1
|
Arnuphapprasert A, Nugraheni YR, Poofery J, Aung A, Kaewlamun W, Chankeaw W, Tasanaganjanakorn T, Wattanamethanont J, Kaewthamasorn M. Genetic characterization of genes encoding the major surface proteins of Anaplasma marginale from cattle isolates in Thailand reveals multiple novel variants. Ticks Tick Borne Dis 2023; 14:102110. [PMID: 36577307 DOI: 10.1016/j.ttbdis.2022.102110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Bovine anaplasmosis is a serious tick-borne disease that is responsible for economic loss worldwide. The major surface proteins (MSPs), encoded by msp1 to msp5 genes of Anaplasma marginale, play an important role in host-pathogen and tick-pathogen interactions. These markers have been used for genetic characterization and phylogenetic studies. Despite domestic reports concerning suspected outbreaks of anaplasmosis in Thailand, genetic analysis of A. marginale in the country remains largely limited. Therefore, we aim to investigate the infection rate of the rickettsia organism in the Anaplasmataceae family throughout five regions of Thailand and to further characterize the key genetic markers: msp1a, msp2, and msp5 of A. marginale. From 2016 to 2021, we collected a total of 384 cattle blood samples across 18 provinces. Overall, the infection rate of the rickettsia organism in the Anaplasmataceae family was 46.1%. Over 65% of the positive samples were confirmed as A. marginale. We successfully obtained a total of 138 A. marginale msp1a (38), msp2 (79), and msp5 (21) sequences from all regions of the country. The msp1a and msp2 genes exhibit a high degree of genetic diversity, while the msp5 gene is highly conserved among the Thai isolates. Our findings regarding msp1a corroborated the genetic heterogeneity of A. marginale strains in endemic regions worldwide. Additionally, we found multiple novel variants for the first time in the current nationwide survey. We found 45 tandem repeat characters of the msp1a sequence. Among them, 24 characters were not shared with other countries. Collectively, we expanded the extent of genetic diversity in key markers; msp1a and msp2 genes, and further confirmed the previous finding that msp5 was highly conserved. The msp1a and msp2 genes could be useful for the surveillance of newly introduced strains. The current data may also be useful in designing a vaccine containing potential epitopes of different antigens in the future.
Collapse
Affiliation(s)
- Apinya Arnuphapprasert
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Veterinary Pathobiology Graduate Program, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Yudhi Ratna Nugraheni
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Indonesia
| | - Juthathip Poofery
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Aung Aung
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Winai Kaewlamun
- School of Agricultural Resources, Chulalongkorn University, Bangkok, Thailand
| | - Wiruntita Chankeaw
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat, Thailand
| | - Tanuwong Tasanaganjanakorn
- Farmed Animal Hospital, Faculty of Veterinary Science, Chulalongkorn University, Nakorn Pathom, Thailand
| | - Juntra Wattanamethanont
- Department of Livestock Development, Parasitology Section, National Institute of Animal Health, Bangkok, Thailand
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
2
|
Junsiri W, Watthanadirek A, Poolsawat N, Kaewmongkol S, Jittapalapong S, Chawengkirttikul R, Anuracpreeda P. Molecular detection and genetic diversity of Anaplasma marginale based on the major surface protein genes in Thailand. Acta Trop 2020; 205:105338. [PMID: 31953063 DOI: 10.1016/j.actatropica.2020.105338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 11/29/2022]
Abstract
Anaplasma marginale is the rickettsial agent of anaplasmosis, a tick-borne disease, which affects cattle and other ruminants in tropical and subtropical areas of the world, and causing huge economic losses because of decreasing meat and milk production. In the present study, molecular methods have been used to determine the occurrence and genetic diversity of A. marginale, based on the genes encoding the major surface proteins (msps) genes, in blood samples from 520 cattle and 121 buffaloes in the north and northeastern regions of Thailand. The polymerase chain reaction (PCR) results based on the msp4 gene indicated that 66 (10.30%) cattle were positive for A. marginale, whereas no positive result was obtained from buffaloes. The phylogenetic analysis based on the maximum likelihood method using 13, 29 and 27 nucleotide sequences from msp2, msp4, msp5 clones, respectively, revealed that the sequences detected in this study are obviously distributed in different clusters. The sequence analysis demonstrated that msp2 gene is genetically diverse, while msp4 and msp5 genes are conserved in Thailand. These findings corroborated the diversity analysis of the same sequences, which showed 13, 27 and 27 haplotypes of the msp2, msp4 and msp5 genes, respectively. In addition, the entropy analyses of amino acid sequences exhibited 127, 75 and 51 high entropy peaks with values ranging from 0.27119 to 2.45831, from 0.14999 to 2.17552 and from 0.15841 to 1.05453 for MSP2, MSP4 and MSP5, respectively. Therefore, the results indicate a low molecular occurrence of A. marginale in cattle blood samples in Thailand. From these results; however, a high degree of genetic diversity was observed in the analyzed A. marginale population. Hence, our finding could be used to improve the immunodiagnostics and vaccination programs for anaplasmosis.
