1
|
Kumari M, Acharya A, Krishnamurthy PT. Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:912-926. [PMID: 37701520 PMCID: PMC10494237 DOI: 10.3762/bjnano.14.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023]
Abstract
Nanotechnology provides effective methods for precisely delivering chemotherapeutics to cancer cells, thereby improving efficacy and reducing off-target side effects. The targeted delivery of nanoscale chemotherapeutics is accomplished by two different approaches, namely the exploitation of leaky tumor vasculature (EPR effect) and the surface modification of nanoparticles (NPs) with various tumor-homing peptides, aptamers, oligonucleotides, and monoclonal antibodies (mAbs). Because of higher binding affinity and specificity, mAbs have received a lot of attention for the detection of selective cancer biomarkers and also for the treatment of various types of cancer. Antibody-conjugated nanoparticles (ACNPs) are an effective targeted therapy for the efficient delivery of chemotherapeutics specifically to the targeted cancer cells. ACNPs combine the benefits of NPs and mAbs to provide high drug loads at the tumor site with better selectivity and delivery efficiency. The mAbs on the NP surfaces recognize their specific receptors expressed on the target cells and release the chemotherapeutic agent in a controlled manner. Appropriately designed and synthesized ACNPs are essential to fully realize their therapeutic benefits. In blood stream, ACNPs instantly interact with biological molecules, and a protein corona is formed. Protein corona formation triggers an immune response and affects the targeting ability of the nanoformulation. In this review, we provide recent findings to highlight several antibody conjugation methods such as adsorption, covalent conjugation, and biotin-avidin interaction. This review also provides an overview of the many effects of the protein corona and the theranostic applications of ACNPs for the treatment of cancer.
Collapse
Affiliation(s)
- Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
2
|
Xiao M, Tang Q, Zeng S, Yang Q, Yang X, Tong X, Zhu G, Lei L, Li S. Emerging biomaterials for tumor immunotherapy. Biomater Res 2023; 27:47. [PMID: 37194085 DOI: 10.1186/s40824-023-00369-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/23/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND The immune system interacts with cancer cells in various intricate ways that can protect the individual from overproliferation of cancer cells; however, these interactions can also lead to malignancy. There has been a dramatic increase in the application of cancer immunotherapy in the last decade. However, low immunogenicity, poor specificity, weak presentation efficiency, and off-target side effects still limit its widespread application. Fortunately, advanced biomaterials effectively contribute immunotherapy and play an important role in cancer treatment, making it a research hotspot in the biomedical field. MAIN BODY This review discusses immunotherapies and the development of related biomaterials for application in the field. The review first summarizes the various types of tumor immunotherapy applicable in clinical practice as well as their underlying mechanisms. Further, it focuses on the types of biomaterials applied in immunotherapy and related research on metal nanomaterials, silicon nanoparticles, carbon nanotubes, polymer nanoparticles, and cell membrane nanocarriers. Moreover, we introduce the preparation and processing technologies of these biomaterials (liposomes, microspheres, microneedles, and hydrogels) and summarize their mechanisms when applied to tumor immunotherapy. Finally, we discuss future advancements and shortcomings related to the application of biomaterials in tumor immunotherapy. CONCLUSION Research on biomaterial-based tumor immunotherapy is booming; however, several challenges remain to be overcome to transition from experimental research to clinical application. Biomaterials have been optimized continuously and nanotechnology has achieved continuous progression, ensuring the development of more efficient biomaterials, thereby providing a platform and opportunity for breakthroughs in tumor immunotherapy.
Collapse
Affiliation(s)
- Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xinying Tong
- Department of Hemodialysis, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
3
|
Noubissi Nzeteu GA, Gibbs BF, Kotnik N, Troja A, Bockhorn M, Meyer NH. Nanoparticle-based immunotherapy of pancreatic cancer. Front Mol Biosci 2022; 9:948898. [PMID: 36106025 PMCID: PMC9465485 DOI: 10.3389/fmolb.2022.948898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic cancer (PC) has a complex and unique tumor microenvironment (TME). Due to the physical barrier formed by the desmoplastic stroma, the delivery of drugs to the tumor tissue is limited. The TME also contributes to resistance to various immunotherapies such as cancer vaccines, chimeric antigen receptor T cell therapy and immune checkpoint inhibitors. Overcoming and/or modulating the TME is therefore one of the greatest challenges in developing new therapeutic strategies for PC. Nanoparticles have been successfully used as drug carriers and delivery systems in cancer therapy. Recent experimental and engineering developments in nanotechnology have resulted in increased drug delivery and improved immunotherapy for PC. In this review we discuss and analyze the current nanoparticle-based immunotherapy approaches that are at the verge of clinical application. Particularly, we focus on nanoparticle-based delivery systems that improve the effectiveness of PC immunotherapy. We also highlight current clinical research that will help to develop new therapeutic strategies for PC and especially targeted immunotherapies based on immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Gaetan Aime Noubissi Nzeteu
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, Oldenburg, Germany
- *Correspondence: N. Helge Meyer, ; Gaetan Aime Noubissi Nzeteu,
| | - Bernhard F. Gibbs
- Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Nika Kotnik
- Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Achim Troja
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, Oldenburg, Germany
| | - Maximilian Bockhorn
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, Oldenburg, Germany
| | - N. Helge Meyer
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, Oldenburg, Germany
- *Correspondence: N. Helge Meyer, ; Gaetan Aime Noubissi Nzeteu,
| |
Collapse
|
4
|
Ahmed T, Liu FCF, Lu B, Lip H, Park E, Alradwan I, Liu JF, He C, Zetrini A, Zhang T, Ghavaminejad A, Rauth AM, Henderson JT, Wu XY. Advances in Nanomedicine Design: Multidisciplinary Strategies for Unmet Medical Needs. Mol Pharm 2022; 19:1722-1765. [PMID: 35587783 DOI: 10.1021/acs.molpharmaceut.2c00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Globally, a rising burden of complex diseases takes a heavy toll on human lives and poses substantial clinical and economic challenges. This review covers nanomedicine and nanotechnology-enabled advanced drug delivery systems (DDS) designed to address various unmet medical needs. Key nanomedicine and DDSs, currently employed in the clinic to tackle some of these diseases, are discussed focusing on their versatility in diagnostics, anticancer therapy, and diabetes management. First-hand experiences from our own laboratory and the work of others are presented to provide insights into strategies to design and optimize nanomedicine- and nanotechnology-enabled DDS for enhancing therapeutic outcomes. Computational analysis is also briefly reviewed as a technology for rational design of controlled release DDS. Further explorations of DDS have illuminated the interplay of physiological barriers and their impact on DDS. It is demonstrated how such delivery systems can overcome these barriers for enhanced therapeutic efficacy and how new perspectives of next-generation DDS can be applied clinically.
