1
|
Xu Y, Sun F, Bai Z, Bian C, Wang X, Zhao Z, Yang P. Cold-adapted influenza-vectored RSV vaccine protects BALB/c mice and cotton rats from RSV challenge. J Med Virol 2024; 96:e29308. [PMID: 39007405 DOI: 10.1002/jmv.29308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 07/16/2024]
Abstract
Respiratory syncytial virus (RSV) remains the primary cause of lower respiratory tract infections, particularly in infants and the elderly. In this study, we employed reverse genetics to generate a chimeric influenza virus expressing neuraminidase-3F protein conjugate with three repeats of the RSV F protein protective epitope inserted into the NA gene of A/California/7/2009 ca (CA/AA ca), resulting in rFlu/RSV/NA-3F (hereafter, rFRN3). The expression of NA-3F protein was confirmed by Western blotting. The morphology and temperature-sensitive phenotype of rFRN3 were similar to CA/AA ca. Its immunogenicity and protective efficiency were evaluated in BALB/c mice and cotton rats. Intranasal administration of rFRN3 elicited robust humoral, cellular, and to some extent, mucosal immune responses. Compared to controls, rFRN3 protected animals from RSV infection, attenuated lung injury, and reduced viral titers in the nose and lungs post-RSV challenge. These results demonstrate that rFRN3 can trigger RSV-specific immune responses and thus exhibits potent protective efficacy. The "dual vaccine" approach of a cold-adapted influenza vector RSV vaccine will improve the prophylaxis of influenza and RSV infection. rFRN3 thus warrants further clinical investigations as a candidate RSV vaccine.
Collapse
Affiliation(s)
- Yongru Xu
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Fang Sun
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhifang Bai
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chengrong Bian
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhongpeng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Penghui Yang
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| |
Collapse
|
2
|
Ebenig A, Lange MV, Mühlebach MD. Versatility of live-attenuated measles viruses as platform technology for recombinant vaccines. NPJ Vaccines 2022; 7:119. [PMID: 36243743 PMCID: PMC9568972 DOI: 10.1038/s41541-022-00543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Live-attenuated measles virus (MeV) has been extraordinarily effective in preventing measles infections and their often deadly sequelae, accompanied by remarkable safety and stability since their first licensing in 1963. The advent of recombinant DNA technologies, combined with systems to generate infectious negative-strand RNA viruses on the basis of viral genomes encoded on plasmid DNA in the 1990s, paved the way to generate recombinant, vaccine strain-derived MeVs. These live-attenuated vaccine constructs can encode and express additional foreign antigens during transient virus replication following immunization. Effective humoral and cellular immune responses are induced not only against the MeV vector, but also against the foreign antigen cargo in immunized individuals, which can protect against the associated pathogen. This review aims to present an overview of the versatility of this vaccine vector as platform technology to target various diseases, as well as current research and developmental stages, with one vaccine candidate ready to enter phase III clinical trials to gain marketing authorization, MV-CHIK.
Collapse
Affiliation(s)
- Aileen Ebenig
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, D-63225, Langen, Germany
| | - Mona V Lange
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, D-63225, Langen, Germany
| | - Michael D Mühlebach
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, D-63225, Langen, Germany.
| |
Collapse
|
3
|
Chimeric Measles Virus (MV/RSV), Having Ectodomains of Respiratory Syncytial Virus (RSV) F and G Proteins Instead of Measles Envelope Proteins, Induced Protective Antibodies against RSV. Vaccines (Basel) 2021; 9:vaccines9020156. [PMID: 33669275 PMCID: PMC7920054 DOI: 10.3390/vaccines9020156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 01/18/2023] Open
Abstract
In our previous study, fusion (F) or glyco (G) protein coding sequence of respiratory syncytial virus (RSV) was inserted at the P/M junction of the measles AIK-C vector (MVAIK), and the recombinant measles virus induced protective immune responses. In the present study, the ectodomains of measles fusion (F) and hemagglutinin (HA) proteins were replaced with those of RSV F and G proteins, and a chimeric MV/RSV vaccine was developed. It expressed F and G proteins of RSV and induced cytopathic effect (CPE) in epithelial cell lines (Vero, A549, and HEp-2 cells), but not in lymphoid cell lines (B95a, Jurkat, and U937 cells). A chimeric MV/RSV grew similarly to AIK-C with no virus growth at 39 °C. It induced NT antibodies against RSV in cotton rats three weeks after immunization through intramuscular route and enhanced response was observed after the second dose at eight weeks. After the RSV challenge with 106 PFU, significantly lower virus (101.4±0.1 PFU of RSV) was recovered from lung tissue in the chimeric MV/RSV vaccine group than in the MVAIK control group with 104.6±0.2 PFU (p < 0.001) and no obvious inflammatory pathological finding was noted. The strategy of ectodomain replacement in the measles virus vector is expected to lead to the development of safe and effective vaccines for other enveloped viruses.