Collapse
Affiliation(s)
- Witchuta Junsiri
- Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand; Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Amaya Watthanadirek
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Napassorn Poolsawat
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sarawan Kaewmongkol
- Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | | | | | - Panat Anuracpreeda
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
3
|
Hove P, Brayton KA, Liebenberg J, Pretorius A, Oosthuizen MC, Noh SM, Collins NE. Anaplasma marginale outer membrane protein vaccine candidates are conserved in North American and South African strains. Ticks Tick Borne Dis 2020; 11:101444. [PMID: 32336660 DOI: 10.1016/j.ttbdis.2020.101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/16/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
Bovine anaplasmosis is a globally economically important tick-borne disease caused by the obligate intraerythrocytic rickettsia, Anaplasma marginale. A live Anaplasma centrale blood-based vaccine is available, but it does not protect against all A. marginale field strains and may also transmit other blood-borne pathogens. Five potential outer membrane protein (OMP) vaccine candidates have been well-characterised in A. marginale strains from the USA, however, their levels of conservation in other countries must be ascertained in order to inform their use in a vaccine with regional or global efficacy. This study assessed the amino acid variation in vaccine candidate OMPs in South African strains of A. marginale, and also compared the immunogenic properties between South African and US strains. OMP genes Am779, Am854, omp7, omp8 and omp9 were amplified and sequenced from a set of genetically diverse South African samples with different msp1α-genotypes. OMPs Am854 and Am779 were highly conserved, with 99-100 % amino acid identity, while Omp7, Omp8 and Omp9 had 79-100 % identity with US strains. As has been shown previously, Omp7-9 possess conserved N- and C- termini, a central variable region, and a highly conserved CD4 T-cell epitope, FLLVDDA(I/V)V, in the N-terminal region. Western blot analysis of recombinant OMPs indicates strong antigenic conservation between South African and US strains of A. marginale, suggesting that they are good candidates for use in a novel global vaccine cocktail, although further work on the best formulation and delivery methods will be necessary.
Collapse
Affiliation(s)
- Paidashe Hove
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, Pretoria, South Africa; Agricultural Research Council-Biotechnology Platform, Private Bag X5, Onderstepoort, 0110, Pretoria, South Africa
| | - Kelly A Brayton
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, Pretoria, South Africa; Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | - Junita Liebenberg
- Agricultural Research Council-Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort, 0110, Pretoria, South Africa
| | - Alri Pretorius
- Agricultural Research Council-Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort, 0110, Pretoria, South Africa
| | - Marinda C Oosthuizen
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, Pretoria, South Africa
| | - Susan M Noh
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA; Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164-6630, USA
| | - Nicola E Collins
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, Pretoria, South Africa.