Collapse
Affiliation(s)
- Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Fuh-Ching Franky Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - HoYin Lip
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Elliya Park
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Ibrahim Alradwan
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Jackie Fule Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Abdulmottaleb Zetrini
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tian Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Amin Ghavaminejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Jeffrey T Henderson
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
5
|
Chuang ST, Conklin B, Stein JB, Pan G, Lee KB. Nanotechnology-enabled immunoengineering approaches to advance therapeutic applications. NANO CONVERGENCE 2022; 9:19. [PMID: 35482149 PMCID: PMC9047473 DOI: 10.1186/s40580-022-00310-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 05/24/2023]
Abstract
Immunotherapy has reached clinical success in the last decade, with the emergence of new and effective treatments such as checkpoint blockade therapy and CAR T-cell therapy that have drastically improved patient outcomes. Still, these therapies can be improved to limit off-target effects, mitigate systemic toxicities, and increase overall efficacies. Nanoscale engineering offers strategies that enable researchers to attain these goals through the manipulation of immune cell functions, such as enhancing immunity against cancers and pathogens, controlling the site of immune response, and promoting tolerance via the delivery of small molecule drugs or biologics. By tuning the properties of the nanomaterials, such as size, shape, charge, and surface chemistry, different types of immune cells can be targeted and engineered, such as dendritic cells for immunization, or T cells for promoting adaptive immunity. Researchers have come to better understand the critical role the immune system plays in the progression of pathologies besides cancer, and developing nanoengineering approaches that seek to harness the potential of immune cell activities can lead to favorable outcomes for the treatment of injuries and diseases.
Collapse
Affiliation(s)
- Skylar T Chuang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Joshua B Stein
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - George Pan
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
6
|
Kumari M, Krishnamurthy PT, Pinduprolu SKSS, Sola P. DR-5 and DLL-4 mAb Functionalized SLNs of Gamma-Secretase Inhibitors- An Approach for TNBC Treatment. Adv Pharm Bull 2021; 11:618-623. [PMID: 34888208 PMCID: PMC8642801 DOI: 10.34172/apb.2021.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/06/2020] [Accepted: 10/17/2020] [Indexed: 12/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and heterogeneous cancer subtypes. High rates of metastasis, poor prognosis, and drug resistance are the major problems associated with TNBC. The current chemotherapeutics eliminate only the bulk tumor cells (non-BCSCs) and do not affect breast cancer stem cells (BCSCs). The BCSCs which are left behind after chemotherapy is reported to promote recurrence and metastasis of TNBC. Death receptor-5 (DR-5) is exclusively expressed in TNBCs and mediates the extrinsic pathway of apoptosis. DR-5, therefore, can be exploited for targeted drug delivery and to induce apoptosis. Gamma-secretase mediated Notch signaling in BCSCs regulates its proliferation, differentiation, and metastasis. The endogenous ligand, Delta-like ligand 4 (DLL4), is reported to activate this Notch signaling in TNBC. Blocking this signaling pathway using both gamma-secretase inhibitors (GSIs) and DLL4 monoclonal antibody (mAb) may produce synergistic benefits. Further, the GSIs (DAPT, LY-411575, RO4929097, MK0752, etc.) suffer from poor bioavailability and off-target side effects such as diarrhea, suppression of lymphopoiesis, headache, hypertension, fatigue, and ventricular dysfunctions. In this hypothesis, we discuss Solid lipid nanoparticles (SLNs) based drug delivery systems containing GSIs and surface modified with DR-5 and DLL4 monoclonal antibodies (mAb) to effectivity target and treat TNBC. The delivery system is designed to deliver the drug cargo precisely to TNBCs through its DR-5 receptors and hence expected to reduce the off-target side effects of GSIs. Further, DLL4 mAb and GSIs are expected to act synergistically to block the Notch signal mediated BCSCs proliferation, differentiation, and metastasis.
Collapse
Affiliation(s)
- Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Sai Kiran S S Pinduprolu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Piyongsola Sola
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
7
|
Nanomedicine for Immunotherapy Targeting Hematological Malignancies: Current Approaches and Perspective. NANOMATERIALS 2021; 11:nano11112792. [PMID: 34835555 PMCID: PMC8619332 DOI: 10.3390/nano11112792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Conventional chemotherapy has partial therapeutic effects against hematological malignancies and is correlated with serious side effects and great risk of relapse. Recently, immunotherapeutic drugs have provided encouraging results in the treatment of hematological malignancies. Several immunotherapeutic antibodies and cell therapeutics are in dynamic development such as immune checkpoint blockades and CAR-T treatment. However, numerous problems restrain the therapeutic effectiveness of tumor immunotherapy as an insufficient anti-tumor immune response, the interference of an immune-suppressive bone marrow, or tumoral milieu with the discharge of immunosuppressive components, access of myeloid-derived suppressor cells, monocyte intrusion, macrophage modifications, all factors facilitating the tumor to escape the anti-cancer immune response, finally reducing the efficiency of the immunotherapy. Nanotechnology can be employed to overcome each of these aspects, therefore having the possibility to successfully produce anti-cancer immune responses. Here, we review recent findings on the use of biomaterial-based nanoparticles in hematological malignancies immunotherapy. In the future, a deeper understanding of tumor immunology and of the implications of nanomedicine will allow nanoparticles to revolutionize tumor immunotherapy, and nanomedicine approaches will reveal their great potential for clinical translation.
Collapse
|
8
|
Giustarini G, Pavesi A, Adriani G. Nanoparticle-Based Therapies for Turning Cold Tumors Hot: How to Treat an Immunosuppressive Tumor Microenvironment. Front Bioeng Biotechnol 2021; 9:689245. [PMID: 34150739 PMCID: PMC8207137 DOI: 10.3389/fbioe.2021.689245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nanotechnologies are rapidly increasing their role in immuno-oncology in line with the need for novel therapeutic strategies to treat patients unresponsive to chemotherapies and immunotherapies. The tumor immune microenvironment (TIME) has emerged as critical for tumor classification and patient stratification to design better treatments. Notably, the tumor infiltration of effector T cells plays a crucial role in antitumor responses and has been identified as the primary parameter to define hot, immunosuppressed, excluded, and cold tumors. Organic and inorganic nanoparticles (NPs) have been applied as carriers of new targeted therapies to turn cold or altered (i.e., immunosuppressed or excluded) tumors into more therapeutically responsive hot tumors. This mini-review discusses the significant advances in NP-based approaches to turn immunologically cold tumors into hot ones.
Collapse
Affiliation(s)
- Giulio Giustarini
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Yang M, Li J, Gu P, Fan X. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment. Bioact Mater 2020; 6:1973-1987. [PMID: 33426371 PMCID: PMC7773537 DOI: 10.1016/j.bioactmat.2020.12.010] [Citation(s) in RCA: 316] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor development and metastasis are closely related to the structure and function of the tumor microenvironment (TME). Recently, TME modulation strategies have attracted much attention in cancer immunotherapy. Despite the preliminary success of immunotherapeutic agents, their therapeutic effects have been restricted by the limited retention time of drugs in TME. Compared with traditional delivery systems, nanoparticles with unique physical properties and elaborate design can efficiently penetrate TME and specifically deliver to the major components in TME. In this review, we briefly introduce the substitutes of TME including dendritic cells, macrophages, fibroblasts, tumor vasculature, tumor-draining lymph nodes and hypoxic state, then review various nanoparticles targeting these components and their applications in tumor therapy. In addition, nanoparticles could be combined with other therapies, including chemotherapy, radiotherapy, and photodynamic therapy, however, the nanoplatform delivery system may not be effective in all types of tumors due to the heterogeneity of different tumors and individuals. The changes of TME at various stages during tumor development are required to be further elucidated so that more individualized nanoplatforms could be designed.
