1
|
Alves E, Al-Kaabi M, Keane NM, Leary S, Almeida CAM, Deshpande P, Currenti J, Chopra A, Smith R, Castley A, Mallal S, Kalams SA, Gaudieri S, John M. Adaptation to HLA-associated immune pressure over the course of HIV infection and in circulating HIV-1 strains. PLoS Pathog 2022; 18:e1010965. [PMID: 36525463 PMCID: PMC9803285 DOI: 10.1371/journal.ppat.1010965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/30/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
Adaptation to human leukocyte antigen (HLA)-associated immune pressure represents a major driver of human immunodeficiency virus (HIV) evolution at both the individual and population level. To date, there has been limited exploration of the impact of the initial cellular immune response in driving viral adaptation, the dynamics of these changes during infection and their effect on circulating transmitting viruses at the population level. Capturing detailed virological and immunological data from acute and early HIV infection is challenging as this commonly precedes the diagnosis of HIV infection, potentially by many years. In addition, rapid initiation of antiretroviral treatment following a diagnosis is the standard of care, and central to global efforts towards HIV elimination. Yet, acute untreated infection is the critical period in which the diversity of proviral reservoirs is first established within individuals, and associated with greater risk of onward transmissions in a population. Characterizing the viral adaptations evident in the earliest phases of infection, coinciding with the initial cellular immune responses is therefore relevant to understanding which changes are of greatest impact to HIV evolution at the population level. In this study, we utilized three separate cohorts to examine the initial CD8+ T cell immune response to HIV (cross-sectional acute infection cohort), track HIV evolution in response to CD8+ T cell-mediated immunity over time (longitudinal chronic infection cohort) and translate the impact of HLA-driven HIV evolution to the population level (cross-sectional HIV sequence data spanning 30 years). Using next generation viral sequencing and enzyme-linked immunospot interferon-gamma recall responses to peptides representing HLA class I-specific HIV T cell targets, we observed that CD8+ T cell responses can select viral adaptations prior to full antibody seroconversion. Using the longitudinal cohort, we uncover that viral adaptations have the propensity to be retained over time in a non-selective immune environment, which reflects the increasing proportion of pre-adapted HIV strains within the Western Australian population over an approximate 30-year period.
Collapse
Affiliation(s)
- Eric Alves
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marwah Al-Kaabi
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Niamh M. Keane
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Coral-Ann M. Almeida
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Pooja Deshpande
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Jennifer Currenti
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Rita Smith
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Alison Castley
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Silvana Gaudieri
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Mina John
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Clinical and evolutionary consequences of HIV adaptation to HLA: implications for vaccine and cure. Curr Opin HIV AIDS 2020; 14:194-204. [PMID: 30925534 DOI: 10.1097/coh.0000000000000541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize recent advances in our understanding of HIV adaptation to human leukocyte antigen (HLA)-associated immune pressures and its relevance to HIV prevention and cure research. RECENT FINDINGS Recent research has confirmed that HLA is a major driver of individual and population-level HIV evolution, that HIV strains are adapting to the immunogenetic profiles of the different human ethnic groups in which they circulate, and that HIV adaptation has substantial clinical and immunologic consequences. As such, adaptation represents a major challenge to HIV prevention and cure. At the same time, there are opportunities: Studies of HIV adaptation are revealing why certain HLA alleles are protective in some populations and not others; they are identifying immunogenic viral epitopes that harbor high mutational barriers to escape, and they may help illuminate novel, vaccine-relevant HIV epitopes in regions where circulating adaptation is extensive. Elucidation of HLA-driven adapted and nonadapted viral forms in different human populations and HIV subtypes also renders 'personalized' immunogen selection, as a component of HIV cure strategies, conceptually feasible. SUMMARY Though adaptation represents a major challenge to HIV prevention and cure, achieving an in-depth understanding of this phenomenon can help move the design of such strategies forward.
