1
|
Findlow J, Borrow R, Stephens DS, Liberator P, Anderson AS, Balmer P, Jodar L. Correlates of protection for meningococcal surface protein vaccines; current approaches for the determination of breadth of coverage. Expert Rev Vaccines 2022; 21:753-769. [PMID: 35469524 DOI: 10.1080/14760584.2022.2064850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The two currently licensed surface protein non capsular meningococcal serogroup B (MenB) vaccines both have the purpose of providing broad coverage against diverse MenB strains. However, the different antigen compositions and approaches used to assess breadth of coverage currently make direct comparisons complex. AREAS COVERED In the second of two companion papers, we comprehensively review the serology and factors influencing breadth of coverage assessments for two currently licensed MenB vaccines. EXPERT OPINION Surface protein MenB vaccines were developed using different approaches, resulting in unique formulations and thus their breadth of coverage. The surface proteins used as vaccine antigens can vary among meningococcal strains due to gene presence/absence, sequence diversity and differences in protein expression. Assessment of the breadth of coverage provided by vaccines is influenced by the ability to induce cross-reactive functional immune responses to sequence diverse protein variants; the characteristics of the circulating invasive strains from specific geographic locations; methodological differences in the immunogenicity assays; differences in human immune responses between individuals; and the maintenance of protective antibody levels over time. Understanding the proportion of meningococcal strains which are covered by the two licensed vaccines is important in understanding protection from disease and public health use.
Collapse
Affiliation(s)
- Jamie Findlow
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Ltd, Tadworth, UK
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - David S Stephens
- Woodruff Health Sciences Center, Emory University, Atlanta, Georgia, USA
| | - Paul Liberator
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, USA
| | | | - Paul Balmer
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Luis Jodar
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
2
|
Beeslaar J, Absalon J, Anderson AS, Eiden JJ, Balmer P, Harris SL, Jones TR, O'Neill RE, Pregaldien JL, Radley D, Maansson R, Ginis J, Srivastava A, Perez JL. MenB-FHbp Vaccine Protects Against Diverse Meningococcal Strains in Adolescents and Young Adults: Post Hoc Analysis of Two Phase 3 Studies. Infect Dis Ther 2020; 9:641-656. [PMID: 32700260 PMCID: PMC7452968 DOI: 10.1007/s40121-020-00319-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 11/17/2022] Open
Abstract
Introduction Two phase 3 studies in adolescents and young adults demonstrated that MenB-FHbp, a meningococcal serogroup B (MenB) vaccine, elicits protective immune responses after 2 or 3 doses based on serum bactericidal antibody assays using human complement (hSBA) against 4 primary and 10 additional diverse, vaccine-heterologous MenB test strains. Lower limits of quantitation (LLOQs; titers 1:8 or 1:16; titers ≥ 1:4 correlate with protection) were used to evaluate responses to individual strains and all 4 primary strains combined (composite response). A post hoc analysis evaluated percentages of subjects with protective responses to as many as 8 strains combined (4 primary plus additional strains). Methods Immune responses were measured using hSBAs against 4 primary strains in adolescents (n = 1509, MenB-FHbp; n = 898, hepatitis A virus vaccine/saline) and young adults (n = 2480, MenB-FHbp; n = 824, saline) receiving MenB-FHbp or control at 0, 2, and 6 months. Ten additional strains were evaluated in subsets of subjects from approximately 1800 MenB-FHbp recipients across both studies. Percentages of subjects with hSBA titers ≥ LLOQ for different numbers of primary strains or primary plus additional strains combined (7 or 8 strains total per subset) were determined before vaccination, 1 month post-dose 2, and 1 month post-dose 3. Results Across the panel of primary plus additional strains, at 1 month post-dose 3, titers ≥ LLOQ were elicited in 93.7–95.7% of adolescents and 91.7–95.0% of young adults for ≥ 5 test strains combined and in 70.5–85.8% of adolescents and 67.5–81.4% of young adults for ≥ 7 strains combined. Among adolescents, 99.8%, 99.0%, 92.8%, and 82.7% had titers ≥ LLOQ against at least 1, 2, 3, and all 4 primary strains, respectively; corresponding percentages for young adults were 99.7%, 97.7%, 94.0%, and 84.5%. Conclusions Results support the ability of MenB-FHbp to provide broad coverage against MenB strains expressing diverse FHbp variants. Trial Registration ClinicalTrials.gov identifiers NCT01830855, NCT01352845. Electronic supplementary material The online version of this article (10.1007/s40121-020-00319-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes Beeslaar
- Vaccine Clinical Research and Development, Pfizer Ltd UK, Hurley, UK.
