1
|
Griffiths OR, Landon J, Morris RK, James PE, Adams RA. CoVaccine HT™ adjuvant is superior to Freund's in eliciting ovine polyclonal antibodies against human tumor necrosis factor-alpha. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 129:189-213. [PMID: 35305719 DOI: 10.1016/bs.apcsb.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Passive immunotherapy using polyclonal antibodies plays an important role in preventing and treating antigenic and pathogenic diseases. Polyclonal antibodies are used for therapeutic, diagnostic and investigational purposes, with adjuvants employed to enhance the immune response against proteins that are poorly antigenic or self-antigens. This study aimed to optimize current immunization methods by evaluating the novel adjuvant CoVaccine HT™ against the established Freund's at producing ovine polyclonal antibodies against pro-inflammatory cytokine human recombinant tumor necrosis factor alpha (TNF-α). METHODS Castrated male Aberfield cross sheep were immunized with TNF-α in CoVaccine HT™ or Freund's adjuvant. The binding titer of antibodies for TNF-α and neutralization titer were determined in vitro, as well as the strength of antibody binding by a simple small scale affinity chromatography elution experiment. Animal welfare was monitored through inspection of immunization site reactions at regular time points and graded according to reaction size. The second part of the study looked at re-immunization using Freund's adjuvant alone every 4- or 8-weeks. RESULTS Freund's generated significantly higher antibody binding titers than CoVaccine HT™ but were less effective at neutralizing TNF-alpha which is a better indicator of functional potency. CoVaccine HT™ also caused fewer immunization site reactions, while no statistical difference was observed in the binding strength of antibodies. Re-immunization every 4- and 8-weeks showed no statistical difference. CONCLUSION This study provides evidence that CoVaccine HT™ is superior to Freund's adjuvant for the production of antibodies to TNF-α, and supports the use of this alternative adjuvant for clinical and experimental use. The outcomes gained through this study are applicable to passive and active immunotherapy for the generation of polyclonal antibodies in human and veterinary medicine.
Collapse
Affiliation(s)
- Owen R Griffiths
- Micropharm Ltd, Carmarthenshire, United Kingdom; Department of Biomedical Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom.
| | - John Landon
- Micropharm Ltd, Carmarthenshire, United Kingdom
| | - R Keith Morris
- Department of Biomedical Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Philip E James
- Department of Biomedical Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Rachel A Adams
- Department of Biomedical Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| |
Collapse
|
2
|
Samoilіuk VV, Koziy MS, Bilyi DD, Maslikov SM, Spitsina ТL, Galuzina LI. Effect of immunological castration of male pigs on morphological and functional con-dition of the testicles. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Changes in the priorities of the treatment of animals in the conditions of intense technology of production of livestock products are based on the necessity of wellbeing of animals. Therefore, there is a need of search for and broad introduction of generally accepted alternatives to surgery, which would use modern means of castration, particularly immunocastration. The study presents morpho-functional substantiation of practicability of using immunological castration in the conditions of industrial production of pork. At the same time, we studied immunological castration using Improvak on the morphological and physiological condition of the testicles of male pigs. The testosterone level was determined using radioimmunologic method after 2, 4, 6, 8 weeks of immunological and surgical castrations, and also in intact boars of the control group. During the slaughter, we selected biopates of the testicles in immunological castrates and pigs of the control group for histological examination. The testosterone level 2 weeks after castration was the lowest in the animals castrated using Improvak. This indicator gradually increased, and after 8 weeks was higher than in the surgically castrated pigs. In the latter, the level of testosterone gradually decreased for 8 weeks, and did not significantly change in non-castrated pigs. The last stages of spermatogenesis in immunocastrates were inhibited after the second vaccination. As a result of immunological castration, the interstitial tissue of the testicle underwent changes. Between the tubules, a spreading of the loose connective tissue was observed. Leydig cells lost hyper chromaticity of the cytoplasm and typical polygonal profile, and their functional potential decreased. This fact was confirmed by the changes in the Hertwig’s ratio. In particular, we observed decrease in the value of the nuclear-cytoplasmic ratio. There were also a time shift of mitotic cycle, low degree of differentiation of spermatogonia and rupture of the course of the subsequent stages of spermatogenesis. However, there occurred multiplication of primary spermatogonia, single cellular divisions, and in the ductus deferentes, there could be found single spermatids. Some of them formed specific cellular groups of rounded and elliptic shapes in the seminiferous tubules. These structures were absent in the testicles of the control animals. Microstructural changes in the swine after injecting Improvak were characterized by deficiency of Leydig cells, indicating absence of the normal hormonal background, as confirmed by the results of the study of testosterone level. The epithelium-spermatogenic layer was underdeveloped, and the lumens of the tubules were in some places filled with generations of spermatocytes. In some places, meiosis was observed, which also indicates insignificant functioning of the testicles. Vaccination with Improvak caused atrophy of the testicles in swine and decrease in their functional condition, allowing it to be recommended it for broader application as an alternative to surgical castration.
