1
|
Duan H, Huang W, Lv Q, Liu P, Li Q, Kong D, Sun X, Zhang X, Jiang Y, Chen S. Using Surface Immunogenic Protein as a Carrier Protein to Elicit Protective Antibody to Multiple Serotypes for Candidate Group B Streptococcal Glycan Conjugate Vaccines. Vaccines (Basel) 2024; 12:573. [PMID: 38932301 PMCID: PMC11209137 DOI: 10.3390/vaccines12060573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
Group B Streptococcus (GBS) is a life-threatening opportunistic pathogen, particularly in pregnant women, infants, and the elderly. Currently, maternal vaccination is considered the most viable long-term option for preventing GBS mother-to-infant infection, and two polysaccharide conjugate vaccines utilizing CRM197 as a carrier protein have undergone clinical phase II trials. Surface immunogenic protein (Sip), present in all identified serotypes of GBS strains so far, is a protective surface protein of GBS. In this study, the type Ia capsular polysaccharide (CPS) of GBS was utilized as a model to develop candidate antigens for a polysaccharide conjugate vaccine by coupling it with the Sip of GBS and the traditional carrier protein CRM197. Serum analysis from immunized New Zealand rabbits and CD1 mice revealed that there was no significant difference in antibody titers between the Ia-Sip group and Ia-CRM197 group; however, both were significantly higher than those observed in the Ia polysaccharide group. Opsonophagocytosis and passive immune protection results using rabbit serum indicated no significant difference between the Ia-Sip and Ia-CRM197 groups, both outperforming the Ia polysaccharide group. Furthermore, serum from the Ia-Sip group had a cross-protective effect on multiple types of GBS strains. The challenge test results in CD1 mice demonstrated that the Ia-Sip group provided complete protection against lethal doses of bacteria and also showed cross-protection against type III strain. Our study demonstrates for the first time that Ia-Sip is immunogenic and provides serotype-independent protection in glycan conjugate vaccines, which also indicates Sip may serve as an excellent carrier protein for GBS glycan conjugate vaccines and provide cross-protection against multiple GBS strains.
Collapse
Affiliation(s)
- Huiqi Duan
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Qian Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Decong Kong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xuyang Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Xinran Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yongqiang Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Shaolong Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
2
|
Nilo A, Morelli L, Passalacqua I, Brogioni B, Allan M, Carboni F, Pezzicoli A, Zerbini F, Maione D, Fabbrini M, Romano MR, Hu QY, Margarit I, Berti F, Adamo R. Anti-Group B Streptococcus Glycan-Conjugate Vaccines Using Pilus Protein GBS80 As Carrier and Antigen: Comparing Lysine and Tyrosine-directed Conjugation. ACS Chem Biol 2015; 10:1737-46. [PMID: 25906283 DOI: 10.1021/acschembio.5b00247] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gram-positive Streptococcus agalactiae or group B Streptococcus (GBS) is a leading cause of invasive infections in pregnant women, newborns, and elderly people. Vaccination of pregnant women represents the best strategy for prevention of neonatal disease, and GBS polysaccharide-based conjugate vaccines are currently under clinical testing. The potential of GBS pilus proteins selected by genome-based reverse vaccinology as protective antigens for anti-streptococcal vaccines has also been demonstrated. Dressing pilus proteins with surface glycan antigens could be an attractive approach to extend vaccine coverage. We have recently developed an efficient method for tyrosine-directed ligation of large glycans to proteins via copper-free azide-alkyne [3 + 2] cycloaddition. This method enables targeting of predetermined sites of the protein, ensuring that protein epitopes are preserved prior to glycan coupling and a higher consistency in glycoconjugate batches. Herein, we compared conjugates of the GBS type II polysaccharide (PSII) and the GBS80 pilus protein obtained by classic lysine random conjugation and by the recently developed tyrosine-directed ligation. PSII conjugated to CRM197, a carrier protein used for vaccines in the market, was used as a control. We found that the constructs made from PSII and GBS80 were able to elicit murine antibodies recognizing individually the glycan and protein epitopes on the bacterial surface. The generated antibodies were efficacious in mediating opsonophagocytic killing of strains expressing exclusively PSII or GBS80 proteins. The two glycoconjugates were also effective in protecting newborn mice against GBS infection following vaccination of the dams. Altogether, these results demonstrated that polysaccharide-conjugated GBS80 pilus protein functions as a carrier comparably to CRM197, while maintaining its properties of protective protein antigen. Glycoconjugation and reverse vaccinology can, therefore, be combined to design vaccines with broad coverage. This approach opens a path to a new generation of vaccines. Tyrosine-ligation allows creation of more homogeneous vaccines, correlation of the immune response to defined connectivity points, and fine-tuning of the conjugation site in glycan-protein conjugates.
Collapse
Affiliation(s)
- Alberto Nilo
- Novartis Vaccines & Diagnostics, Via Fiorentina 1, 53100 Siena, Italy
| | - Laura Morelli
- Novartis Vaccines & Diagnostics, Via Fiorentina 1, 53100 Siena, Italy
| | - Irene Passalacqua
- Novartis Vaccines & Diagnostics, Via Fiorentina 1, 53100 Siena, Italy
| | - Barbara Brogioni
- Novartis Vaccines & Diagnostics, Via Fiorentina 1, 53100 Siena, Italy
| | - Martin Allan
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Filippo Carboni
- Novartis Vaccines & Diagnostics, Via Fiorentina 1, 53100 Siena, Italy
| | - Alfredo Pezzicoli
- Novartis Vaccines & Diagnostics, Via Fiorentina 1, 53100 Siena, Italy
| | - Francesca Zerbini
- Novartis Vaccines & Diagnostics, Via Fiorentina 1, 53100 Siena, Italy
| | - Domenico Maione
- Novartis Vaccines & Diagnostics, Via Fiorentina 1, 53100 Siena, Italy
| | - Monica Fabbrini
- Novartis Vaccines & Diagnostics, Via Fiorentina 1, 53100 Siena, Italy
| | | | - Qi-Ying Hu
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, Massachusetts 02139, United States
| | | | - Francesco Berti
- Novartis Vaccines & Diagnostics, Via Fiorentina 1, 53100 Siena, Italy
| | - Roberto Adamo
- Novartis Vaccines & Diagnostics, Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
3
|
Dangor Z, Kwatra G, Izu A, Lala SG, Madhi SA. Review on the association of Group BStreptococcuscapsular antibody and protection against invasive disease in infants. Expert Rev Vaccines 2014; 14:135-49. [DOI: 10.1586/14760584.2014.953939] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
A new flow-cytometry-based opsonophagocytosis assay for the rapid measurement of functional antibody levels against Group B Streptococcus. J Immunol Methods 2012; 378:11-9. [DOI: 10.1016/j.jim.2012.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 11/19/2022]
|
5
|
Bröker M, Costantino P, DeTora L, McIntosh ED, Rappuoli R. Biochemical and biological characteristics of cross-reacting material 197 (CRM197), a non-toxic mutant of diphtheria toxin: Use as a conjugation protein in vaccines and other potential clinical applications. Biologicals 2011; 39:195-204. [DOI: 10.1016/j.biologicals.2011.05.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 05/16/2011] [Accepted: 05/24/2011] [Indexed: 12/30/2022] Open
|