Collapse
Key Words
- AC-NPs, antigen-capturing nanoparticles
- ANG2, angiopoietin-2
- APCs, antigen-presenting cells
- Ab, antibodies
- Ag, antigen
- AuNCs, gold nanocages
- AuNPs, gold nanoparticles
- BBB, blood-brain barrier
- BTK, Bruton's tyrosine kinase
- Bcl-2, B-cell lymphoma 2
- CAFs, cancer associated fibroblasts
- CAP, cleavable amphiphilic peptide
- CAR-T, Chimeric antigen receptor-modified T-cell therapy
- CCL, chemoattractant chemokines ligand
- CTL, cytotoxic T lymphocytes
- CTLA4, cytotoxic lymphocyte antigen 4
- CaCO3, calcium carbonate
- Cancer immunotherapy
- DCs, dendritic cells
- DMMA, 2,3-dimethylmaleic anhydrid
- DMXAA, 5,6-dimethylxanthenone-4-acetic acid
- DSF/Cu, disulfiram/copper
- ECM, extracellular matrix
- EGFR, epidermal growth factor receptor
- EMT, epithelial-mesenchymal transition
- EPG, egg phosphatidylglycerol
- EPR, enhanced permeability and retention
- FAP, fibroblast activation protein
- FDA, the Food and Drug Administration
- HA, hyaluronic acid
- HB-GFs, heparin-binding growth factors
- HIF, hypoxia-inducible factor
- HPMA, N-(2-hydroxypropyl) methacrylamide
- HSA, human serum albumin
- Hypoxia
- IBR, Ibrutinib
- IFN-γ, interferon-γ
- IFP, interstitial fluid pressure
- IL, interleukin
- LMWH, low molecular weight heparin
- LPS, lipopolysaccharide
- M2NP, M2-like TAM dual-targeting nanoparticle
- MCMC, mannosylated carboxymethyl chitosan
- MDSCs, myeloid-derived suppressor cells
- MPs, microparticles
- MnO2, manganese dioxide
- NF-κB, nuclear factor κB
- NK, nature killer
- NO, nitric oxide
- NPs, nanoparticles
- Nanoparticles
- ODN, oligodeoxynucleotides
- PD-1, programmed cell death protein 1
- PDT, photodynamic therapy
- PFC, perfluorocarbon
- PHDs, prolyl hydroxylases
- PLGA, poly(lactic-co-glycolic acid)
- PS, photosensitizer
- PSCs, pancreatic stellate cells
- PTX, paclitaxel
- RBC, red-blood-cell
- RLX, relaxin-2
- ROS, reactive oxygen species
- SA, sialic acid
- SPARC, secreted protein acidic and rich in cysteine
- TAAs, tumor-associated antigens
- TAMs, tumor-associated macrophages
- TDPA, tumor-derived protein antigens
- TGF-β, transforming growth factor β
- TIE2, tyrosine kinase with immunoglobulin and epidermal growth factor homology domain 2
- TIM-3, T cell immunoglobulin domain and mucin domain-3
- TLR, Toll-like receptor
- TME, tumor microenvironment
- TNF-α, tumor necrosis factor alpha
- TfR, transferrin receptor
- Tregs, regulatory T cells
- Tumor microenvironment
- UPS-NP, ultra-pH-sensitive nanoparticle
- VDA, vasculature disrupting agent
- VEGF, vascular endothelial growth factor
- cDCs, conventional dendritic cells
- melittin-NP, melittin-lipid nanoparticle
- nMOFs, nanoscale metal-organic frameworks
- scFv, single-chain variable fragment
- siRNA, small interfering RNA
- tdLNs, tumor-draining lymph nodes
- α-SMA, alpha-smooth muscle actin
Collapse
|
10
|
Thakur N, Thakur S, Chatterjee S, Das J, Sil PC. Nanoparticles as Smart Carriers for Enhanced Cancer Immunotherapy. Front Chem 2020; 8:597806. [PMID: 33409265 PMCID: PMC7779678 DOI: 10.3389/fchem.2020.597806] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy for the treatment of many forms of cancer by stimulating body's own immune system. This therapy not only eradicates tumor cells by inducing strong anti-tumor immune response but also prevent their recurrence. The clinical cancer immunotherapy faces some insurmountable challenges including high immune-mediated toxicity, lack of effective and targeted delivery of cancer antigens to immune cells and off-target side effects. However, nanotechnology offers some solutions to overcome those limitations, and thus can potentiate the efficacy of immunotherapy. This review focuses on the advancement of nanoparticle-mediated delivery of immunostimulating agents for efficient cancer immunotherapy. Here we have outlined the use of the immunostimulatory nanoparticles as a smart carrier for effective delivery of cancer antigens and adjuvants, type of interactions between nanoparticles and the antigen/adjuvant as well as the factors controlling the interaction between nanoparticles and the receptors on antigen presenting cells. Besides, the role of nanoparticles in targeting/activating immune cells and modulating the immunosuppressive tumor microenvironment has also been discussed extensively. Finally, we have summarized some theranostic applications of the immunomodulatory nanomaterials in treating cancers based on the earlier published reports.
Collapse
Affiliation(s)
- Neelam Thakur
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, India
| | - Saloni Thakur
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | | | - Joydeep Das
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
11
|
Ahmad MZ, Ahmad J, Haque A, Alasmary MY, Abdel-Wahab BA, Akhter S. Emerging advances in synthetic cancer nano-vaccines: opportunities and challenges. Expert Rev Vaccines 2020; 19:1053-1071. [DOI: 10.1080/14760584.2020.1858058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Anzarul Haque
- Department of Pharmacognosy, Prince Sattam Bin Abdulaziz University College of Pharmacy, Alkharj Al-Kharj, Kingdom of Saudi Arabia
| | - Mohammed Yahia Alasmary
- Department of Internal Medicine, College of Medicine, Najran University Hospital, Najran, Kingdom of Saudi Arabia
| | - Basel A. Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine Assiut University, Assiut, Egypt
| | - Sohail Akhter
- Center for Molecular Biophysics (CBM), CNRS UPR4301; LE STUDIUM Loire Valley Institute for Advanced Studies, Orleans, France
| |
Collapse
|
12
|
Strategies for Precise Engineering and Conjugation of Antibody Targeted-nanoparticles for Cancer Therapy. Curr Med Sci 2020; 40:463-473. [DOI: 10.1007/s11596-020-2200-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/16/2020] [Indexed: 12/16/2022]
|
13
|
Huang A, Pressnall MM, Lu R, Huayamares SG, Griffin JD, Groer C, DeKosky BJ, Forrest ML, Berkland CJ. Human intratumoral therapy: Linking drug properties and tumor transport of drugs in clinical trials. J Control Release 2020; 326:203-221. [PMID: 32673633 DOI: 10.1016/j.jconrel.2020.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023]
Abstract
Cancer therapies aim to kill tumor cells directly or engage the immune system to fight malignancy. Checkpoint inhibitors, oncolytic viruses, cell-based immunotherapies, cytokines, and adjuvants have been applied to prompt the immune system to recognize and attack cancer cells. However, systemic exposure of cancer therapies can induce unwanted adverse events. Intratumoral administration of potent therapies utilizes small amounts of drugs, in an effort to minimize systemic exposure and off-target toxicities. Here, we discuss the properties of the tumor microenvironment and transport considerations for intratumoral drug delivery. Specifically, we consider various tumor tissue factors and physicochemical factors that can affect tumor retention after intratumoral injection. We also review approved and clinical-stage intratumoral therapies and consider how the molecular and biophysical properties (e.g. size and charge) of these therapies influences intratumoral transport (e.g. tumor retention and cellular uptake). Finally, we offer a critical review and highlight several emerging approaches to promote tumor retention and limit systemic exposure of potent intratumoral therapies.
