1
|
Pahar B, Gray W, Fahlberg M, Grasperge B, Hunter M, Das A, Mabee C, Aye PP, Schiro F, Hensley K, Ratnayake A, Goff K, LaBranche C, Shen X, Tomaras GD, DeMarco CT, Montefiori D, Kissinger P, Marx PA, Traina-Dorge V. Recombinant Simian Varicella Virus-Simian Immunodeficiency Virus Vaccine Induces T and B Cell Functions and Provides Partial Protection against Repeated Mucosal SIV Challenges in Rhesus Macaques. Viruses 2022; 14:2819. [PMID: 36560823 PMCID: PMC9853323 DOI: 10.3390/v14122819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
HIV vaccine mediated efficacy, using an expanded live attenuated recombinant varicella virus-vectored SIV rSVV-SIVgag/env vaccine prime with adjuvanted SIV-Env and SIV-Gag protein boosts, was evaluated in a female rhesus macaques (RM) model against repeated intravaginal SIV challenges. Vaccination induced anti-SIV IgG responses and neutralizing antibodies were found in all vaccinated RMs. Three of the eight vaccinated RM remained uninfected (vaccinated and protected, VP) after 13 repeated challenges with the pathogenic SIVmac251-CX-1. The remaining five vaccinated and infected (VI) macaques had significantly reduced plasma viral loads compared with the infected controls (IC). A significant increase in systemic central memory CD4+ T cells and mucosal CD8+ effector memory T-cell responses was detected in vaccinated RMs compared to controls. Variability in lymph node SIV-Gag and Env specific CD4+ and CD8+ T cell cytokine responses were detected in the VI RMs while all three VP RMs had more durable cytokine responses following vaccination and prior to challenge. VI RMs demonstrated predominately SIV-specific monofunctional cytokine responses while the VP RMs generated polyfunctional cytokine responses. This study demonstrates that varicella virus-vectored SIV vaccination with protein boosts induces a 37.5% efficacy rate against pathogenic SIV challenge by generating mucosal memory, virus specific neutralizing antibodies, binding antibodies, and polyfunctional T-cell responses.
Collapse
Affiliation(s)
- Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- School of Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Wayne Gray
- Biology Department, University of Mississippi, Oxford, MS 38677, USA
| | - Marissa Fahlberg
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Brooke Grasperge
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Meredith Hunter
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Christopher Mabee
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Pyone Pyone Aye
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Faith Schiro
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Krystle Hensley
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Aneeka Ratnayake
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Kelly Goff
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Celia LaBranche
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaoying Shen
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Georgia D. Tomaras
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - C. Todd DeMarco
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - David Montefiori
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Patricia Kissinger
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Preston A. Marx
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Vicki Traina-Dorge
- School of Medicine, Tulane University, New Orleans, LA 70118, USA
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| |
Collapse
|
2
|
Gray WL, Wichman G, Das A, Traina-Dorge V. An enzyme-linked immunosorbent assay (ELISA) to determine Simian Varicella Virus antibody titers in infected rhesus monkeys (Macaca mulatta). J Med Primatol 2021; 51:20-26. [PMID: 34778968 DOI: 10.1111/jmp.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Simian varicella virus (SVV) is a primate herpesvirus that causes a natural varicella-like disease in Old World monkeys and may cause epizootics in facilities housing nonhuman primates. SVV infection of nonhuman primates is used as an experimental model to investigate varicella pathogenesis and to develop antiviral strategies. METHODS An indirect enzyme-linked immunosorbent assay (ELISA) was developed to detect SVV antibodies in infected rhesus macaque monkeys. RESULTS An ELISA determined SVV antibody titers following experimental infection. SVV IgG was detected by day 14 post-infection and remained elevated for at least 84 days. CONCLUSIONS The SVV ELISA is a safe and rapid approach to confirm SVV seropositivity and to determine SVV antibody titers in naturally and experimentally SVV-infected monkeys. In addition to being a useful diagnostic assay to rapidly confirm acute disease or past SVV infection, the SVV ELISA is a valuable epidemiological tool to determine the incidence of SVV in non-human primate facilities.