Collapse
|
3
|
Brandimarti ME, Gray R, Hilton ZJ, Keeley T, Murray ‘KP, Herbert CA. The effect of testosterone suppression on health and parasite burden in male eastern grey kangaroos (Macropus giganteus). AUSTRALIAN MAMMALOGY 2021. [DOI: 10.1071/am21017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Effects of gonadotropin-releasing hormone analog (GnRHa) immunization on the gonadal transcriptome and proteome of tilapia (Oreochromis niloticus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100780. [PMID: 33296765 DOI: 10.1016/j.cbd.2020.100780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 11/21/2022]
Abstract
Gonadotropin releasing hormone (GnRH) plays an important role in the regulation of vertebrate reproduction. Studies have shown that immunization against GnRHa can induce sexually sterile tilapia. To explore the mechanism behind this, in this study, RNA-seq and data-independent acquisition (DIA) techniques were used to study the transcriptome and proteome of the gonad of tilapia immunized with GnRHa. 644 differentially expressed genes (80 upregulated and 564 downregulated) and 1150 differentially expressed proteins (351 upregulated and 799 downregulated) were identified. There were 209 genes with consistent differential expression patterns in the transcriptomic and proteomic analyses, of which 9 were upregulated and 200 downregulated, indicating that the gonad gene expression was inhibited by GnRHa immunization. The downregulated genes were particularly involved in the functions of single-organism process, binding, cellular process, metabolic process and catalytic activity, and associated with the pathways including ECM-receptor interaction, focal adhesion, cardiac muscle contraction and oxidative phosphorylation. The expression of six differentially expressed genes involved in the GnRH signaling pathway was all downregulated. In addition, several important functional genes related to gonadal development after GnRHa immunization were screened. This study confirmed the expression of corresponding genes was affected by GnRHa on the gonad development in tilapia at the molecular level, and laid a foundation for elucidating the mechanism of GnRHa immunization.
Collapse
|
5
|
Siel D, Loaiza A, Vidal S, Caruffo M, Paredes R, Ramirez G, Lapierre L, Briceño C, Pérez O, Sáenz L. The immune profile induced is crucial to determine the effects of immunocastration over gonadal function, fertility, and GnRH-I expression. Am J Reprod Immunol 2017; 79. [PMID: 29048721 DOI: 10.1111/aji.12772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/18/2017] [Indexed: 01/29/2023] Open
Abstract
PROBLEM Immunocastration or vaccination against the GnRH-I hormone is a promising alternative to reproductive control in different animal species. Given the low immunogenicity of this hormone, the use of adjuvants becomes necessary. METHOD OF STUDY This study evaluated the effects of three adjuvants that induce different immune response profiles over gonadal function, fertility, and expression of GnRH-I. Female mice (n = 6) were vaccinated at days 1 and 30 with a recombinant antigen for immunocastration and different adjuvants that induced preferentially Th1/Th2, Th2, and Th1 immune profiles. RESULTS Th1/Th2 response is the most efficient to block reproductive activity in vaccinated animals, reducing the number of luteal bodies and pre-ovulatory follicles. Th2 and Th1/Th2 responses induced an increase in GnRH-I at the hypothalamus. CONCLUSION The immune profile induced by different adjuvants is essential on the effects over fertility, gonadal function, and hypothalamic GnRH-I expression in immunocastrated animals.
Collapse
Affiliation(s)
- Daniela Siel
- Laboratory of Veterinary Vaccines, Department of Animal Biology, Faculty of Veterinary and Animal Science, Universidad de Chile, Santiago, Chile
| | - Alexandra Loaiza
- Laboratory of Veterinary Vaccines, Department of Animal Biology, Faculty of Veterinary and Animal Science, Universidad de Chile, Santiago, Chile
| | - Sonia Vidal
- Laboratory of Veterinary Vaccines, Department of Animal Biology, Faculty of Veterinary and Animal Science, Universidad de Chile, Santiago, Chile
| | - Mario Caruffo
- Laboratory of Veterinary Vaccines, Department of Animal Biology, Faculty of Veterinary and Animal Science, Universidad de Chile, Santiago, Chile
| | - Rodolfo Paredes
- Escuela de Medicina Veterinaria, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Santiago, Chile
| | - Galia Ramirez
- Department of Preventive Medicine, Faculty of Veterinary and Animal Science, Universidad de Chile, Santiago, Chile
| | - Lisette Lapierre
- Department of Preventive Medicine, Faculty of Veterinary and Animal Science, Universidad de Chile, Santiago, Chile
| | - Cristóbal Briceño
- Department of Preventive Medicine, Faculty of Veterinary and Animal Science, Universidad de Chile, Santiago, Chile
| | - Oliver Pérez
- Immunology Department, Instituto de Ciencias Básicas y Preclínicas "Victoria de Girón", Universidad de Ciencias Médicas de La Habana, La Habana, Cuba
| | - Leonardo Sáenz