Collapse
|
4
|
Ito T, Kumagai T, Yamaji Y, Sawada A, Nakayama T. Recombinant Measles AIK-C Vaccine Strain Expressing Influenza HA Protein. Vaccines (Basel) 2020; 8:vaccines8020149. [PMID: 32230902 PMCID: PMC7349030 DOI: 10.3390/vaccines8020149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022] Open
Abstract
Recombinant measles AIK-C vaccine expressing the hemagglutinin (HA) protein of influenza A/Sapporo/107/2013(H1N1pdm) (MVAIK/PdmHA) was constructed. Measles particle agglutination (PA) and influenza hemagglutinin inhibition (HI) antibodies were induced in cotton rats immunized with MVAIK/PdmHA. Cotton rats immunized with two doses of the HA split vaccine were used as positive controls, and higher HI antibodies were detected 3 weeks after the first dose. Following the challenge of A/California/07/2009(H1N1pdm), higher viral loads (107 TCID50/g) were detected in the lung homogenates of cotton rats immunized with the empty vector (MVAIK) or control groups than those immunized with MVAIK/Pdm HA (103 TCID50/g) or the group immunized with HA split vaccine (105 TCID50/g). Histopathologically, destruction of the alveolar structure, swelling of broncho-epithelial cells, and thickening of the alveolar wall with infiltration of inflammatory cells and HA antigens were detected in lung tissues obtained from non-immunized rats and those immunized with the empty vector after the challenge, but not in those immunized with the HA spilt or MVAIK/PdmHA vaccine. Lower levels of IFN-α, IL-1β, and TNF-α mRNA, and higher levels of IFN-γ mRNA were found in the lung homogenates of the MVAIK/PdmHA group. Higher levels of IFN-γ mRNA were detected in spleen cell culture from the MVAIK/PdmHA group stimulated with UV-inactivated A/California/07/2009(H1N1pdm). In conclusion, the recombinant MVAIK vaccine expressing influenza HA protein induced protective immune responses in cotton rats.
Collapse
Affiliation(s)
- Takashi Ito
- Laboratory of Viral Infection II, Kitasato Institute for Life Sciences, Tokyo 108-8641, Japan; (T.I.); (Y.Y.); (A.S.)
| | | | - Yoshiaki Yamaji
- Laboratory of Viral Infection II, Kitasato Institute for Life Sciences, Tokyo 108-8641, Japan; (T.I.); (Y.Y.); (A.S.)
| | - Akihito Sawada
- Laboratory of Viral Infection II, Kitasato Institute for Life Sciences, Tokyo 108-8641, Japan; (T.I.); (Y.Y.); (A.S.)
| | - Tetsuo Nakayama
- Laboratory of Viral Infection II, Kitasato Institute for Life Sciences, Tokyo 108-8641, Japan; (T.I.); (Y.Y.); (A.S.)
- Correspondence: ; Tel.: +81-3-5791-6269; Fax: +81-3-5791-6130
| |
Collapse
|
5
|
Gerke C, Frantz PN, Ramsauer K, Tangy F. Measles-vectored vaccine approaches against viral infections: a focus on Chikungunya. Expert Rev Vaccines 2019; 18:393-403. [PMID: 30601074 DOI: 10.1080/14760584.2019.1562908] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The large global burden of viral infections and especially the rapidly spreading vector-borne diseases and other emerging viral diseases show the need for new approaches in vaccine development. Several new vaccine technology platforms have been developed and are under evaluation. Areas covered: This article discusses the measles vector platform technology derived from the safe and highly efficacious measles virus vaccine. The pipeline of measles-vectored vaccine candidates against viral diseases is reviewed. Particular focus is given to the Chikungunya vaccine candidate as the first measles-vectored vaccine that demonstrated safety, immunogenicity, and functionality of the technology in humans even in the presence of pre-existing anti-measles immunity and thus achieved proof of concept for the technology. Expert commentary: Demonstrating no impact of pre-existing anti-measles immunity in humans on the response to the transgene was fundamental for the technology and indicates that the technology is suitable for large-scale immunization in measles pre-immune populations. The proof of concept in humans combined with a large preclinical track record of safety, immunogenicity, and efficacy for a variety of pathogens suggest the measles vector platform as promising plug-and-play vaccine platform technology for rapid development of effective preventive vaccines against viral and other infectious diseases.