Collapse
Affiliation(s)
- Aric Huang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Melissa M Pressnall
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Ruolin Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | | | - J Daniel Griffin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA
| | | | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA; Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
14
|
Nanomedicinal strategies as efficient therapeutic interventions for delivery of cancer vaccines. Semin Cancer Biol 2019; 69:43-51. [PMID: 31618687 DOI: 10.1016/j.semcancer.2019.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
The applications of gene therapy-based treatment of cancers were started almost two decades back as a boon over the chemotherapeutic treatment strategies. Gene therapy helps in correcting the genetic sequences for treatment of cancers, thus also acts like a vaccine to induce the cellular and humoral immunity. However, the cancer vaccines typically suffer from a series of biopharmaceutical challenges due to poor solubility, low systemic availability and lack of targeting ability. Owing to these challenges, the physicians and pharmaceutical scientists have explored the applications of nanocarriers as quite promising systems for effective treatment against the tumors. A series of nanotherapeutic systems are available to date for diverse drug therapy applications. Systematic understanding on the preparation, evaluation and application of nanomedicines as a carrier system for delivering the cancer vaccines is highly important. The present review article provides an in-depth understanding on the challenges associated with cancer vaccine delivery and current opportunities with diverse nanomedicinal carriers being available for treatment of cancers.
Collapse
|
15
|
Kroll AV, Jiang Y, Zhou J, Holay M, Fang RH, Zhang L. Biomimetic Nanoparticle Vaccines for Cancer Therapy. ADVANCED BIOSYSTEMS 2019; 3:e1800219. [PMID: 31728404 PMCID: PMC6855307 DOI: 10.1002/adbi.201800219] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Indexed: 12/25/2022]
Abstract
It is currently understood that, in order for a tumor to successfully grow, it must evolve means of evading immune surveillance. In the past several decades, researchers have leveraged increases in our knowledge of tumor immunology to develop therapies capable of augmenting endogenous immunity and eliciting strong antitumor responses. In particular, the goal of anticancer vaccination is to train the immune system to properly utilize its own resources in the fight against cancer. Although attractive in principle, there are currently only limited examples of anticancer vaccines that have been successfully translated to the clinic. Recently, there has been a significant push towards the use of nanotechnology for designing vaccine candidates that exhibit enhanced potency and specificity. In this progress report, we discuss recent developments in the field of anticancer nanovaccines. By taking advantage of the flexibility offered by nanomedicine to purposefully program immune responses, this new generation of vaccines has the potential to address many of the hurdles facing traditional platforms. A specific emphasis is placed on the emergence of cell membrane-coated nanoparticles, a novel biomimetic platform that can be used to generate personalized nanovaccines that elicit strong, multi-antigenic antitumor responses.
Collapse
Affiliation(s)
- Ashley V Kroll
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yao Jiang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maya Holay
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
16
|
Serrano I, Luque A, Aran JM. Exploring the Immunomodulatory Moonlighting Activities of Acute Phase Proteins for Tolerogenic Dendritic Cell Generation. Front Immunol 2018; 9:892. [PMID: 29760704 PMCID: PMC5936965 DOI: 10.3389/fimmu.2018.00892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/10/2018] [Indexed: 12/20/2022] Open
Abstract
The acute phase response is generated by an overwhelming immune-inflammatory process against infection or tissue damage, and represents the initial response of the organism in an attempt to return to homeostasis. It is mediated by acute phase proteins (APPs), an assortment of highly conserved plasma reactants of seemingly different functions that, however, share a common protective role from injury. Recent studies have suggested a crosstalk between several APPs and the mononuclear phagocyte system (MPS) in the resolution of inflammation, to restore tissue integrity and function. In fact, monocyte-derived dendritic cells (Mo-DCs), an integral component of the MPS, play a fundamental role both in the regulation of antigen-specific adaptive responses and in the development of immunologic memory and tolerance, particularly in inflammatory settings. Due to their high plasticity, Mo-DCs can be modeled in vitro toward a tolerogenic phenotype for the treatment of aberrant immune-inflammatory conditions such as autoimmune diseases and allotransplantation, with the phenotypic outcome of these cells depending on the immunomodulatory agent employed. Yet, recent immunotherapy trials have emphasized the drawbacks and challenges facing tolerogenic Mo-DC generation for clinical use, such as reduced therapeutic efficacy and limited in vivo stability of the tolerogenic activity. In this review, we will underline the potential relevance and advantages of APPs for tolerogenic DC production with respect to currently employed immunomodulatory/immunosuppressant compounds. A further understanding of the mechanisms of action underlying the moonlighting immunomodulatory activities exhibited by several APPs over DCs could lead to more efficacious, safe, and stable protocols for precision tolerogenic immunotherapy.
Collapse
Affiliation(s)
- Inmaculada Serrano
- Immune-Inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ana Luque
- Immune-Inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
17
|
Domogalla MP, Rostan PV, Raker VK, Steinbrink K. Tolerance through Education: How Tolerogenic Dendritic Cells Shape Immunity. Front Immunol 2017; 8:1764. [PMID: 29375543 PMCID: PMC5770648 DOI: 10.3389/fimmu.2017.01764] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
Dendritic cells (DCs) are central players in the initiation and control of responses, regulating the balance between tolerance and immunity. Tolerogenic DCs are essential in the maintenance of central and peripheral tolerance by induction of clonal T cell deletion and T cell anergy, inhibition of memory and effector T cell responses, and generation and activation of regulatory T cells. Therefore, tolerogenic DCs are promising candidates for specific cellular therapy of allergic and autoimmune diseases and for treatment of transplant rejection. Studies performed in rodents have demonstrated the efficacy and feasibility of tolerogenic DCs for tolerance induction in various inflammatory diseases. In the last years, numerous protocols for the generation of human monocyte-derived tolerogenic DCs have been established and some first phase I trials have been conducted in patients suffering from autoimmune disorders, demonstrating the safety and efficiency of this cell-based immunotherapy. This review gives an overview about methods and protocols for the generation of human tolerogenic DCs and their mechanisms of tolerance induction with the focus on interleukin-10-modulated DCs. In addition, we will discuss the prerequisites for optimal clinical grade tolerogenic DC subsets and results of clinical trials with tolerogenic DCs in autoimmune diseases.