| |
Collapse
|
4
|
Sarli M, Novoa MB, Mazzucco MN, Signorini ML, Echaide IE, de Echaide ST, Primo ME. A vaccine using Anaplasma marginale subdominant type IV secretion system recombinant proteins was not protective against a virulent challenge. PLoS One 2020; 15:e0229301. [PMID: 32084216 PMCID: PMC7034839 DOI: 10.1371/journal.pone.0229301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/03/2020] [Indexed: 12/26/2022] Open
Abstract
Anaplasma marginale is the most prevalent tick-borne livestock pathogen with worldwide distribution. Bovine anaplasmosis is a significant threat to cattle industry. Anaplasmosis outbreaks in endemic areas are prevented via vaccination with live A. centrale produced in splenectomized calves. Since A. centrale live vaccine can carry other pathogens and cause disease in adult cattle, research efforts are directed to develop safe recombinant subunit vaccines. Previous work found that the subdominant proteins of A. marginale type IV secretion system (T4SS) and the subdominant elongation factor-Tu (Ef-Tu) were involved in the protective immunity against the experimental challenge in cattle immunized with the A. marginale outer membrane (OM). This study evaluated the immunogenicity and protection conferred by recombinant VirB9.1, VirB9.2, VirB10, VirB11, and Ef-Tu proteins cloned and expressed in E. coli. Twenty steers were randomly clustered into four groups (G) of five animals each. Cattle from G1 and G2 were immunized with a mixture of 50 μg of each recombinant protein with Quil A® or Montanide™ adjuvants, respectively. Cattle from G3 and G4 (controls) were immunized with Quil A and Montanide adjuvants, respectively. Cattle received four immunizations at three-week intervals and were challenged with 107 A. marginale-parasitized erythrocytes 42 days after the fourth immunization. After challenge, all cattle showed clinical signs, with a significant drop of packed cell volume and a significant increase of parasitized erythrocytes (p<0.05), requiring treatment with oxytetracycline to prevent death. The levels of IgG2 induced in the immunized groups did not correlate with the observed lack of protection. Additional strategies are required to evaluate the role of these proteins and their potential utility in the development of effective vaccines.
Collapse
Affiliation(s)
- Macarena Sarli
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rafaela, Santa Fe, Argentina
| | - María B. Novoa
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rafaela, Santa Fe, Argentina
| | - Matilde N. Mazzucco
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
| | - Marcelo L. Signorini
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rafaela, Santa Fe, Argentina
| | - Ignacio E. Echaide
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
| | - Susana T. de Echaide
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
| | - María E. Primo
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rafaela, Santa Fe, Argentina
| |
Collapse
|
5
|
Futse JE, Buami G, Kayang BB, Koku R, Palmer GH, Graça T, Noh SM. Sequence and immunologic conservation of Anaplasma marginale OmpA within strains from Ghana as compared to the predominant OmpA variant. PLoS One 2019; 14:e0217661. [PMID: 31291256 PMCID: PMC6619652 DOI: 10.1371/journal.pone.0217661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 06/25/2019] [Indexed: 12/29/2022] Open
Abstract
A primary challenge in developing effective vaccines against obligate, intracellular, bacterial tick-borne pathogens that establish persistent infection is the identification of antigens that cross protect against multiple strains. In the case of Anaplasma marginale, the most prevalent tick-borne pathogen of cattle found worldwide, OmpA is an adhesin and thus a promising vaccine candidate. We sequenced ompA from cattle throughout Ghana naturally infected with A. marginale in order to determine the degree of variation in this gene in an area of suspected high genetic diversity. We compared the Ghanaian sequences with those available from N. America, Mexico, Australia and Puerto Rico. When considering only amino acid changes, three unique Ghanaian OmpA variants were identified. In comparison, strains from all other geographic regions, except one, shared a single OmpA variant, Variant 1, which differed from the Ghanaian variants. Next, using recombinant OmpA based on Variant 1, we determined that amino acid differences in OmpA in Ghanaian cattle as compared to OmpA Variant 1 did not alter the binding capacity of antibody directed against OmpA Variant 1, supporting the value of OmpA as a highly conserved vaccine candidate.