| | - Judith Absalon
- Vaccine Clinical Research and Development, Pfizer Inc, Pearl River, NY, USA
| | | | - Joseph J Eiden
- Vaccine Clinical Research and Development, Pfizer Inc, Pearl River, NY, USA
| | - Paul Balmer
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Shannon L Harris
- Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA
| | - Thomas R Jones
- Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA
| | - Robert E O'Neill
- Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA
| | | | - David Radley
- Vaccine Clinical Research and Development, Pfizer Inc, Pearl River, NY, USA
| | - Roger Maansson
- Vaccine Clinical Research and Development, Pfizer Inc, Collegeville, PA, USA
| | - John Ginis
- Vaccine Research and Development, Pfizer Inc, Collegeville, PA, USA
| | - Amit Srivastava
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - John L Perez
- Vaccine Clinical Research and Development, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
3
|
MenB-FHbp Meningococcal Group B Vaccine (Trumenba ®): A Review in Active Immunization in Individuals Aged ≥ 10 Years. Drugs 2019; 78:257-268. [PMID: 29380290 DOI: 10.1007/s40265-018-0869-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MenB-FHbp (bivalent rLP2086; Trumenba®) is a recombinant protein-based vaccine targeting Neisseria meningitidis serogroup B (MenB), which has recently been licensed in the EU for active immunization to prevent invasive disease caused by MenB in individuals ≥ 10 years of age. The vaccine, which contains a variant from each of the two identified subfamilies of the meningococcal surface protein factor H-binding protein (fHBP), has been licensed in the USA for active immunization in individuals 10-25 years of age since 2014. This article reviews the immunogenicity, reactogenicity and tolerability of MenB-FHbp, with a focus on the EU label and the European setting. As demonstrated in an extensive program of clinical trials in adolescents and young adults, a two-dose or three-dose series of MenB-FHbp elicits a strong immune response against a range of MenB test strains selected to be representative of strains prevalent in Europe and the USA. Follow-up studies investigating the persistence of the MenB-FHbp immune response and the effect of a booster dose of the vaccine indicate that a booster dose should be considered (following a primary vaccine series) in individuals at continued risk of invasive meningococcal disease. MenB-FHbp vaccine appears to be moderately reactogenic but, overall, is generally well tolerated, with most adverse reactions being mild to moderate in severity. Although post-marketing, population-based data will be required to establish the true effectiveness of the vaccine, currently available data indicate that MenB-FHbp, in a two-dose or three-dose series, is likely to provide broad protection against MenB strains circulating in Europe.
Collapse
|
4
|
Predicting the Susceptibility of Meningococcal Serogroup B Isolates to Bactericidal Antibodies Elicited by Bivalent rLP2086, a Novel Prophylactic Vaccine. mBio 2018. [PMID: 29535195 PMCID: PMC5850321 DOI: 10.1128/mbio.00036-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bivalent rLP2086 (Trumenba), a vaccine for prevention of Neisseria meningitidis serogroup B (NmB) disease, was licensed for use in adolescents and young adults after it was demonstrated that it elicits antibodies that initiate complement-mediated killing of invasive NmB isolates in a serum bactericidal assay with human complement (hSBA). The vaccine consists of two factor H binding proteins (fHBPs) representing divergent subfamilies to ensure broad coverage. Although it is the surrogate of efficacy, an hSBA is not suitable for testing large numbers of strains in local laboratories. Previously, an association between the in vitro fHBP surface expression level and the susceptibility of NmB isolates to killing was observed. Therefore, a flow cytometric meningococcal antigen surface expression (MEASURE) assay was developed and validated by using an antibody that binds to all fHBP variants from both fHBP subfamilies and accurately quantitates the level of fHBP expressed on the cell surface of NmB isolates with mean fluorescence intensity as the readout. Two collections of invasive NmB isolates (n = 1,814, n = 109) were evaluated in the assay, with the smaller set also tested in hSBAs using individual and pooled human serum samples from young adults vaccinated with bivalent rLP2086. From these data, an analysis based on fHBP variant prevalence in the larger 1,814-isolate set showed that >91% of all meningococcal serogroup B isolates expressed sufficient levels of fHBP to be susceptible to bactericidal killing by vaccine-induced antibodies.IMPORTANCE Bivalent rLP2086 (Trumenba) vaccine, composed of two factor H binding proteins (fHBPs), was recently licensed for the prevention of N. meningitidis serogroup B (NmB) disease in individuals 10 to 25 years old in the United States. This study evaluated a large collection of NmB isolates from the United States and Europe by using a flow cytometric MEASURE assay to quantitate the surface expression of the vaccine antigen fHBP. We find that expression levels and the proportion of strains above the level associated with susceptibility in an hSBA are generally consistent across these geographic regions. Thus, the assay can be used to predict which NmB isolates are susceptible to killing in the hSBA and therefore is able to demonstrate an fHBP vaccine-induced bactericidal response. This work significantly advances our understanding of the potential for bivalent rLP2086 to provide broad coverage against diverse invasive-disease-causing NmB isolates.