Collapse
Affiliation(s)
- Matthias P Domogalla
- Department of Dermatology, Division for Experimental and Translational Research, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Patricia V Rostan
- Department of Dermatology, Division for Experimental and Translational Research, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Verena K Raker
- Department of Dermatology, Division for Experimental and Translational Research, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, Division for Experimental and Translational Research, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
18
|
Peres C, Matos AI, Conniot J, Sainz V, Zupančič E, Silva JM, Graça L, Sá Gaspar R, Préat V, Florindo HF. Poly(lactic acid)-based particulate systems are promising tools for immune modulation. Acta Biomater 2017; 48:41-57. [PMID: 27826003 DOI: 10.1016/j.actbio.2016.11.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/20/2016] [Accepted: 11/03/2016] [Indexed: 01/05/2023]
Abstract
Poly(lactic acid) (PLA) is one of the most successful and versatile polymers explored for controlled delivery of bioactive molecules. Its attractive properties of biodegradability and biocompatibility in vivo have contributed in a meaningful way to the approval of different products by the FDA and EMA for a wide range of biomedical and pharmaceutical applications, in the past two decades. This polymer has been widely used for the preparation of particles as delivery systems of several therapeutic molecules, including vaccines. These PLA vaccine carriers have shown to induce a sustained and targeted release of different bacterial, viral and tumor-associated antigens and adjuvants in vivo, triggering distinct immune responses. The present review intends to highlight and discuss the major advantages of PLA as a promising polymer for the development of potent vaccine delivery systems against pathogens and cancer. It aims to provide a critical discussion based on preclinical data to better understand the major effect of PLA-based carrier properties on their interaction with immune cells and thus their role in the modulation of host immunity. STATEMENT OF SIGNIFICANCE During the last decades, vaccination has had a great impact on global health with the control of many severe diseases. Polymeric nanosystems have emerged as promising strategies to stabilize vaccine antigens, promoting their controlled release to phagocytic cells, thus avoiding the need for multiple administrations. One of the most promising polymers are the aliphatic polyesters, which include the poly(lactic acid). This is a highly versatile biodegradable and biocompatible polymer. Products containing this polymer have already been approved for all food and some biomedical applications. Despite all favorable characteristics presented above, PLA has been less intensively discussed than other polymers, such as its copolymer PLGA, including regarding its application in vaccination and particularly in tumor immunotherapy. The present review discusses the major advantages of poly(lactic acid) for the development of potent vaccine delivery systems, providing a critical view on the main properties that determine their effect on the modulation of immune cells.
Collapse
Affiliation(s)
- Carina Peres
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; Louvain Drug Research Institute, Advanced Drug Delivery & Biomaterials, Université Catholique de Louvain, 1200 Brussels, Belgium; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ana I Matos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - João Conniot
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, UCL School of Pharmacy, London, UK
| | - Vanessa Sainz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, UCL School of Pharmacy, London, UK
| | - Eva Zupančič
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Joana M Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; Louvain Drug Research Institute, Advanced Drug Delivery & Biomaterials, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Luís Graça
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Rogério Sá Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Véronique Préat
- Louvain Drug Research Institute, Advanced Drug Delivery & Biomaterials, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
19
|
Han HD, Byeon Y, Jang JH, Jeon HN, Kim GH, Kim MG, Pack CG, Kang TH, Jung ID, Lim YT, Lee YJ, Lee JW, Shin BC, Ahn HJ, Sood AK, Park YM. In vivo stepwise immunomodulation using chitosan nanoparticles as a platform nanotechnology for cancer immunotherapy. Sci Rep 2016; 6:38348. [PMID: 27910914 PMCID: PMC5133713 DOI: 10.1038/srep38348] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022] Open
Abstract
Dentritic cell (DC)-based cancer immunotherapy faces challenges in both efficacy and practicality. However, DC-based vaccination requires multiple injections and elaborates ex vivo manipulation, which substantially limits their use. Therefore, we sought to develop a chitosan nanoparticle (CH-NP)-based platform for the next generation of vaccines to bypass the ex vivo manipulation and induce immune responses via active delivery of polyinosinic-polycytidylic acid sodium salt (poly I:C) to target Toll-like receptor 3 (TLR3) in endosomes. We developed CH-NPs encapsulating ovalbumin (OVA) as a model antigen and poly I:C as the adjuvant in an ionic complex. These CH-NPs showed increased in vivo intracellular delivery to the DCs in comparison with controls after injection into tumor-bearing mice, and promoted DC maturation, leading to emergence of antigen-specific cytotoxic CD8+ T cells. Finally, the CH-NPs showed significantly greater antitumor efficacy in EG.7 and TC-1 tumor-bearing mice compared to the control (p < 0.01). Taken together, these data show that the CH-NP platform can be used as an immune response modulatory vaccine for active cancer immunotherapy without ex vivo manipulation, thus resulting in increased anticancer efficacy.
Collapse
Affiliation(s)
- Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Yeongseon Byeon
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Jong-Hwa Jang
- Department of Dental Hygiene, Hanseo University, Seosan 31962, South Korea
| | - Hat Nim Jeon
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Ga Hee Kim
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Min Gi Kim
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Chan-Gi Pack
- Department of Convergence Medicine, University of Ulsan College of Medicine &Asan Institute for Life Sciences, Asan Medical Center, Seoul 055-05, South Korea
| | - Tae Heung Kang
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - In Duk Jung
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), School of Chemical Engineering, Sungkyunkwan University, Suwon 25-2, South Korea
| | - Young Joo Lee
- Department of Bioscience and Biotechnology, Sejong University, Kwang-Jin-Gu, Seoul 143-747, South Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sunkyunkwan University School of Medicine, Seoul 06531, South Korea
| | - Byung Cheol Shin
- Bio/Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 305-600, South Korea
| | - Hyung Jun Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, South Korea
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, the University of Texas M.D. Anderson Cancer Center, Texas, USA.,Department of Cancer Biology, the University of Texas M.D. Anderson Cancer Center, Texas, USA.,Center for RNA Interference and Non-coding RNA, The University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| |
Collapse
|
20
|
Siegler EL, Kim YJ, Wang P. Nanomedicine targeting the tumor microenvironment: Therapeutic strategies to inhibit angiogenesis, remodel matrix, and modulate immune responses. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.jocit.2016.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Jonuleit H, Bopp T, Becker C. Treg cells as potential cellular targets for functionalized nanoparticles in cancer therapy. Nanomedicine (Lond) 2016; 11:2699-2709. [PMID: 27654070 DOI: 10.2217/nnm-2016-0197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Treg cell-mediated immune suppression appears to represent a significant barrier to effective anticancer immune responses and their inactivation or removal is viewed as a potential therapeutic approach. Although suitable tools for selective Treg cell manipulation in man are missing, their number and function can be altered by a number of drugs and biologicals and by reprogramming tumor-infiltrating antigen presenting cells. Nanoparticles offer exceptional new options in drug and gene delivery by prolonging the circulation time of their cargo, protecting it from degradation and promoting its local accumulation in cells and tissues. In tumor therapy, the use of nanoparticles is expected to overcome limitations in drug delivery and provide novel means for cell-specific functional alteration. In this perspective, we summarize strategies suitable for interference with Treg-mediated suppression, discuss the potential use of nanoparticles for this purpose and identify additional, unexplored opportunities.