Collapse
Affiliation(s)
- James E. Futse
- Animal Disease Biotechnology Laboratory, Department of Animal Science, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States of America
| | - Grace Buami
- Animal Disease Biotechnology Laboratory, Department of Animal Science, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Boniface B. Kayang
- Animal Disease Biotechnology Laboratory, Department of Animal Science, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Roberta Koku
- Animal Disease Biotechnology Laboratory, Department of Animal Science, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States of America
| | - Guy H. Palmer
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States of America
| | - Telmo Graça
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States of America
| | - Susan M. Noh
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States of America
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States of America
| |
Collapse
|
6
|
Hove P, Khumalo ZTH, Chaisi ME, Oosthuizen MC, Brayton KA, Collins NE. Detection and Characterisation of Anaplasma marginale and A. centrale in South Africa. Vet Sci 2018; 5:E26. [PMID: 29510496 PMCID: PMC5876571 DOI: 10.3390/vetsci5010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 01/11/2023] Open
Abstract
Bovine anaplasmosis is endemic in South Africa and it has a negative economic impact on cattle farming. An improved understanding of Anaplasma marginale and Anaplasma marginale variety centrale (A. centrale) transmission, together with improved tools for pathogen detection and characterisation, are required to inform best management practices. Direct detection methods currently in use for A. marginale and A. centrale in South Africa are light microscopic examination of tissue and organ smears, conventional, nested, and quantitative real-time polymerase chain reaction (qPCR) assays, and a reverse line blot hybridisation assay. Of these, qPCR is the most sensitive for detection of A. marginale and A. centrale in South Africa. Serological assays also feature in routine diagnostics, but cross-reactions prevent accurate species identification. Recently, genetic characterisation has confirmed that A. marginale and A. centrale are separate species. Diversity studies targeting Msp1a repeats for A. marginale and Msp1aS repeats for A. centrale have revealed high genetic variation and point to correspondingly high levels of variation in A. marginale outer membrane proteins (OMPs), which have been shown to be potential vaccine candidates in North American studies. Information on these OMPs is lacking for South African A. marginale strains and should be considered in future recombinant vaccine development studies, ultimately informing the development of regional or global vaccines.
Collapse
Affiliation(s)
- Paidashe Hove
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria 0110, South Africa.
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, Pretoria 0110, South Africa.
| | - Zamantungwa T H Khumalo
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria 0110, South Africa.
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, Pretoria 0110, South Africa.
| | - Mamohale E Chaisi
- Research and Scientific Services Department, National Zoological Gardens of South Africa; Pretoria 0001, South Africa.
| | - Marinda C Oosthuizen
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria 0110, South Africa.
| | - Kelly A Brayton
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria 0110, South Africa.
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA.
| | - Nicola E Collins
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria 0110, South Africa.
| |
Collapse
|
7
|
Structural Basis for Recombinatorial Permissiveness in the Generation of Anaplasma marginale Msp2 Antigenic Variants. Infect Immun 2016; 84:2740-7. [PMID: 27400719 DOI: 10.1128/iai.00391-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/05/2016] [Indexed: 12/20/2022] Open
Abstract
Sequential expression of outer membrane protein antigenic variants is an evolutionarily convergent mechanism used by bacterial pathogens to escape host immune clearance and establish persistent infection. Variants must be sufficiently structurally distinct to escape existing immune effectors yet retain the core structural elements required for localization and function within the outer membrane. We examined this balance using Anaplasma marginale, which generates antigenic variants in the outer membrane protein Msp2 using gene conversion. The overwhelming majority of Msp2 variants expressed during long-term persistent infection are mosaics, derived by recombination of oligonucleotide segments from multiple alleles to form unique hypervariable regions (HVR). As a result, the mosaics are not under long-term selective pressure to encode a functional protein; consequently, we hypothesized that the Msp2 HVR is structurally permissive for mosaic expression. Using an integrated approach of predictive modeling with determination of the native Msp2 protein structure and function, we demonstrate that structured elements, most notably, β-sheets, are significantly concentrated in the highly conserved N- and C-terminal domains. In contrast, the HVR is overwhelmingly a random coil, with the structured α-helices and β-sheets being confined to the genomically defined structural tethers that separate the antigenically variable microdomains. This structure is supported by the surface exposure of the HVR microdomains and the slow diffusion-type porin function in native Msp2. Importantly, the predominance of the random coil provides plasticity for the formation of functional HVR mosaics and realization of the full potential of segmental gene conversion to dramatically expand the variant repertoire.
