1
|
Zhang YN, Liu JJ, Zhang W, Qin HY, Wang LT, Chen YY, Yuan L, Yang F, Cao RY, Wang XJ. Expression, purification and refolding of pro-MMP-2 from inclusion bodies of E. coli. Protein Expr Purif 2023; 208-209:106278. [PMID: 37094772 DOI: 10.1016/j.pep.2023.106278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
MMP-2 has been reported as the most validated target for cancer progression and deserves further investigation. However, due to the lack of methods for obtaining large amounts of highly purified and bioactive MMP-2, identifying specific substrates and developing specific inhibitors of MMP-2remains extremely difficult. In this study, the DNA fragment coding for pro-MMP-2 was inserted into plasmid pET28a in an oriented manner, and the resulting recombinant protein was effectively expressed and led to accumulation as inclusion bodies in E. coli. This protein was easy to purify to near homogeneity by the combination of common inclusion bodies purification procedure and cold ethanol fractionation. Then, our results of gelatin zymography and fluorometric assay revealed that pro-MMP-2 at least partially restored its natural structure and enzymatic activity after renaturation. We obtained approximately 11 mg refolded pro-MMP-2 protein from 1 L LB broth, which was higher than other strategies previously reported. In conclusion, a simple and cost-effective procedure for obtaining high amounts of functional MMP-2was developed, which would contribute to the progress of studies on the gamut of biological action of this important proteinase. Furthermore, our protocol should be appropriate for the expression, purification, and refolding of other bacterial toxic proteins.
Collapse
Affiliation(s)
- Yu Nan Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Jia Jian Liu
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Wei Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Han Yu Qin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Lin Tao Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Yuan Yuan Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Li Yuan
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Fen Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China.
| | - Rong Yue Cao
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xue Jun Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
2
|
Acar T, Pelit Arayıcı P, Ucar B, Karahan M, Mustafaeva Z. Synthesis, Characterization and Lipophilicity Study of Brucella abortus’ Immunogenic Peptide Sequence That Can Be Used in the Future Vaccination Studies. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9739-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
3
|
Wang Y, Alahdal M, Ye J, Jing L, Liu X, Chen H, Jin L, Cao R. Inhibition of RM-1 prostate carcinoma and eliciting robust immune responses in the mouse model by using VEGF-M 2-GnRH 3-hinge-MVP vaccine. Genes Immun 2018; 20:245-254. [PMID: 29362508 DOI: 10.1038/s41435-017-0005-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/25/2017] [Accepted: 08/08/2017] [Indexed: 12/27/2022]
Abstract
GnRH and VEGF have been investigated as prostate carcinoma enhancers that support tumor spread and progression. Although both have documented roles in prostate carcinoma and many cancer types, the weak immunogenicity of these peptides has remained a major challenge for use in immunotherapy. Here, we describe a novel strategy to inhibit GnRH and VEGF production and assess the effect on the immune responses against these hormones using the RM-1 prostate cancer model. We designed a novel recombinant fusion protein which combined GnRH and VEGF as a vaccine against this tumor. The newly constructed fusion protein hVEGF121-M2-GnRH3-hinge-MVP contains the human vascular endothelial growth factor (hVEGF121) and three copies of GnRH in sequential linear alignment and T helper epitope MVP as an immunogenic vaccine. The effectiveness of the vaccine in eliciting an immune response and attenuating the prostate tumor growth was evaluated. Results showed that administration of a new vaccine effectively elicited humoral and cellular immune responses. We found that, a novel fusion protein, hVEGF121-M2-GnRH3-hinge-MVP, effectively inhibited growth of RM-1 prostate model and effectively promoted immune response. In conclusion, hVEGF121-M2-GnRH3-hinge-MVP is an effective dual mechanism tumor vaccine that limits RM-1 prostate growth. This vaccine may be a promising strategy for the treatment of hormone refractory prostate malignancies.
Collapse
Affiliation(s)
- Yiqin Wang
- Department of Biochemistry, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, TongjiaXiang 24, Nanjing, 210009, China
| | - Murad Alahdal
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of Life Science and Technology, China Pharmaceutical University, Tongjia Xiang 24, Nanjing, 210009, China
| | - Jia Ye
- Department of Biochemistry, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, TongjiaXiang 24, Nanjing, 210009, China
| | - Liangliang Jing
- Department of Biochemistry, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, TongjiaXiang 24, Nanjing, 210009, China
| | - Xiaoxin Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Tongjia Xiang 24, Nanjing, 210009, China
| | - Huan Chen
- Department of Biochemistry, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, TongjiaXiang 24, Nanjing, 210009, China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, School of Life Science and Technology, China Pharmaceutical University, Tongjia Xiang 24, Nanjing, 210009, China.