Collapse
Affiliation(s)
| | - Phanramphoei N Frantz
- b Viral Genomics and Vaccination Unit, UMR-3569 CNRS, Department of Virology , Institut Pasteur , Paris , France.,c Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC) , National Science and Technology Development Agency , Pathumthani , Thailand
| | | | - Frédéric Tangy
- b Viral Genomics and Vaccination Unit, UMR-3569 CNRS, Department of Virology , Institut Pasteur , Paris , France
| |
Collapse
|
6
|
Yamaji Y, Sawada A, Yasui Y, Ito T, Nakayama T. Simultaneous Administration of Recombinant Measles Viruses Expressing Respiratory Syncytial Virus Fusion (F) and Nucleo (N) Proteins Induced Humoral and Cellular Immune Responses in Cotton Rats. Vaccines (Basel) 2019; 7:vaccines7010027. [PMID: 30836661 PMCID: PMC6466305 DOI: 10.3390/vaccines7010027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/24/2019] [Accepted: 02/27/2019] [Indexed: 11/16/2022] Open
Abstract
We previously reported that recombinant measles virus expressing the respiratory syncytial virus (RSV) fusion protein (F), MVAIK/RSV/F, induced neutralizing antibodies against RSV, and those expressing RSV-NP (MVAIK/RSV/NP) and M2-1 (MVAIK/RSV/M2-1) induced RSV-specific CD8+/IFN-γ+ cells, but not neutralizing antibodies. In the present study, MVAIK/RSV/F and MVAIK/RSV/NP were simultaneously administered to cotton rats and immune responses and protective effects were compared with MVAIK/RSV/F alone. Sufficient neutralizing antibodies against RSV and RSV-specific CD8+/IFN-γ+ cells were observed after re-immunization with simultaneous administration. After the RSV challenge, CD8+/IFN-γ+ increased in spleen cells obtained from the simultaneous immunization group in response to F and NP peptides. Higher numbers of CD8+/IFN-γ+ and CD4+/IFN-γ+ cells were detected in lung tissues from the simultaneous immunization group after the RSV challenge. No detectable RSV was recovered from lung homogenates in the immunized groups. Mild inflammatory reactions with the thickening of broncho-epithelial cells and the infiltration of inflammatory cells were observed in lung tissues obtained from cotton rats immunized with MVAIK/RSV/F alone after the RSV challenge. No inflammatory responses were observed after the RSV challenge in the simultaneous immunization groups. The present results indicate that combined administration with MVAIK/RSV/F and MVAIK/RSV/NP induces humoral and cellular immune responses and shows effective protection against RSV, suggesting the importance of cellular immunity.
Collapse
Affiliation(s)
- Yoshiaki Yamaji
- Laboratory of Viral Infection II, Kitasato Institute for Life Sciences, Kitasato University, Tokyo 108-8641, Japan.
| | - Akihito Sawada
- Laboratory of Viral Infection II, Kitasato Institute for Life Sciences, Kitasato University, Tokyo 108-8641, Japan.
| | - Yosuke Yasui
- Health Center, Keio University, Kanagawa 223-8521, Japan.
| | - Takashi Ito
- Laboratory of Viral Infection II, Kitasato Institute for Life Sciences, Kitasato University, Tokyo 108-8641, Japan.
| | - Tetsuo Nakayama
- Laboratory of Viral Infection II, Kitasato Institute for Life Sciences, Kitasato University, Tokyo 108-8641, Japan.