Collapse
Affiliation(s)
- Wayne L Gray
- Biology Department, University of Mississippi, Oxford, Mississippi, 38677, USA
| | - Grant Wichman
- Biology Department, University of Mississippi, Oxford, Mississippi, 38677, USA
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisina, 70433, USA
| | - Vicki Traina-Dorge
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisina, 70433, USA
| |
Collapse
|
3
|
Castro IM, Ricciardi MJ, Gonzalez-Nieto L, Rakasz EG, Lifson JD, Desrosiers RC, Watkins DI, Martins MA. Recombinant Herpesvirus Vectors: Durable Immune Responses and Durable Protection against Simian Immunodeficiency Virus SIVmac239 Acquisition. J Virol 2021; 95:e0033021. [PMID: 33910957 PMCID: PMC8223948 DOI: 10.1128/jvi.00330-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/23/2021] [Indexed: 01/29/2023] Open
Abstract
A prophylactic vaccine that confers durable protection against human immunodeficiency virus (HIV) would provide a valuable tool to prevent new HIV/AIDS cases. As herpesviruses establish lifelong infections that remain largely subclinical, the use of persistent herpesvirus vectors to deliver HIV antigens may facilitate the induction of long-term anti-HIV immunity. We previously developed recombinant (r) forms of the gamma-herpesvirus rhesus monkey rhadinovirus (rRRV) expressing a replication-incompetent, near-full-length simian immunodeficiency virus (SIVnfl) genome. We recently showed that 8/16 rhesus macaques (RMs) vaccinated with a rDNA/rRRV-SIVnfl regimen were significantly protected against intrarectal (i.r.) challenge with SIVmac239. Here we investigated the longevity of this vaccine-mediated protection. Despite receiving no additional booster immunizations, the protected rDNA/rRRV-SIVnfl vaccinees maintained detectable cellular and humoral anti-SIV immune responses for more than 1.5 years after the rRRV boost. To assess if these responses were still protective, the rDNA/rRRV-SIVnfl vaccinees were subjected to a second round of marginal-dose i.r. SIVmac239 challenges, with eight SIV-naive RMs serving as concurrent controls. After three SIV exposures, 8/8 control animals became infected, compared to 3/8 vaccinees. This difference in SIV acquisition was statistically significant (P = 0.0035). The three vaccinated monkeys that became infected exhibited significantly lower viral loads than those in unvaccinated controls. Collectively, these data illustrate the ability of rDNA/rRRV-SIVnfl vaccination to provide long-term immunity against stringent mucosal challenges with SIVmac239. Future work is needed to identify the critical components of this vaccine-mediated protection and the extent to which it can tolerate sequence mismatches in the challenge virus. IMPORTANCE We report on the long-term follow-up of a group of rhesus macaques (RMs) that received an AIDS vaccine regimen and were subsequently protected against rectal acquisition of simian immunodeficiency virus (SIV) infection. The vaccination regimen employed included a live recombinant herpesvirus vector that establishes persistent infection in RMs. Consistent with the recurrent SIV antigen expression afforded by this herpesvirus vector, vaccinees maintained detectable SIV-specific immune responses for more than 1.5 years after the last vaccination. Importantly, these vaccinated RMs were significantly protected against a second round of rectal SIV exposures performed 1 year after the first SIV challenge phase. These results are relevant for HIV vaccine development because they show the potential of herpesvirus-based vectors to maintain functional antiretroviral immunity without the need for repeated boosting.
Collapse
Affiliation(s)
| | | | | | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - David I. Watkins
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Mauricio A. Martins
- Department of Immunology and Microbiology, Scripps Research, Jupiter, Florida, USA
| |
Collapse
|
4
|
A Zigzag but Upward Way to Develop an HIV-1 Vaccine. Vaccines (Basel) 2020; 8:vaccines8030511. [PMID: 32911701 PMCID: PMC7564621 DOI: 10.3390/vaccines8030511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 01/04/2023] Open
Abstract
After decades of its epidemic, the human immunodeficiency virus type 1 (HIV-1) is still rampant worldwide. An effective vaccine is considered to be the ultimate strategy to control and prevent the spread of HIV-1. To date, hundreds of clinical trials for HIV-1 vaccines have been tested. However, there is no HIV-1 vaccine available yet, mostly because the immune correlates of protection against HIV-1 infection are not fully understood. Currently, a variety of recombinant viruses-vectored HIV-1 vaccine candidates are extensively studied as promising strategies to elicit the appropriate immune response to control HIV-1 infection. In this review, we summarize the current findings on the immunological parameters to predict the protective efficacy of HIV-1 vaccines, and highlight the latest advances on HIV-1 vaccines based on viral vectors.
