1
|
Wu K, Hu W, Zhou B, Li B, Li X, Yan Q, Chen W, Li Y, Ding H, Zhao M, Fan S, Yi L, Chen J. Immunogenicity and Immunoprotection of PCV2 Virus-like Particles Incorporating Dominant T and B Cell Antigenic Epitopes Paired with CD154 Molecules in Piglets and Mice. Int J Mol Sci 2022; 23:ijms232214126. [PMID: 36430608 PMCID: PMC9694800 DOI: 10.3390/ijms232214126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is capable of causing porcine circovirus-associated disease (PCVAD) and is one of the major threats to the global pig industry. The nucleocapsid protein Cap encoded by the PCV2 ORF2 gene is an ideal antigen for the development of PCV2 subunit vaccines, and its N-terminal nuclear localization sequence (NLS) structural domain is essential for the formation of self-assembling VLPs. In the present study, we systematically expressed and characterized full-length PCV2 Cap proteins fused to dominant T and B cell antigenic epitopes and porcine-derived CD154 molecules using baculovirus and found that the Cap proteins fusing epitopes were still capable of forming virus-like particles (VLPs). Both piglet and mice experiments showed that the Cap proteins fusing epitopes or paired with the molecular adjuvant CD154 were able to induce higher levels of humoral and cellular responses, particularly the secretion of PCV2-specific IFN-γ and IL-4. In addition, vaccination significantly reduced clinical signs and the viral load of PCV2 in the blood and tissues of challenged piglets. The results of the study provide new ideas for the development of a more efficient, safe and broad-spectrum next-generation PCV2 subunit vaccine.
Collapse
Affiliation(s)
- Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Wenshuo Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Bolun Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Bingke Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-85288017
| |
Collapse
|
2
|
Silica nanorattle with enhanced protein loading: a potential vaccine adjuvant. J Colloid Interface Sci 2013; 400:168-74. [PMID: 23582904 DOI: 10.1016/j.jcis.2013.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 12/11/2022]
Abstract
Nanoparticles are excellent carriers for drug and protein, and have the potential to be used in vaccine delivery system. Here, we prepared different structures silica nanoparticles such as silica nanorattles (SNs), mesoporous silica nanoparticles (MSNs) and solid silica nanoparticles (SSNs), and chosen ovalbumin (OVA) as model protein to study the potential application of silica nanoparticles in protein vaccine delivery system. The results showed that silica nanoparticles were efficient in protein loading and dependent on structure, size and incubation medium. According to the three structure particles, SNs were favorable to be used as protein carriers. Furthermore, we proved low cytotoxicity of silica nanorattle on RAW 264.7 cell line and biocompatibility in vivo. In addition, SNs was capable to up-regulate the humoral immunity reaction when mice were vaccinated with SNs-OVA formulation. Taken together, SNs was excellent carriers for protein vaccine and has the potential to be used as adjuvant.
Collapse
|