| |
Collapse
|
7
|
Sawada A, Yunomae K, Nakayama T. Immunogenicity of recombinant measles vaccine expressing fusion protein of respiratory syncytial virus in cynomolgus monkeys. Microbiol Immunol 2018; 62:132-136. [DOI: 10.1111/1348-0421.12559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Akihito Sawada
- Laboratory of Viral Infection I; Kitasato Institute for Life Sciences; Shirokane 5-9-1, Minato-ku Tokyo 108-8641 Japan
| | - Kiyokazu Yunomae
- Shin Nippon Biomedical Laboratories; Drug Safety Research Laboratories; Miyanoura-cho 2438 Kagoshima City Kagoshima Prefecture 891-1394 Japan
| | - Tetsuo Nakayama
- Laboratory of Viral Infection I; Kitasato Institute for Life Sciences; Shirokane 5-9-1, Minato-ku Tokyo 108-8641 Japan
| |
Collapse
|
8
|
Abstract
The classic development of vaccines is lengthy, tedious, and may not necessarily be successful as demonstrated by the case of HIV. This is especially a problem for emerging pathogens that are newly introduced into the human population and carry the inherent risk of pandemic spread in a naïve population. For such situations, a considerable number of different platform technologies are under development. These are also under development for pathogens, where directly derived vaccines are regarded as too complicated or even dangerous due to the induction of inefficient or unwanted immune responses causing considerable side-effects as for dengue virus. Among platform technologies are plasmid-based DNA vaccines, RNA replicons, single-round infectious vector particles, or replicating vaccine-based vectors encoding (a) critical antigen(s) of the target pathogens. Among the latter, recombinant measles viruses derived from vaccine strains have been tested. Measles vaccines are among the most effective and safest life-attenuated vaccines known. Therefore, the development of Schwarz-, Moraten-, or AIK-C-strain derived recombinant vaccines against a wide range of mostly viral, but also bacterial pathogens was quite straightforward. These vaccines generally induce powerful humoral and cellular immune responses in appropriate animal models, i.e., transgenic mice or non-human primates. Also in the recent first clinical phase I trial, the results have been quite encouraging. The trial indicated the expected safety and efficacy also in human patients, interestingly independent from the level of prevalent anti-measles immunity before the trial. Thereby, recombinant measles vaccines expressing additional antigens are a promising platform for future vaccines.
Collapse
Affiliation(s)
- Michael D Mühlebach
- Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225, Langen, Germany.
| |
Collapse
|
9
|
Abstract
This chapter describes the development of recombinant measles virus (MV)-based vaccines starting from plasmid DNA. Live-attenuated measles vaccines are very efficient and safe. Since the availability of a reverse genetic system to manipulate MV genomes and to generate respective recombinant viruses, a considerable number of recombinant viruses has been generated that present antigens of foreign pathogens during MV replication. Thereby, robust humoral and cellular immune responses can be induced, which have shown protective capacity in a substantial number of experiments.For this purpose, the foreign antigen-encoding genes are cloned into additional transcription units of plasmid based full-length MV vaccine strain genomes, which in turn are used to rescue recombinant MV by providing both full-length viral RNA genomes respective anti-genomes together with all protein components of the viral ribonucleoprotein complex after transient transfection of the so-called rescue cells. Infectious centers form among these transfected cells, which allow clonal isolation of single recombinant viruses that are subsequently amplified, characterized in vitro, and then evaluated for their immunogenicity in appropriate preclinical animal models.
Collapse
Affiliation(s)
- Maureen C. Ferran
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York USA
| | - Gary R. Skuse
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York USA
| |
Collapse
|
10
|
Swett-Tapia C, Bogaert L, de Jong P, van Hoek V, Schouten T, Damen I, Spek D, Wanningen P, Radošević K, Widjojoatmodjo MN, Zahn R, Custers J, Roy S. Recombinant measles virus incorporating heterologous viral membrane proteins for use as vaccines. J Gen Virol 2016; 97:2117-2128. [PMID: 27311834 DOI: 10.1099/jgv.0.000523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Recombinant measles virus (rMV) vectors expressing heterologous viral membrane protein antigens are potentially useful as vaccines. Genes encoding the mumps virus haemagglutinin-neuraminidase (MuV-HN), the influenza virus haemagglutinin (Flu-HA) or the respiratory syncytial virus fusion (RSV-F) proteins were inserted into the genome of a live attenuated vaccine strain of measles virus. Additionally, in this case rMV with the MuV-HN or the influenza HA inserts, chimeric constructs were created that harboured the measles virus native haemagglutinin or fusion protein cytoplasmic domains. In all three cases, sucrose-gradient purified preparations of rMV were found to have incorporated the heterologous viral membrane protein on the viral membrane. The possible utility of rMV expressing RSV-F (rMV.RSV-F) as a vaccine was tested in a cotton rat challenge model. Vaccination with rMV.RSV-F efficiently induced neutralizing antibodies against RSV and protected animals from infection with RSV in the lungs.