Collapse
|
5
|
Toneatto D, Pizza M, Masignani V, Rappuoli R. Emerging experience with meningococcal serogroup B protein vaccines. Expert Rev Vaccines 2017; 16:433-451. [PMID: 28375029 DOI: 10.1080/14760584.2017.1308828] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The successful development of two broadly protective vaccines targeting Neisseria meningitidis serogroup B (MenB); 4CMenB and rLP2086, is the most significant recent advance in meningococcal disease prevention. Areas covered: Here we review the principles underlying the development of each vaccine and the novel methods used to estimate vaccine coverage. We update clinical and post-licensure experience with 4CMenB and rLP2086. Expert commentary: The immunogenicity and acceptable safety profile of 4CMenB and rLP2086 has been demonstrated in clinical trials. Continuing uncertainties exist around the appropriate age groups to be immunized, the degree and duration of efficacy, and the impact on nasopharyngeal carriage which has implications for strategies to interrupt transmission and maximize herd protection effects. Universal vaccination programs such as those undertaken in Quebec and the United Kingdom are providing important information on these issues. The potential for MenB vaccines to prevent infection by other serogroups appears promising, and the impact of MenB vaccines on other pathogenic neisserial species with similar surface proteins warrants further investigation.
Collapse
|
6
|
Luo Y, Friese OV, Runnels HA, Khandke L, Zlotnick G, Aulabaugh A, Gore T, Vidunas E, Raso SW, Novikova E, Byrne E, Schlittler M, Stano D, Dufield RL, Kumar S, Anderson AS, Jansen KU, Rouse JC. The Dual Role of Lipids of the Lipoproteins in Trumenba, a Self-Adjuvanting Vaccine Against Meningococcal Meningitis B Disease. AAPS JOURNAL 2016; 18:1562-1575. [PMID: 27604766 DOI: 10.1208/s12248-016-9979-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/17/2016] [Indexed: 01/02/2023]
Abstract
Trumenba (bivalent rLP2086) is a vaccine licensed for the prevention of meningococcal meningitis disease caused by Neisseria meningitidis serogroup B (NmB) in individuals 10-25 years of age in the USA. The vaccine is composed of two factor H binding protein (fHbp) variants that were recombinantly expressed in Escherichia coli as native lipoproteins: rLP2086-A05 and rLP2086-B01. The vaccine was shown to induce potent bactericidal antibodies against a broad range of NmB isolates expressing fHbp that were different in sequence from the fHbp vaccine antigens. Here, we describe the characterization of the vaccine antigens including the elucidation of their structure which is characterized by two distinct motifs, the polypeptide domain and the N-terminal lipid moiety. In the vaccine formulation, the lipoproteins self-associate to form micelles driven by the hydrophobicity of the lipids and limited by the size of the folded polypeptides. The micelles help to increase the structural stability of the lipoproteins in the absence of bacterial cell walls. Analysis of the lipoproteins in Toll-like receptor (TLR) activation assays revealed their TLR2 agonist activity. This activity was lost with removal of the O-linked fatty acids, similar to removal of all lipids, demonstrating that this moiety plays an adjuvant role in immune activation. The thorough understanding of the structure and function of each moiety of the lipoproteins, as well as their relationship, lays the foundation for identifying critical parameters to guide vaccine development and manufacture.