Collapse
|
3
|
Weaker HLA Footprints on HIV in the Unique and Highly Genetically Admixed Host Population of Mexico. J Virol 2018; 92:JVI.01128-17. [PMID: 29093100 PMCID: PMC5752930 DOI: 10.1128/jvi.01128-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/27/2017] [Indexed: 01/24/2023] Open
Abstract
HIV circumvents HLA class I-restricted CD8+ T-cell responses through selection of escape mutations that leave characteristic mutational “footprints,” also known as HLA-associated polymorphisms (HAPs), on HIV sequences at the population level. While many HLA footprints are universal across HIV subtypes and human populations, others can be region specific as a result of the unique immunogenetic background of each host population. Using a published probabilistic phylogenetically informed model, we compared HAPs in HIV Gag and Pol (PR-RT) in 1,612 subtype B-infected, antiretroviral treatment-naive individuals from Mexico and 1,641 individuals from Canada/United States. A total of 252 HLA class I allele subtypes were represented, including 140 observed in both cohorts, 67 unique to Mexico, and 45 unique to Canada/United States. At the predefined statistical threshold of a q value of <0.2, 358 HAPs (201 in Gag, 157 in PR-RT) were identified in Mexico, while 905 (534 in Gag and 371 in PR-RT) were identified in Canada/United States. HAPs identified in Mexico included both canonical HLA-associated escape pathways and novel associations, in particular with HLA alleles enriched in Amerindian and mestizo populations. Remarkably, HLA footprints on HIV in Mexico were not only fewer but also, on average, significantly weaker than those in Canada/United States, although some exceptions were noted. Moreover, exploratory analyses suggested that the weaker HLA footprint on HIV in Mexico may be due, at least in part, to weaker and/or less reproducible HLA-mediated immune pressures on HIV in this population. The implications of these differences for natural and vaccine-induced anti-HIV immunity merit further investigation. IMPORTANCE HLA footprints on HIV identify viral regions under intense and consistent pressure by HLA-restricted immune responses and the common mutational pathways that HIV uses to evade them. In particular, HLA footprints can identify novel immunogenic regions and/or epitopes targeted by understudied HLA alleles; moreover, comparative analyses across immunogenetically distinct populations can illuminate the extent to which HIV immunogenic regions and escape pathways are shared versus population-specific pathways, information which can in turn inform the design of universal or geographically tailored HIV vaccines. We compared HLA-associated footprints on HIV in two immunogenetically distinct North American populations, those of Mexico and Canada/United States. We identify both shared and population-specific pathways of HIV adaptation but also make the surprising observation that HLA footprints on HIV in Mexico overall are fewer and weaker than those in Canada/United States, raising the possibility that HLA-restricted antiviral immune responses in Mexico are weaker, and/or escape pathways somewhat less consistent, than those in other populations.
Collapse
|
4
|
Carlson JM, Le AQ, Shahid A, Brumme ZL. HIV-1 adaptation to HLA: a window into virus-host immune interactions. Trends Microbiol 2015; 23:212-24. [PMID: 25613992 DOI: 10.1016/j.tim.2014.12.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/04/2014] [Accepted: 12/16/2014] [Indexed: 11/26/2022]
Abstract
HIV-1 develops specific mutations within its genome that allow it to escape detection by human leukocyte antigen (HLA) class I-restricted immune responses, notably those of CD8(+) cytotoxic T lymphocytes (CTL). HLA thus represents a major force driving the evolution and diversification of HIV-1 within individuals and at the population level. Importantly, the study of HIV-1 adaptation to HLA also represents an opportunity to identify what qualities constitute an effective immune response, how the virus in turn adapts to these pressures, and how we may harness this information to design HIV-1 vaccines that stimulate effective cellular immunity.