Collapse
Affiliation(s)
- Cindy Swett-Tapia
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Lies Bogaert
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Pascal de Jong
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Vladimir van Hoek
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Theo Schouten
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Irma Damen
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Dirk Spek
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Patrick Wanningen
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Katarina Radošević
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Myra N Widjojoatmodjo
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Roland Zahn
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Jerome Custers
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Soumitra Roy
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| |
Collapse
|
11
|
Yamaji Y, Yasui Y, Nakayama T. Development of Acquired Immunity following Repeated Respiratory Syncytial Virus Infections in Cotton Rats. PLoS One 2016; 11:e0155777. [PMID: 27224021 PMCID: PMC4880180 DOI: 10.1371/journal.pone.0155777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/14/2016] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) infections occur every year worldwide. Most infants are infected with RSV by one year of age and are reinfected because immune responses after the first infection are too weak to protect against subsequent infections. In the present study, immune responses against RSV were investigated in order to obtain a better understanding of repetitive RSV infections in cotton rats. No detectable neutralizing antibody (NT) was developed after the first infection, and the second infection was not prevented. The results of histological examinations revealed severe inflammation, viral antigens were detected around bronchial epithelial cells, and infectious viruses were recovered from lung homogenates. Following the second infection neutralizing antibodies were significantly elevated, and CD8+ cells were activated in response to RSV-F253-265. No viral antigens was detected thereafter in lung tissues and infectious viruses were not recovered. Similar results were obtained in the present study using the subgroups A and B. These results support the induction of humoral and cellular immune responses following repetitive infections with RSV; however, these responses were insufficient to eliminate viruses in the first and second infections.
Collapse
Affiliation(s)
- Yoshiaki Yamaji
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108–8641, Japan
| | - Yosuke Yasui
- Health Center, Keio University, Kanagawa 223–8521, Japan
| | - Tetsuo Nakayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108–8641, Japan
- * E-mail:
| |
Collapse
|
12
|
Sawada A, Nakayama T. Experimental animal model for analyzing immunobiological responses following vaccination with formalin-inactivated respiratory syncytial virus. Microbiol Immunol 2016; 60:234-42. [DOI: 10.1111/1348-0421.12365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/03/2016] [Accepted: 02/07/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Akihito Sawada
- Laboratory of Viral Infection I; Kitasato Institute for Life Sciences; Kitasato University; Shirokane 5-9-1 Minatoku Tokyo 108-8641 Japan
| | - Tetsuo Nakayama
- Laboratory of Viral Infection I; Kitasato Institute for Life Sciences; Kitasato University; Shirokane 5-9-1 Minatoku Tokyo 108-8641 Japan
| |
Collapse
|
13
|
Higuchi A, Toriniwa H, Komiya T, Nakayama T. Recombinant Measles AIK-C Vaccine Strain Expressing the prM-E Antigen of Japanese Encephalitis Virus. PLoS One 2016; 11:e0150213. [PMID: 26930411 PMCID: PMC4773129 DOI: 10.1371/journal.pone.0150213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/10/2016] [Indexed: 01/04/2023] Open
Abstract
An inactivated Japanese encephalitis virus (JEV) vaccine, which induces neutralizing antibodies, has been used for many years in Japan. In the present study, the JEV prM-E protein gene was cloned, inserted at the P/M junction of measles AIK-C cDNA, and an infectious virus was recovered. The JEV E protein was expressed in B95a cells infected with the recombinant virus. Cotton rats were inoculated with recombinant virus. Measles PA antibodies were detected three weeks after immunization. Neutralizing antibodies against JEV developed one week after inoculation, and EIA antibodies were detected three weeks after immunization. The measles AIK-C-based recombinant virus simultaneously induced measles and JEV immune responses, and may be a candidate for infant vaccines. Therefore, the present strategy of recombinant viruses based on a measles vaccine vector would be applicable to the platform for vaccine development.
Collapse
Affiliation(s)
- Akira Higuchi
- Kitasato-Daiichi Sankyo Vaccine, Division of Vaccine Production, Kitamoto City, Saitama Prefecture, 364–0026, Japan
| | - Hiroko Toriniwa
- Kitasato-Daiichi Sankyo Vaccine, Division of Vaccine Development, Kitamoto City, Saitama Prefecture, 364–0026, Japan
| | - Tomoyoshi Komiya
- Kitasato-Daiichi Sankyo Vaccine, Division of Vaccine Development, Kitamoto City, Saitama Prefecture, 364–0026, Japan
| | - Tetsuo Nakayama
- Kitasato Institute of Life Sciences, Laboratory of Viral Infection, Tokyo, 108–8641, Japan
- * E-mail:
| |
Collapse
|
14
|
Nakayama T, Sawada A, Yamaji Y, Ito T. Recombinant measles AIK-C vaccine strain expressing heterologous virus antigens. Vaccine 2015; 34:292-295. [PMID: 26562316 PMCID: PMC7115616 DOI: 10.1016/j.vaccine.2015.10.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/14/2014] [Accepted: 12/18/2014] [Indexed: 12/14/2022]
Abstract
Further attenuated measles vaccines were developed more than 50 years ago and have been used throughout the world. Recombinant measles vaccine candidates have been developed and express several heterologous virus protective antigens. Immunogenicity and protective actions were confirmed using experimental animals: transgenic mice, cotton rats, and primates. The recent development of measles vaccine-based vectored vaccine candidates has been reviewed and some information on recombinant measles vaccines expressing respiratory syncytial virus proteins has been shown and discussed.