| | - Rongyue Cao
- Department of Biochemistry, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, TongjiaXiang 24, Nanjing, 210009, China.
| |
Collapse
|
4
|
Detection of antibodies against customized epitope: use of a coating antigen employing VEGF as fusion partner. Appl Microbiol Biotechnol 2014; 98:6659-66. [PMID: 24595426 DOI: 10.1007/s00253-014-5618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Abstract
Diagnosis of many infectious, autoimmune diseases and cancers depends on the detection of specific antibodies against peptide epitope by enzyme-linked immunosorbent assay (ELISA). However, small peptides are difficult to be coated on the plate surfaces. In this study, we selected GnRH as a model hapten to evaluate whether VEGF121 would be suitable as an irrelevant hapten-carrier to develop a universal platform for specific antibodies detection. Firstly, GnRH was fused to the C terminus of VEGF121 and the resultant fusion protein VEGF-GnRH expressed effectively as inclusion bodies in Escherichia coli. Thereafter, VEGF-GnRH was easily purified to near homogeneity with a yield of about 235 mg from 2.1 L induced culture. At last, VEGF-GnRH was used to perform ELISA and western blot, and our results suggested that VEGF-GnRH was capable of detecting anti-GnRH antibodies in sera both qualitatively and quantitatively. Indeed, previous studies of our laboratory had demonstrated that other fusion proteins such as VEGF-Aβ10, VEGF-GRP, VEGF-CETPC, and VEGF-βhCGCTP37 were able to detect their corresponding antibodies specifically. Therefore, VEGF121 may be a suitable irrelevant fusion partner of important diagnostic peptide markers. Our works would shed some light on the development of a universal platform for detection of specific antibodies.
Collapse
|
5
|
Wang XJ, Gu K, Xu JS, Li MH, Cao RY, Wu J, Li TM, Liu JJ. Immunization with a recombinant GnRH vaccine fused to heat shock protein 65 inhibits mammary tumor growth in vivo. Cancer Immunol Immunother 2010; 59:1859-66. [PMID: 20803011 PMCID: PMC11031030 DOI: 10.1007/s00262-010-0911-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
Abstract
Gonadotrophin-releasing hormone (GnRH) is the prime decapeptide hormone in the regulation of mammalian reproduction. Active immunization against GnRH has been a good treatment option to fight against hormone-dependent disease such as breast cancer. We designed and purified a novel protein vaccine Hsp65-GnRH(6) containing heat shock protein 65 (Hsp65) and six copies of GnRH in linear alignment. Immunization with Hsp65-GnRH(6) evoked strong humoral response in female mice. The generation of specific anti-GnRH antibodies was detected by ELISA and verified by western blot. In addition, anti-GnRH antibodies effectively neutralized endogenous GnRH activity in vivo, as demonstrated by the degeneration of the ovaries and uteri in the vaccinated mice. Moreover, the growth of EMT-6 mammary tumor allografts was inhibited by anti-GnRH antibodies. Histological examinations have shown that there was increased focal necrosis in tumors. Taken together, our results showed that immunization with Hsp65-GnRH(6) elicited high titer of specific anti-GnRH antibodies and further led to atrophy of reproductive organs. The specific antibodies could inhibit the growth of EMT-6 murine mammary tumor probably via an indirect mechanism that includes the depletion of estrogen. In view of these results, the protein vaccine Hsp65-GnRH(6) appears to be a promising candidate vaccine for hormone-dependent cancer therapy.
Collapse
Affiliation(s)
- Xue Jun Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Hanzhong Road 140, Nanjing, 210029 China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Hanzhong Road 140, Nanjing, 210029 China
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Tongjia Xiang 24, Nanjing, 210009 China
| | - Kai Gu
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Tongjia Xiang 24, Nanjing, 210009 China
| | - Jin Shu Xu
- School of Pharmacy, Nanjing Medical University, Hanzhong Road 140, Nanjing, 210029 China
| | - Ming Hui Li
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Tongjia Xiang 24, Nanjing, 210009 China
| | - Rong Yue Cao
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Tongjia Xiang 24, Nanjing, 210009 China
| | - Jie Wu
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Tongjia Xiang 24, Nanjing, 210009 China
| | - Tai Ming Li
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Tongjia Xiang 24, Nanjing, 210009 China
| | - Jing Jing Liu
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Tongjia Xiang 24, Nanjing, 210009 China
| |
Collapse
|