Collapse
Affiliation(s)
| | - Anh Q Le
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Linking pig-tailed macaque major histocompatibility complex class I haplotypes and cytotoxic T lymphocyte escape mutations in simian immunodeficiency virus infection. J Virol 2014; 88:14310-25. [PMID: 25275134 DOI: 10.1128/jvi.02428-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The influence of major histocompatibility complex class I (MHC-I) alleles on human immunodeficiency virus (HIV) diversity in humans has been well characterized at the population level. MHC-I alleles likely affect viral diversity in the simian immunodeficiency virus (SIV)-infected pig-tailed macaque (Macaca nemestrina) model, but this is poorly characterized. We studied the evolution of SIV in pig-tailed macaques with a range of MHC-I haplotypes. SIV(mac251) genomes were amplified from the plasma of 44 pig-tailed macaques infected with SIV(mac251) at 4 to 10 months after infection and characterized by Illumina deep sequencing. MHC-I typing was performed on cellular RNA using Roche/454 pyrosequencing. MHC-I haplotypes and viral sequence polymorphisms at both individual mutations and groups of mutations spanning 10-amino-acid segments were linked using in-house bioinformatics pipelines, since cytotoxic T lymphocyte (CTL) escape can occur at different amino acids within the same epitope in different animals. The approach successfully identified 6 known CTL escape mutations within 3 Mane-A1*084-restricted epitopes. The approach also identified over 70 new SIV polymorphisms linked to a variety of MHC-I haplotypes. Using functional CD8 T cell assays, we confirmed that one of these associations, a Mane-B028 haplotype-linked mutation in Nef, corresponded to a CTL epitope. We also identified mutations associated with the Mane-B017 haplotype that were previously described to be CTL epitopes restricted by Mamu-B*017:01 in rhesus macaques. This detailed study of pig-tailed macaque MHC-I genetics and SIV polymorphisms will enable a refined level of analysis for future vaccine design and strategies for treatment of HIV infection. IMPORTANCE Cytotoxic T lymphocytes select for virus escape mutants of HIV and SIV, and this limits the effectiveness of vaccines and immunotherapies against these viruses. Patterns of immune escape variants are similar in HIV type 1-infected human subjects that share the same MHC-I genes, but this has not been studied for SIV infection of macaques. By studying SIV sequence diversity in 44 MHC-typed SIV-infected pigtail macaques, we defined over 70 sites within SIV where mutations were common in macaques sharing particular MHC-I genes. Further, pigtail macaques sharing nearly identical MHC-I genes with rhesus macaques responded to the same CTL epitope and forced immune escape. This allows many reagents developed to study rhesus macaques to also be used to study pigtail macaques. Overall, our study defines sites of immune escape in SIV in pigtailed macaques, and this enables a more refined level of analysis of future vaccine design and strategies for treatment of HIV infection.
Collapse
|
6
|
Carlson JM, Brumme CJ, Martin E, Listgarten J, Brockman MA, Le AQ, Chui CKS, Cotton LA, Knapp DJHF, Riddler SA, Haubrich R, Nelson G, Pfeifer N, DeZiel CE, Heckerman D, Apps R, Carrington M, Mallal S, Harrigan PR, John M, Brumme ZL. Correlates of protective cellular immunity revealed by analysis of population-level immune escape pathways in HIV-1. J Virol 2012; 86:13202-16. [PMID: 23055555 PMCID: PMC3503140 DOI: 10.1128/jvi.01998-12] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/02/2012] [Indexed: 12/11/2022] Open
Abstract
HLA class I-associated polymorphisms identified at the population level mark viral sites under immune pressure by individual HLA alleles. As such, analysis of their distribution, frequency, location, statistical strength, sequence conservation, and other properties offers a unique perspective from which to identify correlates of protective cellular immunity. We analyzed HLA-associated HIV-1 subtype B polymorphisms in 1,888 treatment-naïve, chronically infected individuals using phylogenetically informed methods and identified characteristics of HLA-associated immune pressures that differentiate protective and nonprotective alleles. Over 2,100 HLA-associated HIV-1 polymorphisms were identified, approximately one-third of which occurred inside or within 3 residues of an optimally defined cytotoxic T-lymphocyte (CTL) epitope. Differential CTL escape patterns between closely related HLA alleles were common and increased with greater evolutionary distance between allele group members. Among 9-mer epitopes, mutations at HLA-specific anchor residues represented the most frequently detected escape type: these occurred nearly 2-fold more frequently than expected by chance and were computationally predicted to reduce peptide-HLA binding nearly 10-fold on average. Characteristics associated with protective HLA alleles (defined using hazard ratios for progression to AIDS from natural history cohorts) included the potential to mount broad immune selection pressures across all HIV-1 proteins except Nef, the tendency to drive multisite and/or anchor residue escape mutations within known CTL epitopes, and the ability to strongly select mutations in conserved regions within HIV's structural and functional proteins. Thus, the factors defining protective cellular immune responses may be more complex than simply targeting conserved viral regions. The results provide new information to guide vaccine design and immunogenicity studies.