Collapse
Affiliation(s)
- Tetsuo Nakayama
- Kitasato Institute for Life Sciences, Laboratory of Viral Infection I, Minato-ku, Tokyo 108-8641, Japan.
| | - Akihito Sawada
- Kitasato Institute for Life Sciences, Laboratory of Viral Infection I, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshiaki Yamaji
- Kitasato Institute for Life Sciences, Laboratory of Viral Infection I, Minato-ku, Tokyo 108-8641, Japan
| | - Takashi Ito
- Kitasato Institute for Life Sciences, Laboratory of Viral Infection I, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
15
|
Rivera CA, Gómez RS, Díaz RA, Céspedes PF, Espinoza JA, González PA, Riedel CA, Bueno SM, Kalergis AM. Novel therapies and vaccines against the human respiratory syncytial virus. Expert Opin Investig Drugs 2015; 24:1613-30. [DOI: 10.1517/13543784.2015.1099626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Zhang P, Gu H, Bian C, Liu N, Li Z, Duan Y, Zhang S, Wang X, Yang P. Characterization of recombinant influenza A virus as a vector expressing respiratory syncytial virus fusion protein epitopes. J Gen Virol 2014; 95:1886-1891. [PMID: 24914066 DOI: 10.1099/vir.0.064105-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of respiratory infection in infants and the elderly, and no vaccine against this virus has yet been licensed. Here, we report a recombinant PR8 influenza virus with the RSV fusion (F) protein epitopes of the subgroup A gene inserted into the influenza virus non-structural (NS) gene (rFlu/RSV/F) that was generated as an RSV vaccine candidate. The rescued viruses were assessed by microscopy and Western blotting. The proper expression of NS1, the NS gene product, and the nuclear export protein (NEP) of rFlu/RSV/F was also investigated using an immunofluorescent assay. The rescued virus replicated well in the MDCK kidney cell line, A549 lung adenocarcinoma cell line and CNE-2Z nasopharyngeal carcinoma cell line. BALB/c mice immunized intranasally with rFlu/RSV/F had specific haemagglutination inhibition antibody responses against the PR8 influenza virus and RSV neutralization test proteins. Furthermore, intranasal immunization with rFlu/RSV/F elicited T helper type 1-dominant cytokine profiles against the RSV strain A2 virus. Taken together, our findings suggested that rFlu/RSV/F was immunogenic in vivo and warrants further development as a promising candidate vaccine.
Collapse
Affiliation(s)
| | - Hongjing Gu
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | | | - Na Liu
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | - Zhiwei Li
- 302 Military Hospital, Beijing 100039, PR China
| | - Yueqiang Duan
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | | | - Xiliang Wang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
| | - Penghui Yang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
- 302 Military Hospital, Beijing 100039, PR China
| |
Collapse
|
17
|
Yamaji Y, Nakayama T. Recombinant measles viruses expressing respiratory syncytial virus proteins induced virus-specific CTL responses in cotton rats. Vaccine 2014; 32:4529-4536. [PMID: 24951869 DOI: 10.1016/j.vaccine.2014.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/27/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
Abstract
Respiratory syncytial virus (RSV) is a common cause of serious lower respiratory tract illnesses in infants. Natural infections with RSV provide limited protection against reinfection because of inefficient immunological responses that do not induce long-term memory. RSV natural infection has been shown to induce unbalanced immune response. The effective clearance of RSV is known to require the induction of a balanced Th1/Th2 immune response, which involves the induction of cytotoxic T lymphocytes (CTL). In our previous study, recombinant AIK-C measles vaccine strains MVAIK/RSV/F and MVAIK/RSV/G were developed, which expressed the RSV fusion (F) protein or glycoprotein (G). These recombinant viruses elicited antibody responses against RSV in cotton rats, and no infectious virus was recovered, but small amounts of infiltration of inflammatory cells were observed in the lungs following RSV challenge. In the present study, recombinant AIK-C measles vaccine strains MVAIK/RSV/M2-1 and MVAIK/RSV/NP were developed, expressing RSV M2-1 or Nucleoprotein (NP), respectively. These viruses exhibited temperature-sensitivity (ts), which was derived from AIK-C, and expressed respective RSV antigens. The intramuscular inoculation of cotton rats with the recombinant measles virus led to the induction of CD8(+) IFN-γ(+) cells. No infectious virus was recovered from a lung homogenate following the challenge. A Histological examination of the lungs revealed a significant reduction in inflammatory reactions without alveolar damage. These results support the recombinant measles viruses being effective vaccine candidates against RSV that induce RSV-specific CTL responses with or without the development of an antibody response.