Collapse
|
5
|
Reactivation of Simian Varicella Virus in Rhesus Macaques after CD4 T Cell Depletion. J Virol 2019; 93:JVI.01375-18. [PMID: 30404798 DOI: 10.1128/jvi.01375-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023] Open
Abstract
Rhesus macaques intrabronchially inoculated with simian varicella virus (SVV), the counterpart of human varicella-zoster virus (VZV), developed primary infection with viremia and rash, which resolved upon clearance of viremia, followed by the establishment of latency. To assess the role of CD4 T cell immunity in reactivation, monkeys were treated with a single 50-mg/kg dose of a humanized monoclonal anti-CD4 antibody; within 1 week, circulating CD4 T cells were reduced from 40 to 60% to 5 to 30% of the total T cell population and remained low for 2 months. Very low viremia was seen only in some of the treated monkeys. Zoster rash developed after 7 days in the monkey with the most extensive CD4 T cell depletion (5%) and in all other monkeys at 10 to 49 days posttreatment, with recurrent zoster in one treated monkey. SVV DNA was detected in the lung from two of five monkeys, in bronchial lymph nodes from one of the five monkeys, and in ganglia from at least two dermatomes in three of five monkeys. Immunofluorescence analysis of skin rash, lungs, lymph nodes, and ganglia revealed SVV ORF63 protein at the following sites: sweat glands in skin; type II cells in lung alveoli, macrophages, and dendritic cells in lymph nodes; and the neuronal cytoplasm of ganglia. Detection of SVV antigen in multiple tissues upon CD4 T cell depletion and virus reactivation suggests a critical role for CD4 T cell immunity in controlling varicella virus latency.IMPORTANCE Reactivation of latent VZV in humans can result in serious neurological complications. VZV-specific cell-mediated immunity is critical for the maintenance of latency. Similar to VZV in humans, SVV causes varicella in monkeys, establishes latency in ganglia, and reactivates to produce shingles. Here, we show that depletion of CD4 T cells in rhesus macaques results in SVV reactivation, with virus antigens found in zoster rash and SVV DNA and antigens found in lungs, lymph nodes, and ganglia. These results suggest the critical role of CD4 T cell immunity in controlling varicella virus latency.
Collapse
|
6
|
Kozlowski PA, Aldovini A. Mucosal Vaccine Approaches for Prevention of HIV and SIV Transmission. CURRENT IMMUNOLOGY REVIEWS 2019; 15:102-122. [PMID: 31452652 PMCID: PMC6709706 DOI: 10.2174/1573395514666180605092054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/19/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Optimal protective immunity to HIV will likely require that plasma cells, memory B cells and memory T cells be stationed in mucosal tissues at portals of viral entry. Mucosal vaccine administration is more effective than parenteral vaccine delivery for this purpose. The challenge has been to achieve efficient vaccine uptake at mucosal surfaces, and to identify safe and effective adjuvants, especially for mucosally administered HIV envelope protein immunogens. Here, we discuss strategies used to deliver potential HIV vaccine candidates in the intestine, respiratory tract, and male and female genital tract of humans and nonhuman primates. We also review mucosal adjuvants, including Toll-like receptor agonists, which may adjuvant both mucosal humoral and cellular immune responses to HIV protein immunogens.