Collapse
Affiliation(s)
- Yin Luo
- Pfizer Biotherapeutics Pharmaceutical Sciences, 1 Burtt Rd., Andover, Massachusetts, USA.
| | - Olga V Friese
- Pfizer Biotherapeutics Pharmaceutical Sciences, 700 Chesterfield Pkwy W, St. Louis, Missouri, USA
| | - Herbert A Runnels
- Pfizer Biotherapeutics Pharmaceutical Sciences, 700 Chesterfield Pkwy W, St. Louis, Missouri, USA
| | - Lakshmi Khandke
- Pfizer Vaccine Research and Development, 401 N. Middletown Rd., Pearl River, New York, USA
| | - Gary Zlotnick
- Pfizer Vaccine Research and Development, 401 N. Middletown Rd., Pearl River, New York, USA
| | - Ann Aulabaugh
- Pfizer Worldwide Research, 558 Eastern Point Rd., Groton, Connecticut, USA
| | - Thomas Gore
- Pfizer Biotherapeutics Pharmaceutical Sciences, 401 N. Middletown Rd., Pearl River, New York, USA
| | - Eugene Vidunas
- Pfizer Vaccine Research and Development, 401 N. Middletown Rd., Pearl River, New York, USA
| | - Stephen W Raso
- Pfizer Biotherapeutics Pharmaceutical Sciences, 1 Burtt Rd., Andover, Massachusetts, USA
| | - Elena Novikova
- Pfizer Vaccine Research and Development, 401 N. Middletown Rd., Pearl River, New York, USA
| | - Emilia Byrne
- Pfizer Biotherapeutics Pharmaceutical Sciences, 700 Chesterfield Pkwy W, St. Louis, Missouri, USA
| | - Michael Schlittler
- Pfizer Biotherapeutics Pharmaceutical Sciences, 700 Chesterfield Pkwy W, St. Louis, Missouri, USA
| | - Donald Stano
- Pfizer Biotherapeutics Pharmaceutical Sciences, 700 Chesterfield Pkwy W, St. Louis, Missouri, USA
| | - Robert L Dufield
- Pfizer Biotherapeutics Pharmaceutical Sciences, 1 Burtt Rd., Andover, Massachusetts, USA
| | - Sandeep Kumar
- Pfizer Biotherapeutics Pharmaceutical Sciences, 700 Chesterfield Pkwy W, St. Louis, Missouri, USA
| | - Annaliesa S Anderson
- Pfizer Vaccine Research and Development, 401 N. Middletown Rd., Pearl River, New York, USA
| | - Kathrin U Jansen
- Pfizer Vaccine Research and Development, 401 N. Middletown Rd., Pearl River, New York, USA
| | - Jason C Rouse
- Pfizer Biotherapeutics Pharmaceutical Sciences, 1 Burtt Rd., Andover, Massachusetts, USA.
| |
Collapse
|
7
|
Bivalent rLP2086 Vaccine (Trumenba(®)): A Review in Active Immunization Against Invasive Meningococcal Group B Disease in Individuals Aged 10-25 Years. BioDrugs 2016; 29:353-61. [PMID: 26394633 DOI: 10.1007/s40259-015-0139-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Bivalent rLP2086 vaccine (Trumenba(®)) [hereafter referred to as rLP2086] is a Neisseria meningitidis serogroup B (MenB) vaccine recently licensed in the USA for active immunization to prevent invasive disease caused by MenB in individuals 10-25 years of age. rLP2086, which contains two variants of the meningococcal surface protein factor H-binding protein (fHBP), was approved by the FDA under the accelerated approval pathway after the immunogenicity of the vaccine was demonstrated in several phase II trials. This article reviews the immunogenicity and reactogenicity of rLP2086 as demonstrated in the trials with a focus on the US setting and on use of the vaccine as per FDA-approved labeling. rLP2086 is approved in the USA as a three-dose series administered in a 0-, 2-, and 6-month schedule. In the phase II trials, rLP2086 elicited a robust immune response against a panel of MenB test strains. A strong immune response was evident in a marked proportion of subjects after two vaccine doses, with a further increase after a third dose. The four primary test strains used were selected to be representative of MenB strains prevalent in the USA, with each expressing an fHBP variant heterologous to the vaccine antigens. rLP2086 was generally well tolerated in the trials, with most adverse reactions being mild to moderate in severity. Although some questions remain, including the duration of the protective response, rLP2086 vaccine has the potential to be a valuable tool for the prevention of invasive MenB disease.