Collapse
Affiliation(s)
- Yoshiaki Yamaji
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Tetsuo Nakayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
18
|
Influenza virus vaccine expressing fusion and attachment protein epitopes of respiratory syncytial virus induces protective antibodies in BALB/c mice. Antiviral Res 2014; 104:110-7. [DOI: 10.1016/j.antiviral.2014.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 11/21/2022]
|
19
|
Ikeno S, Suzuki MO, Muhsen M, Ishige M, Kobayashi-Ishihara M, Ohno S, Takeda M, Nakayama T, Morikawa Y, Terahara K, Okada S, Takeyama H, Tsunetsugu-Yokota Y. Sensitive detection of measles virus infection in the blood and tissues of humanized mouse by one-step quantitative RT-PCR. Front Microbiol 2013; 4:298. [PMID: 24130556 PMCID: PMC3795360 DOI: 10.3389/fmicb.2013.00298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/17/2013] [Indexed: 02/04/2023] Open
Abstract
Live attenuated measles virus (MV) has long been recognized as a safe and effective vaccine, and it has served as the basis for development of various MV-based vaccines. However, because MV is a human-tropic virus, the evaluation of MV-based vaccines has been hampered by the lack of a small-animal model. The humanized mouse, a recently developed system in which an immunodeficient mouse is transplanted with human fetal tissues or hematopoietic stem cells, may represent a suitable model. Here, we developed a sensitive one-step quantitative reverse transcription (qRT)-PCR that simultaneously measures nucleocapsid (N) and human RNase P mRNA levels. The results can be used to monitor MV infection in a humanized mouse model. Using this method, we elucidated the replication kinetics of MV expressing enhanced green fluorescent protein both in vitro and in humanized mice in parallel with flow-cytometric analysis. Because our qRT-PCR system was sensitive enough to detect MV expression using RNA extracted from a small number of cells, it can be used to monitor MV infection in humanized mice by sequential blood sampling.
Collapse
Affiliation(s)
- Shota Ikeno
- Department of Immunology, National Institute of Infectious Diseases Tokyo, Japan ; Cooperative Major in Advanced Health Science, Tokyo University of Agriculture and Technology/Waseda University Graduate School of Collaborative Education Curriculum Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rudraraju R, Jones BG, Sealy R, Surman SL, Hurwitz JL. Respiratory syncytial virus: current progress in vaccine development. Viruses 2013; 5:577-94. [PMID: 23385470 PMCID: PMC3640515 DOI: 10.3390/v5020577] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 12/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the etiological agent for a serious lower respiratory tract disease responsible for close to 200,000 annual deaths worldwide. The first infection is generally most severe, while re-infections usually associate with a milder disease. This observation and the finding that re-infection risks are inversely associated with neutralizing antibody titers suggest that immune responses generated toward a first RSV exposure can significantly reduce morbidity and mortality throughout life. For more than half a century, researchers have endeavored to design a vaccine for RSV that can mimic or improve upon natural protective immunity without adverse events. The virus is herein described together with the hurdles that must be overcome to develop a vaccine and some current vaccine development approaches.
Collapse
Affiliation(s)
- Rajeev Rudraraju
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; E-Mails: (R.R.); (B.J.); (R.S.); (S.S.)
| | - Bart G. Jones
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; E-Mails: (R.R.); (B.J.); (R.S.); (S.S.)
| | - Robert Sealy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; E-Mails: (R.R.); (B.J.); (R.S.); (S.S.)
| | - Sherri L. Surman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; E-Mails: (R.R.); (B.J.); (R.S.); (S.S.)
| | - Julia L. Hurwitz
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; E-Mails: (R.R.); (B.J.); (R.S.); (S.S.)