Collapse
|
8
|
Brown WC, Barbet AF. Persistent Infections and Immunity in Ruminants to Arthropod-Borne Bacteria in the Family Anaplasmataceae. Annu Rev Anim Biosci 2015; 4:177-97. [PMID: 26734888 DOI: 10.1146/annurev-animal-022513-114206] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tick-transmitted gram-negative bacteria in the family Anaplasmataceae in the order Rickettsiales cause persistent infection and morbidity and mortality in ruminants. Whereas Anaplasma marginale infection is restricted to ruminants, Anaplasma phagocytophilum is promiscuous and, in addition to causing disease in sheep and cattle, notably causes disease in humans, horses, and dogs. Although the two pathogens invade and replicate in distinct blood cells (erythrocytes and neutrophils, respectively), they have evolved similar mechanisms of antigenic variation in immunodominant major surface protein 2 (MSP2) and MSP2(P44) that result in immune evasion and persistent infection. Furthermore, these bacteria have evolved distinct strategies to cause immune dysfunction, characterized as an antigen-specific CD4 T-cell exhaustion for A. marginale and a generalized immune suppression for A. phagocytophilum, that also facilitate persistence. This indicates highly adapted strategies of Anaplasma spp. to both suppress protective immune responses and evade those that do develop. However, conserved subdominant antigens are potential targets for immunization.
Collapse
Affiliation(s)
- Wendy C Brown
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164;
| | - Anthony F Barbet
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida 32611;
| |
Collapse
|
9
|
Ducken DR, Brown WC, Alperin DC, Brayton KA, Reif KE, Turse JE, Palmer GH, Noh SM. Subdominant Outer Membrane Antigens in Anaplasma marginale: Conservation, Antigenicity, and Protective Capacity Using Recombinant Protein. PLoS One 2015; 10:e0129309. [PMID: 26079491 PMCID: PMC4469585 DOI: 10.1371/journal.pone.0129309] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 05/08/2015] [Indexed: 12/21/2022] Open
Abstract
Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a defined surface protein complex reproducibly induce protective immunity. However, there are several knowledge gaps limiting progress in vaccine development. First, are these OMPs conserved among the diversity of A. marginale strains circulating in endemic regions? Second, are the most highly conserved outer membrane proteins in the immunogens recognized by immunized and protected animals? Lastly, can this subset of OMPs recognized by antibody from protected vaccinates and conserved among strains recapitulate the protection of outer membrane vaccines? To address the first goal, genes encoding OMPs AM202, AM368, AM854, AM936, AM1041, and AM1096, major subdominant components of the outer membrane, were cloned and sequenced from geographically diverse strains and isolates. AM202, AM936, AM854, and AM1096 share 99.9 to 100% amino acid identity. AM1041 has 97.1 to 100% and AM368 has 98.3 to 99.9% amino acid identity. While all four of the most highly conserved OMPs were recognized by IgG from animals immunized with outer membranes, linked surface protein complexes, or unlinked surface protein complexes and shown to be protected from challenge, the highest titers and consistent recognition among vaccinates were to AM854 and AM936. Consequently, animals were immunized with recombinant AM854 and AM936 and challenged. Recombinant vaccinates and purified outer membrane vaccinates had similar IgG and IgG2 responses to both proteins. However, the recombinant vaccinates developed higher bacteremia after challenge as compared to adjuvant-only controls and outer membrane vaccinates. These results provide the first evidence that vaccination with specific antigens may exacerbate disease. Progressing from the protective capacity of outer membrane formulations to recombinant vaccines requires testing of additional antigens, optimization of the vaccine formulation and a better understanding of the protective immune response.
Collapse
Affiliation(s)
- Deirdre R. Ducken
- Animal Disease Research Unit, Agricultural Research Service, U. S. Department of Agriculture, Pullman, Washington, United States of America
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Wendy C. Brown
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Debra C. Alperin
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Kelly A. Brayton
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Kathryn E. Reif
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Joshua E. Turse
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Guy H. Palmer
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Susan M. Noh
- Animal Disease Research Unit, Agricultural Research Service, U. S. Department of Agriculture, Pullman, Washington, United States of America
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
10
|
Palacios C, Torioni de Echaide S, Mattion N. Evaluation of the immune response to Anaplasma marginale MSP5 protein using a HSV-1 amplicon vector system or recombinant protein. Res Vet Sci 2014; 97:514-20. [PMID: 25458492 DOI: 10.1016/j.rvsc.2014.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/29/2014] [Accepted: 10/10/2014] [Indexed: 11/26/2022]
Abstract
Anaplasma marginale is an intraerythrocytic vector-borne infectious agent of cattle. Immunization with the current vaccine, based on parasitized erythrocytes with live Anaplasma centrale, shows some constraints and confers partial protection, suggesting the feasibility for the development of new generation of vaccines. The aim of the present study was to assess the effect of sequential immunization of BALB/c mice, with herpesvirus amplicon vector-based vaccines combined with protein-based vaccines, on the quality of the immune response against the major surface protein 5 of A. marginale. The highest antibody titers against MSP5 were elicited in mice that received two doses of adjuvanted recombinant protein (p < 0.0001). Mice treated with a heterologous prime-boost strategy generated sustained antibody titers at least up to 200 days, and a higher specific cellular response. The results presented here showed that sequential immunization with HSV-based vectors and purified antigen enhances the quality of the immune response against A. marginale.