Collapse
Affiliation(s)
- Helmut Jonuleit
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg-University, Mainz, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center Mainz, Johannes Gutenberg-University, Mainz, Germany
| | - Christian Becker
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
22
|
|
23
|
Amoozgar Z, Goldberg MS. Targeting myeloid cells using nanoparticles to improve cancer immunotherapy. Adv Drug Deliv Rev 2015; 91:38-51. [PMID: 25280471 DOI: 10.1016/j.addr.2014.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/23/2022]
Abstract
While nanoparticles have traditionally been used to deliver cytotoxic drugs directly to tumors to induce cancer cell death, emerging data suggest that nanoparticles are likely to generate a larger impact on oncology through the delivery of agents that can stimulate antitumor immunity. Tumor-targeted nanocarriers have generally been used to localize chemotherapeutics to tumors and thus decrease off-target toxicity while enhancing efficacy. Challengingly, tumor heterogeneity and evolution render tumor-intrinsic approaches likely to succumb to relapse. The immune system offers exquisite specificity, cytocidal potency, and long-term activity that leverage an adaptive memory response. For this reason, the ability to manipulate immune cell specificity and function would be desirable, and nanoparticles represent an exciting means by which to perform such manipulation. Dendritic cells and tumor-associated macrophages are cells of the myeloid lineage that function as natural phagocytes, so they naturally take up nanoparticles. Dendritic cells direct the specificity and potency of cellular immune responses that can be targeted for cancer vaccines. Herein, we discuss the specific criteria needed for efficient vaccine design, including but not limited to the route of administration, size, morphology, surface charge, targeting ligands, and nanoparticle composition. In contrast, tumor-associated macrophages are critical mediators of immunosuppression whose trans-migratory abilities can be exploited to localize therapeutics to the tumor core and which can be directly targeted for elimination or for repolarization to a tumor suppressive phenotype. It is likely that a combination of targeting dendritic cells to stimulate antitumor immunity and tumor-associated macrophages to reduce immune suppression will impart significant benefits and result in durable antitumor responses.
Collapse
|
24
|
Fan Y, Moon JJ. Nanoparticle Drug Delivery Systems Designed to Improve Cancer Vaccines and Immunotherapy. Vaccines (Basel) 2015; 3:662-85. [PMID: 26350600 PMCID: PMC4586472 DOI: 10.3390/vaccines3030662] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022] Open
Abstract
Recent studies have demonstrated great therapeutic potential of educating and unleashing our own immune system for cancer treatment. However, there are still major challenges in cancer immunotherapy, including poor immunogenicity of cancer vaccines, off-target side effects of immunotherapeutics, as well as suboptimal outcomes of adoptive T cell transfer-based therapies. Nanomaterials with defined physico-biochemical properties are versatile drug delivery platforms that may address these key technical challenges facing cancer vaccines and immunotherapy. Nanoparticle systems have been shown to improve targeted delivery of tumor antigens and therapeutics against immune checkpoint molecules, amplify immune activation via the use of new stimuli-responsive or immunostimulatory materials, and augment the efficacy of adoptive cell therapies. Here, we review the current state-of-the-art in nanoparticle-based strategies designed to potentiate cancer immunotherapies, including cancer vaccines with subunit antigens (e.g., oncoproteins, mutated neo-antigens, DNA and mRNA antigens) and whole-cell tumor antigens, dendritic cell-based vaccines, artificial antigen-presenting cells, and immunotherapeutics based on immunogenic cell death, immune checkpoint blockade, and adoptive T-cell therapy.
Collapse
Affiliation(s)
- Yuchen Fan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
25
|
Bhargava A, Bunkar N, Khare NK, Mishra D, Mishra PK. Nanoengineered strategies to optimize dendritic cells for gastrointestinal tumor immunotherapy: from biology to translational medicine. Nanomedicine (Lond) 2015; 9:2187-202. [PMID: 25405796 DOI: 10.2217/nnm.14.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nanomedicine may play an important role in improving the clinical efficacy of dendritic cell-based immunotherapy against GI tract malignancies. Dendritic cell-based vaccines have proven their effectiveness against different established GI tract tumors, yet their success is mainly hindered by the strong tumor-induced suppressive microenvironment. The sustained and targeted release of tumor antigens to dendritic cells using different nanoengineered approaches would be an efficient strategy to overcome established immune tolerance. Encapsulation would result in low diffusivity, restricted movement, effective crosspresentation and enhanced T-cell responses. These nanotherapy-based approaches will certainly help with the designing of clinically translatable dendritic cell-based therapeutic vaccines and facilitate the selective removal of residual disease in gastrointestinal cancer patients following standard treatments.
Collapse
Affiliation(s)
- Arpit Bhargava
- Translational Research Laboratory, School of Biological Sciences, Dr H. S. Gour Central University, Sagar, India
| | | | | | | | | |
Collapse
|
26
|
Haddadi A, Hamdy S, Ghotbi Z, Samuel J, Lavasanifar A. Immunoadjuvant activity of the nanoparticles' surface modified with mannan. NANOTECHNOLOGY 2014; 25:355101. [PMID: 25119543 DOI: 10.1088/0957-4484/25/35/355101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mannan (MN) is the natural ligand for mannose receptors, which are widely expressed on dendritic cells (DCs). The purpose of this study was to assess the effect of formulation parameters on the immunogenicity of MN-decorated poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) in terms of their ability to stimulate DC phenotypic as well as functional maturation. For this purpose, NPs were formulated from either ester-terminated or COOH-terminated PLGA. Incorporation of MN in NPs was achieved through encapsulation, physical adsorption or chemical conjugation. Murine bone marrow derived DCs (BMDCs) were treated with various NP formulations and assessed for their ability to up-regulate DC cell surface markers, secrete immunostimulatory cytokines and to activate allogenic T cell responses. DCs treated with COOH-terminated PLGA-NPs containing chemically conjugated MN (MN-Cov-COOH) have shown superior performance in improving DC biological functions, compared to the rest of the formulations tested. This may be attributed to the higher level of MN incorporation in the former formulation. Incorporation of MN in PLGA NPs through chemical conjugation can lead to enhanced DC maturation and stimulatory function. This strategy may be used to develop more effective PLGA-based vaccine formulations.
Collapse
Affiliation(s)
- Azita Haddadi
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | |
Collapse
|
27
|
Sheen MR, Lizotte PH, Toraya-Brown S, Fiering S. Stimulating antitumor immunity with nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:496-505. [PMID: 25069691 DOI: 10.1002/wnan.1274] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/27/2014] [Accepted: 04/06/2014] [Indexed: 01/29/2023]
Abstract
A variety of strategies, have been applied to cancer treatment and the most recent one to become prominent is immunotherapy. This interest has been fostered by the demonstration that the immune system does recognize and often eliminate small tumors but tumors that become clinical problems block antitumor immune responses with immunosuppression orchestrated by the tumor cells. Methods to reverse this tumor-mediated immunosuppression will improve cancer immunotherapy outcomes. The immunostimulatory potential of nanoparticles (NPs), holds promise for cancer treatment. Phagocytes of various types are an important component of both immunosuppression and immunostimulation and phagocytes actively take up NPs of various sorts, so NPs are a natural system to manipulate these key immune regulatory cells. NPs can be engineered with multiple useful therapeutic features, such as various payloads such as antigens and/or immunomodulatory agents including cytokines, ligands for immunostimulatory receptors or antagonists for immunosuppressive receptors. As more is learned about how tumors suppress antitumor immune responses the payload options expand further. Here we review multiple approaches of NP-based cancer therapies to modify the tumor microenvironment and stimulate innate and adaptive immune systems to obtain effective antitumor immune responses.