Collapse
|
8
|
Seib KL, Scarselli M, Comanducci M, Toneatto D, Masignani V. Neisseria meningitidis factor H-binding protein fHbp: a key virulence factor and vaccine antigen. Expert Rev Vaccines 2015; 14:841-59. [PMID: 25704037 DOI: 10.1586/14760584.2015.1016915] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neisseria meningitidis is a leading cause of meningitis and sepsis worldwide. The first broad-spectrum multicomponent vaccine against serogroup B meningococcus (MenB), 4CMenB (Bexsero(®)), was approved by the EMA in 2013, for prevention of MenB disease in all age groups, and by the US FDA in January 2015 for use in adolescents. A second protein-based MenB vaccine has also been approved in the USA for adolescents (rLP2086, Trumenba(®)). Both vaccines contain the lipoprotein factor H-binding protein (fHbp). Preclinical studies demonstrated that fHbp elicits a robust bactericidal antibody response that correlates with the amount of fHbp expressed on the bacterial surface. fHbp is able to selectively bind human factor H, the key regulator of the alternative complement pathway, and this has important implications both for meningococcal pathogenesis and for vaccine design. Here, we review the functional and structural properties of fHbp, the strategies that led to the design of the two fHbp-based vaccines and the data generated during clinical studies.
Collapse
Affiliation(s)
- Kate L Seib
- Institute for Glycomics, Griffith University, Southport, Queensland, 4215, Australia
| | | | | | | | | |
Collapse
|
9
|
Meningococcal carriage in adolescents in the United Kingdom to inform timing of an adolescent vaccination strategy. J Infect 2015; 71:43-52. [PMID: 25709085 DOI: 10.1016/j.jinf.2015.02.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/05/2015] [Accepted: 02/16/2015] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Recent development of serogroup B meningococcal (MenB) vaccines highlights the importance of pharyngeal carriage data, particularly in adolescents and young adults, to inform implementation strategies. We describe current UK carriage prevalence in this high risk population and compare methods of carriage detection. METHODS In this multisite study, pharyngeal swabs were collected on 3-4 occasions over 6-12 months, from 1040 school and university students, aged 10-25 years. Meningococcal carriage was detected by standard culture combined with seroagglutination or PCR of cultured isolates, or by direct PCR from swab. The factor H binding protein (fHBP) variants present in meningococcal isolates were determined. RESULTS Meningococcal serogroups B and Y were most common, with carriage up to 6.5% and 5.5% respectively, increasing throughout adolescence. Identification by seroagglutination was often unreliable, and the sensitivity of direct PCR detection was 66% compared to culture combined with PCR. Of MenB isolates, 89.1% had subfamily A variants of fHBP. The acquisition rate of MenB carriage was estimated at 2.8 per 1000 person-months. CONCLUSIONS If vaccination is to precede the adolescent rise in MenB carriage, these data suggest it should take place in early adolescence. Studies assessing vaccine impact should use molecular methods to detect carriage.
Collapse
|
10
|
Zlotnick GW, Jones TR, Liberator P, Hao L, Harris S, McNeil LK, Zhu D, Perez J, Eiden J, Jansen KU, Anderson AS. The discovery and development of a novel vaccine to protect against Neisseria meningitidis Serogroup B Disease. Hum Vaccin Immunother 2014; 11:5-13. [PMID: 25483509 DOI: 10.4161/hv.34293] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Vaccines have had a major impact on the reduction of many diseases globally. Vaccines targeted against invasive meningococcal disease (IMD) due to serogroups A, C, W, and Y are used to prevent these diseases. Until recently no vaccine had been identified that could confer broad protection against Neisseria meningitidis serogroup B (MnB). MnB causes IMD in the very young, adolescents and young adults and thus represents a significant unmet medical need. In this brief review, we describe the discovery and development of a vaccine that has the potential for broad protection against this devastating disease.