Collapse
Affiliation(s)
- Carlos Palacios
- Centro de Virología Animal, Instituto de Ciencia y Tecnología Dr. Cesar Milstein, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Susana Torioni de Echaide
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, CP 2300, Rafaela, Santa Fe, Argentina
| | - Nora Mattion
- Centro de Virología Animal, Instituto de Ciencia y Tecnología Dr. Cesar Milstein, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
11
|
Nuñez PA, Moretta R, Ruybal P, Wilkowsky S, Farber MD. Immunogenicity of Hypothetical Highly Conserved Proteins as Novel Antigens in Anaplasma marginale. Curr Microbiol 2013; 68:269-77. [DOI: 10.1007/s00284-013-0475-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/04/2013] [Indexed: 12/19/2022]
|
12
|
Hammac GK, Ku PS, Galletti MF, Noh SM, Scoles GA, Palmer GH, Brayton KA. Protective immunity induced by immunization with a live, cultured Anaplasma marginale strain. Vaccine 2013; 31:3617-22. [PMID: 23664994 PMCID: PMC3903126 DOI: 10.1016/j.vaccine.2013.04.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/02/2013] [Accepted: 04/24/2013] [Indexed: 11/15/2022]
Abstract
Despite significant economic losses resulting from infection with Anaplasma marginale, a tick-transmitted rickettsial pathogen of cattle, available vaccines provide, at best, only partial protection against clinical disease. The green-fluorescent protein expressing mutant of the A. marginale St. Maries strain is a live, marked vaccine candidate (AmStM-GFP). To test whether AmStM-GFP is safe and provides clinical protection, a group of calves was vaccinated, and clinical parameters, including percent parasitized erythrocytes (PPE), packed cell volume (PCV) and days required to reach peak bacteremia, were measured following inoculation and following tick challenge with wild type St. Maries strain (AmStM). These clinical parameters were compared to those obtained during infection with the A. marginale subsp. centrale vaccine strain (A. centrale) or wild type AmStM. AmStM-GFP resulted in similar clinical parameters to A. centrale, but had a lower maximum PPE, smaller drop in PCV and took longer to reach peak bacteremia than wild type AmStM. AmStM-GFP provided clinical protection, yielding a stable PCV and low bacteremia following challenge, whereas A. centrale only afforded partial clinical protection.