Collapse
Affiliation(s)
- Mee Rie Sheen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | | | | |
Collapse
|
28
|
Frank D, Tyagi C, Tomar L, Choonara YE, du Toit LC, Kumar P, Penny C, Pillay V. Overview of the role of nanotechnological innovations in the detection and treatment of solid tumors. Int J Nanomedicine 2014; 9:589-613. [PMID: 24489467 PMCID: PMC3904834 DOI: 10.2147/ijn.s50941] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nanotechnology, although still in its infantile stages, has the potential to revolutionize the diagnosis, treatment, and monitoring of disease progression and success of therapy for numerous diseases and conditions, not least of which is cancer. As it is a leading cause of mortality worldwide, early cancer detection, as well as safe and efficacious therapeutic intervention, will be indispensable in improving the prognosis related to cancers and overall survival rate, as well as health-related quality of life of patients diagnosed with cancer. The development of a relatively new field of nanomedicine, which combines various domains and technologies including nanotechnology, medicine, biology, pharmacology, mathematics, physics, and chemistry, has yielded different approaches to addressing these challenges. Of particular relevance in cancer, nanosystems have shown appreciable success in the realm of diagnosis and treatment. Characteristics attributable to these systems on account of the nanoscale size range allow for individualization of therapy, passive targeting, the attachment of targeting moieties for more specific targeting, minimally invasive procedures, and real-time imaging and monitoring of in vivo processes. Furthermore, incorporation into nanosystems may have the potential to reintroduce into clinical practice drugs that are no longer used because of various shortfalls, as well as aid in the registration of new, potent drugs with suboptimal pharmacokinetic profiles. Research into the development of nanosystems for cancer diagnosis and therapy is thus a rapidly emerging and viable field of study.
Collapse
Affiliation(s)
- Derusha Frank
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Charu Tyagi
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lomas Tomar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lisa C du Toit
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Medical Oncology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Viness Pillay
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
29
|
Ungaro F, Conte C, Quaglia F, Tornesello ML, Buonaguro FM, Buonaguro L. VLPs and particle strategies for cancer vaccines. Expert Rev Vaccines 2013; 12:1173-1193. [PMID: 24124878 DOI: 10.1586/14760584.2013.836909] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Effective delivery of tumor antigens to APCs is one of the key steps for eliciting a strong and durable immune response to tumors. Several cancer vaccines have been evaluated in clinical trials, based on soluble peptides, but results have not been fully satisfactory. To improve immunogenicity particles provide a valid strategy to display and/or incorporate epitopes which can be efficiently targeted to APCs for effective induction of adaptive immunity. In the present review, we report some leading technologies for developing particulate vaccines employed in cancer immunotherapy, highlighting the key parameters for a rational design to elicit both humoral and cellular responses.
Collapse
Affiliation(s)
- Francesca Ungaro
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Tian WY, Chen WC, Li R, Liu L. Markers CD40, VEGF, AKT, PI3K, and S100 correlate with tumor stage in gastric cancer. Oncol Res Treat 2013; 36:26-31. [PMID: 23429328 DOI: 10.1159/000346675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND To better understand gastric cancer occurrence and prognosis, we explored the expression of molecules in the CD40 pathway and their correlation with gastric cancer prognosis. PATIENTS AND METHODS We measured the expression of CD40, VEGF, AKT, PI3K, and S100 in gastric cancer tissues and adjacent normal tissues from 128 patients by immunohistochemistry. RESULTS The expression of CD40, VEGF, AKT, and PI3K were significantly higher in tumor tissue than in normal tissue, while S100 expression in dendritic cells (DC) was lower. Expression of CD40, VEGF, AKT, and PI3K significantly increased with T stage, while S100 expression decreased with T stage. Lymph node metastasis was associated with low or negative S100 expression. PI3K expression increased with clinical stage, while negative S100 expression was associated with higher clinical stages. Multivariate analysis did not indicate significant associations between any of these markers and recurrence or mortality. CONCLUSION The correlation between T stage of gastric cancer and the higher expression of CD40, VEGF, AKT, and PI3K, along with lower S100 expression in DC, may provide insights into future targets for more effective immunotherapy for cancer.
Collapse
Affiliation(s)
- Wen-Yan Tian
- Department of Digestive Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | |
Collapse
|
31
|
Meraz IM, Segura-Ibarra V, Leonard F, Gonzalez J, Ally S, Godin B, Serda RE. Biological Microniches Characterizing Pathological Lesions. Nanomedicine (Lond) 2013. [DOI: 10.1016/b978-0-08-098338-7.00006-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
32
|
Khong A, Nelson DJ, Nowak AK, Lake RA, Robinson BWS. The use of agonistic anti-CD40 therapy in treatments for cancer. Int Rev Immunol 2012; 31:246-66. [PMID: 22804570 DOI: 10.3109/08830185.2012.698338] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Agonistic anti-CD40 antibody is a potent stimulator of anti-tumor immune responses due to its action on both immune and tumor cells. It has the ability to "precondition" dendritic cells, allowing them to prime effective cytotoxic T-cell responses. Thus, anti-CD40 antibody provides an ideal therapy for combination with traditional cancer treatments (i.e., chemotherapy, surgery) in order to elicit immune-mediated anti-tumor effects. This review summarizes the mechanisms of action of agonistic anti-CD40, the use of mouse models to investigate its effects and combinations with other therapies in vivo, and current clinical trials combining humanized anti-CD40 antibody with chemotherapy and/or other immunotherapies.
Collapse
Affiliation(s)
- Andrea Khong
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | | | | | | | | |
Collapse
|
33
|
Bhargava A, Mishra D, Banerjee S, Mishra PK. Engineered dendritic cells for gastrointestinal tumor immunotherapy: opportunities in translational research. J Drug Target 2012; 21:126-36. [PMID: 23061479 DOI: 10.3109/1061186x.2012.731069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Vanpouille-Box C, Hindré F. Nanovectorized radiotherapy: a new strategy to induce anti-tumor immunity. Front Oncol 2012; 2:136. [PMID: 23087900 PMCID: PMC3467457 DOI: 10.3389/fonc.2012.00136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/20/2012] [Indexed: 01/01/2023] Open
Abstract
Recent experimental findings show that activation of the host immune system is required for the success of chemo- and radiotherapy. However, clinically apparent tumors have already developed multiple mechanisms to escape anti-tumor immunity. The fact that tumors are able to induce a state of tolerance and immunosuppression is a major obstacle in immunotherapy. Hence, there is an overwhelming need to develop new strategies that overcome this state of immune tolerance and induce an anti-tumor immune response both at primary and metastatic sites. Nanovectorized radiotherapy that combines ionizing radiation and nanodevices, is one strategy that could boost the quality and magnitude of an immune response in a predictable and designable fashion. The potential benefits of this emerging treatment may be based on the unique combination of immunostimulatory properties of nanoparticles with the ability of ionizing radiation to induce immunogenic tumor cell death. In this review, we will discuss available data and propose that the nanovectorized radiotherapy could be a powerful new strategy to induce anti-tumor immunity required for positive patient outcome.
Collapse
Affiliation(s)
- Claire Vanpouille-Box
- LUNAM Université, Université d'Angers Angers, France ; INSERM U1066 Micro et Nanomedecines Biomimétiques Angers, France
| | | |
Collapse
|
35
|
Broos S, Sandin LC, Apel J, Tötterman TH, Akagi T, Akashi M, Borrebaeck CA, Ellmark P, Lindstedt M. Synergistic augmentation of CD40-mediated activation of antigen-presenting cells by amphiphilic poly(γ-glutamic acid) nanoparticles. Biomaterials 2012; 33:6230-9. [DOI: 10.1016/j.biomaterials.2012.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/05/2012] [Indexed: 12/25/2022]
|
36
|
Caminschi I, Maraskovsky E, Heath WR. Targeting Dendritic Cells in vivo for Cancer Therapy. Front Immunol 2012; 3:13. [PMID: 22566899 PMCID: PMC3342351 DOI: 10.3389/fimmu.2012.00013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/20/2012] [Indexed: 12/31/2022] Open
Abstract
Monoclonal antibodies that recognize cell surface molecules have been used deliver antigenic cargo to dendritic cells (DC) for induction of immune responses. The encouraging anti-tumor immunity elicited using this immunization strategy suggests its suitability for clinical trials. This review discusses the complex network of DC, the functional specialization of DC subsets, the immunological outcomes of targeting different DC subsets and their cell surface receptors, and the requirements for the induction of effective anti-tumor CD4 and CD8 T cell responses that can recognize tumor-specific antigens. Finally, we review preclinical experiments and the progress toward targeting human DC in vivo.