Collapse
Affiliation(s)
- Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Anna Aldovini
- Department of Medicine, and Harvard Medical School, Boston Children’s Hospital, Department of Pediatrics, Boston MA, 02115, USA
| |
Collapse
|
7
|
Rosati M, Alicea C, Kulkarni V, Virnik K, Hockenbury M, Sardesai NY, Pavlakis GN, Valentin A, Berkower I, Felber BK. Recombinant rubella vectors elicit SIV Gag-specific T cell responses with cytotoxic potential in rhesus macaques. Vaccine 2015; 33:2167-74. [PMID: 25802183 DOI: 10.1016/j.vaccine.2015.02.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/19/2015] [Accepted: 02/25/2015] [Indexed: 11/25/2022]
Abstract
Live-attenuated rubella vaccine strain RA27/3 has been demonstrated to be safe and immunogenic in millions of children. The vaccine strain was used to insert SIV gag sequences and the resulting rubella vectors were tested in rhesus macaques alone and together with SIV gag DNA in different vaccine prime-boost combinations. We previously reported that such rubella vectors induce robust and durable SIV-specific humoral immune responses in macaques. Here, we report that recombinant rubella vectors elicit robust de novo SIV-specific cellular immune responses detectable for >10 months even after a single vaccination. The antigen-specific responses induced by the rubella vector include central and effector memory CD4(+) and CD8(+) T cells with cytotoxic potential. Rubella vectors can be administered repeatedly even after vaccination with the rubella vaccine strain RA27/3. Vaccine regimens including rubella vector and SIV gag DNA in different prime-boost combinations resulted in robust long-lasting cellular responses with significant increase of cellular responses upon boost. Rubella vectors provide a potent platform for inducing HIV-specific immunity that can be combined with DNA in a prime-boost regimen to elicit durable cellular immunity.
Collapse
Affiliation(s)
- Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Konstantin Virnik
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, FDA, Silver Spring, MD, USA
| | - Max Hockenbury
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, FDA, Silver Spring, MD, USA
| | | | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Ira Berkower
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, FDA, Silver Spring, MD, USA.
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| |
Collapse
|
8
|
Recombinant varicella-zoster virus vaccines as platforms for expression of foreign antigens. Adv Virol 2013; 2013:219439. [PMID: 23843791 PMCID: PMC3697282 DOI: 10.1155/2013/219439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/05/2013] [Indexed: 11/17/2022] Open
Abstract
Varicella-zoster virus (VZV) vaccines induce immunity against childhood chickenpox and against shingles in older adults. The safety, efficacy, and widespread use of VZV vaccines suggest that they may also be effective as recombinant vaccines against other infectious diseases that affect the young and the elderly. The generation of recombinant VZV vaccines and their evaluation in animal models are reviewed. The potential advantages and limitations of recombinant VZV vaccines are addressed.
Collapse
|
9
|
Abstract
Most neutralizing antibodies act at the earliest steps of viral infection and block interaction of the virus with cellular receptors to prevent entry into host cells. The inability to induce neutralizing antibodies to HIV has been a major obstacle to HIV vaccine research since the early days of the epidemic. However, in the past three years, the definition of a neutralizing antibody against HIV has been revolutionized by the isolation of extremely broad and potent neutralizing antibodies from HIV-infected individuals. Considerable hurdles remain for inducing neutralizing antibodies to a protective level after immunization. Meanwhile, novel technologies to bypass the induction of antibodies are being explored to provide prophylactic antibody-based interventions. This review addresses the challenge of inducing HIV neutralizing antibodies upon immunization and considers notable recent advances in the field. A greater understanding of the successes and failures for inducing a neutralizing response upon immunization is required to accelerate the development of an effective HIV vaccine.