Collapse
Affiliation(s)
| | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Eric Martin
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Mark A. Brockman
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Anh Q. Le
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Celia K. S. Chui
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Laura A. Cotton
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Sharon A. Riddler
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Richard Haubrich
- Department of Medicine, University of California San Diego, San Diego, California, USA
| | - George Nelson
- Basic Research Program, Center for Cancer Research Genetics Core, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Nico Pfeifer
- Microsoft Research, Los Angeles, California, USA
| | | | | | - Richard Apps
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA, and Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Charlestown, Massachusetts, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA, and Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Charlestown, Massachusetts, USA
| | - Simon Mallal
- Centre for Clinical Immunology and Biomedical Statistics, Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| | | | - Mina John
- Centre for Clinical Immunology and Biomedical Statistics, Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Zabrina L. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - the International HIV Adaptation Collaborative
- Microsoft Research, Los Angeles, California, USA
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of California San Diego, San Diego, California, USA
- Basic Research Program, Center for Cancer Research Genetics Core, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA, and Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Charlestown, Massachusetts, USA
- Centre for Clinical Immunology and Biomedical Statistics, Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
7
|
Autologous HIV-1 clade-B Nef peptides elicit increased frequency, breadth and function of CD8+ T-cells compared to consensus peptides. PLoS One 2012. [PMID: 23185362 PMCID: PMC3501503 DOI: 10.1371/journal.pone.0049562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To determine the function and phenotype of CD8(+) T-cells targeting consensus and autologous sequences of entire HIV-1 Nef protein. METHODS Multiparameter flow cytometry-based analysis was used to evaluate the responses of two treatment naïve HIV-infected individuals, during primary and the chronic phases of infection. RESULTS A greater breadth and magnitude of CD8 IFN-γ responses to autologous compared to clade-B consensus peptides was observed in both subjects. Cross recognition between autologous and consensus peptides decreased in both subjects during progression from primary to chronic infection. The frequencies of TEMRA and TEM CD8(+) T-cells targeting autologous peptides were higher than those targeting consensus peptides and were more polyfunctional (IFN-γ(+) Gr-B(+) CD107a(+)). CONCLUSIONS Our data indicate superior sensitivity and specificity of autologous peptides. The functional and maturational aspects of "real" versus "cross-recognized" responses were also found to differ, highlighting the importance of a sequence-specific approach towards understanding HIV immune response.
Collapse
|
8
|
Hasan Z, Carlson JM, Gatanaga H, Le AQ, Brumme CJ, Oka S, Brumme ZL, Ueno T. Minor contribution of HLA class I-associated selective pressure to the variability of HIV-1 accessory protein Vpu. Biochem Biophys Res Commun 2012; 421:291-5. [PMID: 22503975 DOI: 10.1016/j.bbrc.2012.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
Abstract
Host HLA class I (HLA-I) allele-associated immune responses are major forces driving the evolution of HIV-1 proteins such as Gag and Nef. The viral protein U (Vpu) is an HIV-1 accessory protein responsible for CD4 degradation and enhancement of virion release by antagonizing tetherin/CD317. Although Vpu represents one of the most variable proteins in the HIV-1 proteome, it is still not clear to what extent HLA-I influence its evolution. To examine this issue, we enrolled 240 HLA-I-typed, treatment naïve, chronically HIV-infected subjects in Japan, and analyzed plasma HIV RNA nucleotide sequences of the vpu region. Using a phylogenetically-informed method incorporating corrections for HIV codon covariation and linkage disequilibrium among HLA alleles, we investigated HLA-associated amino acid mutations in the Vpu protein as well as in the translational products encoded by alternative reading frames. Despite substantial amino acid variability in Vpu, we identified only 4 HLA-associations in all possible translational products encoded in this region, suggesting that HLA-associated immune responses had minor effects on Vpu variability in this cohort. Rather, despite its size (81 amino acids), Vpu showed 103 codon-codon covariation associations, suggesting that Vpu conformation and function are preserved through many possible combinations of primary and secondary polymorphisms. Taken together, our study suggests that Vpu has been comparably less influenced by HLA-I-associated immune-driven evolution at the population level compared to other highly variable HIV-1 accessory proteins.
Collapse
Affiliation(s)
- Zafrul Hasan
- Center for AIDS Research, Kumamoto University, Japan
| | | | | | | | | | | | | | | |
Collapse
|