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163, USA
| |
Collapse
|
21
|
Costello HM, Ray WC, Chaiwatpongsakorn S, Peeples ME. Targeting RSV with vaccines and small molecule drugs. Infect Disord Drug Targets 2012; 12:110-28. [PMID: 22335496 DOI: 10.2174/187152612800100143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 01/01/2012] [Indexed: 12/21/2022]
Abstract
Respiratory syncytial virus (RSV) is the most significant cause of pediatric respiratory infections. Palivizumab (Synagis®), a humanized monoclonal antibody, has been used successfully for a number of years to prevent severe RSV disease in at-risk infants. However, despite intense efforts, there is no approved vaccine or small molecule drug for RSV. As an enveloped virus, RSV must fuse its envelope with the host cell membrane, which is accomplished through the actions of the fusion (F) glycoprotein, with attachment help from the G glycoprotein. Because of their integral role in initiation of infection and their accessibility outside the lipid bilayer, these proteins have been popular targets in the discovery and development of antiviral compounds and vaccines against RSV. This review examines advances in the development of antiviral compounds and vaccine candidates.
Collapse
Affiliation(s)
- Heather M Costello
- Center for Vaccines & Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | | | | | | |
Collapse
|
22
|
Bayon JCL, Lina B, Rosa-Calatrava M, Boivin G. Recent developments with live-attenuated recombinant paramyxovirus vaccines. Rev Med Virol 2012; 23:15-34. [DOI: 10.1002/rmv.1717] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/14/2012] [Accepted: 03/22/2012] [Indexed: 12/30/2022]
Affiliation(s)
- Jean-Christophe Le Bayon
- Laboratoire de Virologie et Pathologie Humaine, VirPath EMR 4610/Equipe VirCell, Université de Lyon; Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Faculté de médecine RTH Laennec; Lyon France
- Research Center in Infectious Diseases; CHUQ-CHUL and Université Laval; Québec City QC Canada
| | - Bruno Lina
- Laboratoire de Virologie et Pathologie Humaine, VirPath EMR 4610/Equipe VirCell, Université de Lyon; Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Faculté de médecine RTH Laennec; Lyon France
- Laboratoire de Virologie, Centre de Biologie et de Pathologie Est; Hospices Civils de Lyon; Lyon Bron Cedex France
| | - Manuel Rosa-Calatrava
- Laboratoire de Virologie et Pathologie Humaine, VirPath EMR 4610/Equipe VirCell, Université de Lyon; Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Faculté de médecine RTH Laennec; Lyon France
| | - Guy Boivin
- Research Center in Infectious Diseases; CHUQ-CHUL and Université Laval; Québec City QC Canada
| |
Collapse
|
23
|
Mok H, Cheng X, Xu Q, Zengel JR, Parhy B, Zhao J, Wang CK, Jin H. Evaluation of Measles Vaccine Virus as a Vector to Deliver Respiratory Syncytial Virus Fusion Protein or Epstein-Barr Virus Glycoprotein gp350. Open Virol J 2012; 6:12-22. [PMID: 22383906 PMCID: PMC3286841 DOI: 10.2174/1874357901206010012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/03/2012] [Accepted: 01/16/2012] [Indexed: 01/31/2023] Open
Abstract
Live attenuated recombinant measles vaccine virus (MV) Edmonston-Zagreb (EZ) strain was evaluated as a viral vector to express the ectodomains of fusion protein of respiratory syncytial virus (RSV F) or glycoprotein 350 of Epstein-Barr virus (EBV gp350) as candidate vaccines for prophylaxis of RSV and EBV. The glycoprotein gene was inserted at the 1st or the 3rd position of the measles virus genome and the recombinant viruses were generated. Insertion of the foreign gene at the 3rd position had a minimal impact on viral replication in vitro. RSV F or EBV gp350 protein was secreted from infected cells. In cotton rats, EZ-RSV F and EZ-EBV gp350 induced MV- and insert-specific antibody responses. In addition, both vaccines also induced insert specific interferon gamma (IFN-γ) secreting T cell response. EZ-RSV F protected cotton rats from pulmonary replication of RSV A2 challenge infection. In rhesus macaques, although both EZ-RSV F and EZ-EBV gp350 induced MV specific neutralizing antibody responses, only RSV F specific antibody response was detected. Thus, the immunogenicity of the foreign antigens delivered by measles vaccine virus is dependent on the nature of the insert and the animal models used for vaccine evaluation.
Collapse
Affiliation(s)
- Hoyin Mok
- MedImmune LLC., 319 North Bernardo Ave, Mountain View, California, USA
| | | | | | | | | | | | | | | |
Collapse
|