Collapse
Affiliation(s)
- Irina Caminschi
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research Melbourne, VIC, Australia
| | | | | |
Collapse
|
37
|
Shenoi MM, Shah NB, Griffin RJ, Vercellotti GM, Bischof JC. Nanoparticle preconditioning for enhanced thermal therapies in cancer. Nanomedicine (Lond) 2011; 6:545-63. [PMID: 21542691 DOI: 10.2217/nnm.10.153] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nanoparticles show tremendous promise in the safe and effective delivery of molecular adjuvants to enhance local cancer therapy. One important form of local cancer treatment that suffers from local recurrence and distant metastases is thermal therapy. In this article, we review a new concept involving the use of nanoparticle-delivered adjuvants to 'precondition' or alter the vascular and immunological biology of the tumor to enhance its susceptibility to thermal therapy. To this end, a number of opportunities to combine nanoparticles with vascular and immunologically active agents are reviewed. One specific example of preconditioning involves a gold nanoparticle tagged with a vascular targeting agent (i.e., TNF-α). This nanoparticle embodiment demonstrates preconditioning through a dramatic reduction in tumor blood flow and induction of vascular damage, which recruits a strong and sustained inflammatory infiltrate in the tumor. The ability of this nanoparticle preconditioning to enhance subsequent heat or cold thermal therapy in a variety of tumor models is reviewed. Finally, the potential for future clinical imaging to judge the extent of preconditioning and thus the optimal timing and extent of combinatorial thermal therapy is discussed.
Collapse
|
38
|
Kwong B, Liu H, Irvine DJ. Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy. Biomaterials 2011; 32:5134-47. [PMID: 21514665 PMCID: PMC3140866 DOI: 10.1016/j.biomaterials.2011.03.067] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 03/28/2011] [Indexed: 11/24/2022]
Abstract
Immunostimulatory therapies that activate immune response pathways are of great interest for overcoming the immunosuppression present in advanced tumors. Agonistic anti-CD40 antibodies and CpG oligonucleotides have previously demonstrated potent, synergistic anti-tumor effects, but their clinical use even as monotherapies is hampered by dose-limiting inflammatory toxicity provoked upon systemic exposure. We hypothesized that by anchoring immuno-agonist compounds to lipid nanoparticles we could retain the bioactivity of therapeutics in the local tumor tissue and tumor-draining lymph node, but limit systemic exposure to these potent molecules. We prepared PEGylated liposomes bearing surface-conjugated anti-CD40 and CpG and assessed their therapeutic efficacy and systemic toxicity compared to soluble versions of the same immuno-agonists, injected intratumorally in the B16F10 murine model of melanoma. Anti-CD40/CpG-liposomes significantly inhibited tumor growth and induced a survival benefit similar to locally injected soluble anti-CD40 + CpG. Biodistribution analyses following local delivery showed that the liposomal carriers successfully sequestered anti-CD40 and CpG in vivo, reducing leakage into systemic circulation while allowing draining to the tumor-proximal lymph node. Contrary to locally-administered soluble immunotherapy, anti-CD40/CpG-liposomes did not elicit significant increases in serum levels of ALT enzyme, systemic inflammatory cytokines, or overall weight loss, confirming that off-target inflammatory effects had been minimized. The development of a delivery strategy capable of inducing robust anti-tumor responses concurrent with minimal systemic side effects is crucial for the continued progress of potent immunotherapies toward widespread clinical translation.
Collapse
Affiliation(s)
- Brandon Kwong
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA
| | | | | |
Collapse
|
39
|
Jain A, Yan W, Miller KR, O'Carra R, Woodward JG, Mumper RJ. Tresyl-based conjugation of protein antigen to lipid nanoparticles increases antigen immunogenicity. Int J Pharm 2010; 401:87-92. [PMID: 20837122 DOI: 10.1016/j.ijpharm.2010.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 09/03/2010] [Accepted: 09/03/2010] [Indexed: 12/16/2022]
Abstract
The present studies were aimed at investigating the engineering of NPs with protein-conjugated-surfactant at their surface. In order to increase the immunogenicity of a protein antigen, Brij 78 was functionalized by tresyl chloride and then further reacted with the primary amine of the model proteins ovalbumin (OVA) or horseradish peroxide (HRP). The reaction yielded Brij 78-OVA and Brij 78-HRP conjugates which were then used directly to form NP-OVA or NP-HRP using a one-step warm oil-in-water microemulsion precursor method with emulsifying wax as the oil phase, and Brij 78 and the Brij 78-OVA or Brij 78-HRP conjugate as surfactants. Similarly, Brij 700 was conjugated to HIV p24 antigen to yield Brij 700-p24 conjugate. The utility of these NPs for enhancing the immune responses to protein-based vaccines was evaluated in vivo using ovalbumin (OVA) as model protein and p24 as a relevant HIV antigen. In separate in vivo studies, female BALB/c mice were immunized by subcutaneous (s.c.) injection with NP-OVA and NP-p24 formulations along with several control formulations. These results suggested that with multiple antigens, covalent attachment of the antigen to the NP significantly enhanced antigen-specific immune responses. This facile covalent conjugation and incorporation method may be utilized to further incorporate other protein antigens, even multiple antigens, into an enhanced vaccine delivery system.
Collapse
Affiliation(s)
- Anekant Jain
- Division of Molecular Pharmaceutics, and the Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27514, United States
| | | | | | | | | | | |
Collapse
|
40
|
Krishnamachari Y, Geary SM, Lemke CD, Salem AK. Nanoparticle delivery systems in cancer vaccines. Pharm Res 2010; 28:215-36. [PMID: 20721603 DOI: 10.1007/s11095-010-0241-4] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 08/06/2010] [Indexed: 11/24/2022]
Abstract
Therapeutic strategies that involve the manipulation of the host's immune system are gaining momentum in cancer research. Antigen-loaded nanocarriers are capable of being actively taken up by antigen-presenting cells (APCs) and have shown promising potential in cancer immunotherapy by initiating a strong immunostimulatory cascade that results in potent antigen-specific immune responses against the cancer. Such carrier systems offer versatility in that they can simultaneously co-deliver adjuvants with the antigens to enhance APC activation and maturation. Furthermore, modifying the surface properties of these nanocarriers affords active targeting properties to APCs and/or enhanced accumulation in solid tumors. Here, we review some recent advances in these colloidal and particulate nanoscale systems designed for cancer immunotherapy and the potential for these systems to translate into clinical cancer vaccines.
Collapse
Affiliation(s)
- Yogita Krishnamachari
- Department of Pharmaceutical Sciences & Experimental Therapeutics College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|