Collapse
|
11
|
Role of factor H binding protein in Neisseria meningitidis virulence and its potential as a vaccine candidate to broadly protect against meningococcal disease. Microbiol Mol Biol Rev 2014; 77:234-52. [PMID: 23699256 DOI: 10.1128/mmbr.00056-12] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neisseria meningitidis is a Gram-negative microorganism that exists exclusively in humans and can cause devastating invasive disease. Although capsular polysaccharide-based vaccines against serogroups A, C, Y, and W135 are widely available, the pathway to a broadly protective vaccine against serogroup B has been more complex. The last 11 years has seen the discovery and development of the N. meningitidis serogroup B (MnB) outer membrane protein factor H binding protein (fHBP) as a vaccine component. Since the initial discovery of fHBP, a tremendous amount of work has accumulated on the diversity, structure, and regulation of this important protein. fHBP has proved to be a virulence factor for N. meningitidis and a target for functional bactericidal antibodies. fHBP is critical for survival of meningococci in the human host, as it is responsible for the primary interaction with human factor H (fH). Binding of hfH by the meningococcus serves to downregulate the host alternative complement pathway and helps the organism evade host innate immunity. Preclinical studies have shown that an fHBP-based vaccine can elicit serum bactericidal antibodies capable of killing MnB, and the vaccine has shown very encouraging results in human clinical trials. This report reviews our current knowledge of fHBP. In particular, we discuss the recent advances in our understanding of fHBP, its importance to N. meningitidis, and its potential role as a vaccine for preventing MnB disease.
Collapse
|
12
|
Anderson AS, Jansen KU, Eiden J. New frontiers in meningococcal vaccines. Expert Rev Vaccines 2014; 10:617-34. [DOI: 10.1586/erv.11.50] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
A randomized, controlled, phase 1/2 trial of a Neisseria meningitidis serogroup B bivalent rLP2086 vaccine in healthy children and adolescents. Pediatr Infect Dis J 2013; 32:364-71. [PMID: 23114369 DOI: 10.1097/inf.0b013e31827b0d24] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Neisseria meningitidis serogroup B (MnB) is a significant cause of invasive meningococcal disease. Factor H binding protein (also known as LP2086) is a conserved outer membrane neisserial lipoprotein that has emerged as a strong candidate protein antigen for MnB vaccination. This study examined the safety, tolerability and immunogenicity of an initial formulation of a bivalent recombinant LP2086 (rLP2086) vaccine in healthy children and adolescents. METHODS In this randomized, observer-blinded, parallel-group, multicenter trial conducted at 6 centers in Australia, 127 healthy participants aged 8-14 years were assigned to receive 20, 60 or 200 µg of the bivalent rLP2086 vaccine (n = 16, 45 and 45, respectively) or active control (Twinrix, n = 21) at 0, 1 and 6 months. Immunogenicity was assessed before the first dose and 1 month after doses 2 and 3. Local reactions, systemic events and other adverse events were recorded. The primary immunogenicity endpoint was the rate of seroconversion (≥4-fold rise in human complement serum bactericidal assay titer) against MnB strains expressing the homologous A05 or heterologous B02 LP2086 variants. RESULTS The bivalent rLP2086 vaccine was generally well-tolerated, with mostly mild to moderate local reactions. The most common adverse events, headache and upper respiratory tract infection, occurred with similar frequency in each group. Post-dose 3 seroconversion rates against strains expressing B02 and A05 variants were 68.8-95.3% for rLP2086 recipients and 0% for Twinrix recipients. CONCLUSIONS The bivalent rLP2086 vaccine was well-tolerated and immunogenic in healthy children and adolescents, supporting further evaluation as a broadly protective MnB vaccine.
Collapse
|
14
|
Anderson AS, Hao L, Jiang Q, Harris SL, Jones TR, Perez JL, York L, Eiden J, Jansen KU. Potential impact of the bivalent rLP2806 vaccine on Neisseria meningitidis carriage and invasive serogroup B disease. Hum Vaccin Immunother 2012; 9:471-9. [PMID: 23249817 PMCID: PMC3891702 DOI: 10.4161/hv.23222] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Asymptomatic throat carriage of Neisseria meningitidis is common in healthy individuals. In unusual cases, the bacteria become invasive, resulting in life-threatening disease. Effective meningococcal serogroup B (MnB) vaccines should provide broad protection against disease-causing strains and may confer indirect protection by impacting carriage and subsequent transmission. Factor H binding proteins (fHBPs), components of MnB vaccines in development, are classified into two immunologically distinct subfamilies (A and B). fHBP variants of MnB strains carried by adolescents are similar to those detected in infants with MnB disease. A vaccine containing subfamily A and B fHBP variants elicited bactericidal antibody responses (titers ≥ 1:4) against MnB strains expressing fHBP variants common to carriage strains and strains that cause disease in adolescents and infants in 75–100% of adolescent study subjects. This suggests that the bivalent fHBP vaccine has the potential to provide protection against invasive MnB strains and interrupt meningococcal carriage, which may also reduce infant MnB disease.