Collapse
Affiliation(s)
- G. Kenitra Hammac
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040
| | - Pei-Shin Ku
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040
| | - Maria F. Galletti
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040
| | - Susan M. Noh
- Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, PO Box 646630, Pullman, WA 99164-6630
| | - Glen A. Scoles
- Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, PO Box 646630, Pullman, WA 99164-6630
| | - Guy H. Palmer
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040
| | - Kelly A. Brayton
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040
| |
Collapse
|
13
|
Kuriakose JA, Zhang X, Luo T, McBride JW. Molecular basis of antibody mediated immunity against Ehrlichia chaffeensis involves species-specific linear epitopes in tandem repeat proteins. Microbes Infect 2012; 14:1054-63. [PMID: 22658957 PMCID: PMC3445803 DOI: 10.1016/j.micinf.2012.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 05/10/2012] [Accepted: 05/18/2012] [Indexed: 01/06/2023]
Abstract
Humoral immune mechanisms are an important component of protective immunity to Ehrlichia species. However, the molecular basis of antibody mediated immunity is not completely defined, and the role of most molecularly characterized major immunoreactive proteins is unknown. In previous studies, we mapped major species-specific continuous epitopes in three surface exposed and secreted tandem repeat proteins (TRP32, TRP47 and TRP120). In this study, we report that protection is provided by antibodies against these molecularly defined TRP epitopes using in vitro and in vivo models. Protection was demonstrated in vitro after prophylactic and therapeutic administration of epitope-specific anti-TRP antibodies, suggesting that the protective mechanisms involve extracellular and intracellular antibody-mediated effects. In vivo passive transfer of individual epitope-specific TRP sera significantly reduced the ehrlichial load and splenomegaly, and protected mice against lethal infection. Moreover, the combination of antibodies to all three TRPs provided enhanced reduction in ehrlichial load similar to that of Ehrlichia chaffeensis immune sera. IgG1 was the predominant antibody isotype in the epitope-specific TRP mouse sera. These results demonstrate that antibodies against linear epitopes in TRP32, TRP47 and TRP120 are protective during E. chaffeensis infection and involves extracellular and intracellular antibody-mediated mechanisms.
Collapse
Affiliation(s)
- Jeeba A. Kuriakose
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaofeng Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tian Luo
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
14
|
Subdominant antigens in bacterial vaccines: AM779 is subdominant in the Anaplasma marginale outer membrane vaccine but does not associate with protective immunity. PLoS One 2012; 7:e46372. [PMID: 23029498 PMCID: PMC3460813 DOI: 10.1371/journal.pone.0046372] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
Identification of specific antigens responsible for the ability of complex immunogens to induce protection is a major goal in development of bacterial vaccines. Much of the investigation has focused on highly abundant and highly immunodominant outer membrane proteins. Recently however, genomic and proteomic approaches have facilitated identification of minor components of the bacterial outer membrane that have previously been missed or ignored in immunological analyses. Immunization with Anaplasma marginale outer membranes or a cross-linked surface complex induces protection against bacteremia, however the components responsible for protection within these complex immunogens are unknown. Using outer membrane protein AM779 as a model, we demonstrated that this highly conserved but minor component of the A. marginale surface was immunologically sub-dominant in the context of the outer membrane or surface complex vaccines. Immunologic sub-dominance could be overcome by targeted vaccination with AM779 for T lymphocyte responses but not for antibody responses, suggesting that both abundance and intrinsic immunogenicity determine relative dominance. Importantly, immunization with AM779 supports that once priming is achieved by specific targeting, recall upon infectious challenge is achieved. While immunization with AM779 alone was not sufficient to induce protection, the ability of targeted immunization to prime the immune response to highly conserved but low abundance proteins supports continued investigation into the role of sub-dominant antigens, individually and collectively, in vaccine development for A. marginale and related bacterial pathogens.
Collapse
|
15
|
Brown WC. Adaptive immunity to Anaplasma pathogens and immune dysregulation: implications for bacterial persistence. Comp Immunol Microbiol Infect Dis 2012; 35:241-52. [PMID: 22226382 DOI: 10.1016/j.cimid.2011.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 11/30/2011] [Accepted: 12/06/2011] [Indexed: 12/15/2022]
Abstract
Anaplasma marginale is an obligate intraerythrocytic bacterium that infects ruminants, and notably causes severe economic losses in cattle worldwide. Anaplasma phagocytophilum infects neutrophils and causes disease in many mammals, including ruminants, dogs, cats, horses, and humans. Both bacteria cause persistent infection - infected cattle never clear A. marginale and A. phagocytophilum can also cause persistent infection in ruminants and other animals for several years. This review describes correlates of the protective immune response to these two pathogens as well as subversion and dysregulation of the immune response following infection that likely contribute to long-term persistence. I also compare the immune dysfunction observed with intraerythrocytic A. marginale to that observed in other models of chronic infection resulting in high antigen loads, including malaria, a disease caused by another intraerythrocytic pathogen.
Collapse
Affiliation(s)
- Wendy C Brown
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, United States.
| |
Collapse
|
16
|
Suarez CE, Noh S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet Parasitol 2011; 180:109-25. [DOI: 10.1016/j.vetpar.2011.05.032] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|