·5% (95% CI 60·8-88·2). The vaccine was well tolerated with no treatment-related serious adverse events. Adverse events were mainly mild and transient. An HI titre of at least 1:15 provided a reliable correlate of cell-culture-derived influenza vaccine-induced protection; no additional benefit was noted with titres greater than 1:30. INTERPRETATION The data indicate that existing correlates of protection afforded with egg-derived seasonal influenza vaccines also apply to this vaccine. FUNDING Federal (US Government) funds from the Office for Preparedness and Response, Biomedical Advanced Research and Development Authority, under contract to DynPort Vaccine Company.
Collapse
Affiliation(s)
- P Noel Barrett
- Global Research and Development, Baxter BioScience, Biomedical Research Centre, Orth/Donau, Austria.
| | | | | | | | | | | | | | | |
Collapse
|