Collapse
Affiliation(s)
- Laura E McCoy
- Wohl Virion Centre, Division of Infection and Immunity, University College London, London WC1E 6BT, England, UK
| | | |
Collapse
|
10
|
Del Prete GQ, Scarlotta M, Newman L, Reid C, Parodi LM, Roser JD, Oswald K, Marx PA, Miller CJ, Desrosiers RC, Barouch DH, Pal R, Piatak M, Chertova E, Giavedoni LD, O'Connor DH, Lifson JD, Keele BF. Comparative characterization of transfection- and infection-derived simian immunodeficiency virus challenge stocks for in vivo nonhuman primate studies. J Virol 2013; 87:4584-95. [PMID: 23408608 PMCID: PMC3624367 DOI: 10.1128/jvi.03507-12] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/01/2013] [Indexed: 12/24/2022] Open
Abstract
Simian immunodeficiency virus (SIV) stocks for in vivo nonhuman primate models of AIDS are typically generated by transfection of 293T cells with molecularly cloned viral genomes or by expansion in productively infected T cells. Although titers of stocks are determined for infectivity in vitro prior to in vivo inoculation, virus production methods may differentially affect stock features that are not routinely analyzed but may impact in vivo infectivity, mucosal transmissibility, and early infection events. We performed a detailed analysis of nine SIV stocks, comprising five infection-derived SIVmac251 viral swarm stocks and paired infection- and transfected-293T-cell-derived stocks of both SIVmac239 and SIVmac766. Representative stocks were evaluated for (i) virus content, (ii) infectious titer, (iii) sequence diversity and polymorphism frequency by single-genome amplification and 454 pyrosequencing, (iv) virion-associated Env content, and (v) cytokine and chemokine content by 36-plex Luminex analysis. Regardless of production method, all stocks had comparable particle/infectivity ratios, with the transfected-293T stocks possessing the highest overall virus content and infectivity titers despite containing markedly lower levels of virion-associated Env than infection-derived viruses. Transfected-293T stocks also contained fewer and lower levels of cytokines and chemokines than infection-derived stocks, which had elevated levels of multiple analytes, with substantial variability among stocks. Sequencing of the infection-derived SIVmac251 stocks revealed variable levels of viral diversity between stocks, with evidence of stock-specific selection and expansion of unique viral lineages. These analyses suggest that there may be underappreciated features of SIV in vivo challenge stocks with the potential to impact early infection events, which may merit consideration when selecting virus stocks for in vivo studies.
Collapse
Affiliation(s)
- Gregory Q. Del Prete
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Laura Newman
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Carolyn Reid
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - James D. Roser
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Preston A. Marx
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Christopher J. Miller
- Center for Comparative Medicine and California National Primate Research Center, University of California, Davis, California, USA
| | - Ronald C. Desrosiers
- New England Primate Research Center, Department of Microbiology and Molecular Genetics, Harvard Medical School, Southborough, Massachusetts, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, and Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Ranajit Pal
- Advanced Bioscience Laboratories, Inc., Kensington, Maryland, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Elena Chertova
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Luis D. Giavedoni
- Department of Virology and Immunology
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
11
|
Pahar B, Gray WL, Phelps K, Didier ES, deHaro E, Marx PA, Traina-Dorge VL. Increased cellular immune responses and CD4+ T-cell proliferation correlate with reduced plasma viral load in SIV challenged recombinant simian varicella virus - simian immunodeficiency virus (rSVV-SIV) vaccinated rhesus macaques. Virol J 2012; 9:160. [PMID: 22889373 PMCID: PMC3485174 DOI: 10.1186/1743-422x-9-160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/11/2012] [Indexed: 11/23/2022] Open
Abstract
Background An effective AIDS vaccine remains one of the highest priorities in HIV-research. Our recent study showed that vaccination of rhesus macaques with recombinant simian varicella virus (rSVV) vector – simian immunodeficiency virus (SIV) envelope and gag genes, induced neutralizing antibodies and cellular immune responses to SIV and also significantly reduced plasma viral loads following intravenous pathogenic challenge with SIVMAC251/CX1. Findings The purpose of this study was to define cellular immunological correlates of protection in rSVV-SIV vaccinated and SIV challenged animals. Immunofluorescent staining and multifunctional assessment of SIV-specific T-cell responses were evaluated in both Experimental and Control vaccinated animal groups. Significant increases in the proliferating CD4+ T-cell population and polyfunctional T-cell responses were observed in all Experimental-vaccinated animals compared with the Control-vaccinated animals. Conclusions Increased CD4+ T-cell proliferation was significantly and inversely correlated with plasma viral load. Increased SIV-specific polyfunctional cytokine responses and increased proliferation of CD4+ T-cell may be crucial to control plasma viral loads in vaccinated and SIVMAC251/CX1 challenged macaques.
Collapse
Affiliation(s)
- Bapi Pahar
- Division of Microbiology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | | | | | | | | | | | | |
Collapse
|