Collapse
|
15
|
A bivalent Neisseria meningitidis recombinant lipidated factor H binding protein vaccine in young adults: results of a randomised, controlled, dose-escalation phase 1 trial. Vaccine 2012; 30:6163-74. [PMID: 22871351 DOI: 10.1016/j.vaccine.2012.07.065] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 02/06/2023]
Abstract
Neisseria meningitidis is a leading cause of meningitis and septicaemia, but a broadly-protective vaccine against endemic serogroup B disease is not licensed and available. The conserved, outer-membrane lipoprotein factor H binding protein (fHBP, also known as LP2086) is expressed as one of two subfamily variants in virtually all meningococci. This study investigated the safety, tolerability, and immunogenicity of a recombinant-expressed bivalent fHBP (r-fHBP) vaccine in healthy adults. Participants (N=103) aged 18-25 years were recruited into three ascending dose level cohorts of 20, 60, and 200μg of a bivalent r-fHBP vaccine formulation and randomised to receive vaccine or placebo at 0, 1, and 6 months. The vaccine was well tolerated. Geometric mean titres (GMTs) for r-fHBP subfamily-specific IgG antibodies increased 19-168-fold from pre-vaccination to post-dose 2 in a dose level-dependent manner. In addition, robust serum bactericidal assay using human complement (hSBA) responses for strains expressing both homologous and heterologous fHBP variants were observed. After three vaccinations, 16-52% of the placebo group and 47-90%, 75-100%, and 88-100%, of the 20, 60, and 200μg dose levels, respectively, had seroprotective (≥ 1:4) hSBA titres against six serogroup B strains. The bivalent r-fHBP vaccine was well tolerated and induced robust bactericidal activity against six diverse serogroup B strains in young adults at the 60 and 200μg dose levels.
Collapse
|
16
|
Sheldon EA, Schwartz H, Jiang Q, Giardina PC, Perez JL. A phase 1, randomized, open-label, active-controlled trial to assess the safety of a meningococcal serogroup B bivalent rLP2086 vaccine in healthy adults. Hum Vaccin Immunother 2012; 8:888-95. [PMID: 22832260 DOI: 10.4161/hv.19983] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neisseria meningitidis serogroup B (MnB) is a significant cause of invasive meningococcal disease, but no broadly protective vaccine is yet approved. We assessed the safety and immunogenicity of a bivalent MnB vaccine composed of lipidated subfamily A and B variants of recombinant LP2086 (rLP2086, also known as factor H binding protein, fHBP). Forty-eight adults, ages 18-40 y, were randomized to receive 60, 120 or 200 μg of the bivalent rLP2086 vaccine or control at 0, 2 and 6 mo. Immunogenicity was assessed by rLP2086-specific immunoglobulin G (IgG) geometric mean titers for subfamily A and B proteins. Safety was determined by laboratory assessments of blood and urine and by reporting of solicited and unsolicited adverse events (AEs). The bivalent rLP2086 vaccine elicited high IgG titers following the second and third vaccination at all dose levels. In each of the four study arms, 11 of the 12 participating subjects reported ≥ 1 AE, and no serious AEs were reported. Local and systemic reactions were mainly mild to moderate. Laboratory abnormalities (including increased sodium, decreased neutrophils, and proteinuria) were not associated with clinical events and were not considered to be related to the study vaccine. Vaccinations were generally well-tolerated. Strong IgG antibody responses and the absence of clinically significant laboratory abnormalities support further development of the bivalent rLP2086 vaccine (www.clinicaltrials.gov; identifier: NCT00879814).
Collapse
|
17
|
Meningococcal Disease: Shifting Epidemiology and Genetic Mechanisms That May Contribute to Serogroup C Virulence. Curr Infect Dis Rep 2011; 13:374-9. [DOI: 10.1007/s11908-011-0195-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|