- Laboratory of Veterinary Vaccines, Department of Animal Biology, Faculty of Veterinary and Animal Science, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Hilgers LAT, Platenburg PPLI, Bajramovic J, Veth J, Sauerwein R, Roeffen W, Pohl M, van Amerongen G, Stittelaar KJ, van den Bosch JF. Carbohydrate fatty acid monosulphate esters are safe and effective adjuvants for humoral responses. Vaccine 2017; 35:3249-3255. [PMID: 28479181 DOI: 10.1016/j.vaccine.2017.04.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 02/05/2023]
Abstract
Carbohydrate fatty acid sulphate esters (CFASEs) formulated in a squalane-in-water emulsion are effective adjuvants for humoral responses to a wide range of antigens in various animal species but rise in body temperature and local reactions albeit mild or minimal hampers application in humans. In rabbits, body temperature increased 1°C one day after intramuscular (IM) injection, which returned to normal during the next day. The effect increased with increasing dose of CFASE but not with the number of injections (up to 5). Antigen enhanced the rise in body temperature after booster immunization (P<0.01) but not after priming. Synthetic CFASEs are mixtures of derivatives containing no sulphate, one or multiple sulphate groups and the monosulphate derivatives (CMS) were isolated, incorporated in a squalane in-water emulsion and investigated. In contrast to CFASE, CMS adjuvant did not generate rise in body temperature or local reactions in rabbits immunized with a purified, recombinant malaria chimeric antigen R0.10C. In comparison to alum, CMS adjuvant revealed approximately 30-fold higher antibody titres after the first and >100-fold after the second immunization. In ferrets immunized with 7.5μg of inactivated influenza virus A/H7N9, CMS adjuvant gave 100-fold increase in HAI antibody titres after the first and 25-fold after the second immunisation, which were 10-20-fold higher than with the MF59-like AddaVax adjuvant. In both models, a single immunisation with CMS adjuvant revealed similar or higher titres than two immunisations with either benchmark, without detectable systemic and local adverse effects. Despite striking chemical similarities with monophospholipid A (MPL), CMS adjuvant did not activate human TLR4 expressed on HEK cells. We concluded that the synthetic CMS adjuvant is a promising candidate for poor immunogens and single-shot vaccines and that rise in body temperature, local reactions or activation of TLR4 is not a pre-requisite for high adjuvanticity.
Collapse
Affiliation(s)
| | | | | | - Jennifer Veth
- Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Robert Sauerwein
- Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Will Roeffen
- Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Marie Pohl
- Viroclinics Biosciences BV, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
7
|
Han XF, Li JL, Zhou YQ, Ren XH, Liu GC, Cao XH, Du XG, Zeng XY. Active immunization with GnRH-tandem-dimer peptide in young male rats reduces serum reproductive hormone concentrations, testicular development and spermatogenesis. Asian J Androl 2017. [PMID: 26208395 PMCID: PMC4854110 DOI: 10.4103/1008-682x.156856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
GnRH sterilization vaccines have been developed for various practical and clinical reasons. However, conjugation of GnRH peptide to carrier protein has many drawbacks, hampering the further commercialization of GnRH vaccines. In this study, a new nonconjugated GnRH vaccine, D-Lys6-GnRH-tandem-dimer peptide (TDK), emulsified in Specol adjuvant was investigated for its immunocastration efficacy in young male rats. Prepubertal male rats were randomly allocated into three groups (n = 12): control (no treatment), surgically castrated or immunized against 100 μg TDK in Specol adjuvant at 6 weeks of age (with a booster 8 weeks later). Blood samples (for antibody titers and hormone concentrations) were collected at 2-week intervals until rats were killed (18 weeks of age). Compared to intact controls, active immunization against TDK reduced (P < 0.05) serum concentrations of testosterone, inhibin B, LH and FSH, prevented the onset of spermatogenesis at puberty. Furthermore, mRNA expressions of GnRH receptor, LH-β and FSH-β in the pituitary, LH receptor, FSH receptor, inhibin α, βA and βB subunit in the testes were decreased in immunocastrated rats compared to intact controls (P < 0.05). These results demonstrate for the first time that GnRH-tandem-dimer peptide emulsified in Specol is a promising veterinary sterilization medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xian-Yin Zeng
- Isotope Research Biological Engineering and Application Biology Department, Laboratory, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| |
Collapse
|
8
|
Targeted vaccination against the bevacizumab binding site on VEGF using 3D-structured peptides elicits efficient antitumor activity. Proc Natl Acad Sci U S A 2016; 113:12532-12537. [PMID: 27791128 DOI: 10.1073/pnas.1610258113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Therapeutic targeting of the VEGF signaling axis by the VEGF-neutralizing monoclonal antibody bevacizumab has clearly demonstrated clinical benefit in cancer patients. To improve this strategy using a polyclonal approach, we developed a vaccine targeting VEGF using 3D-structured peptides that mimic the bevacizumab binding site. An in-depth study on peptide optimization showed that the antigen's 3D structure is essential to achieve neutralizing antibody responses. Peptide 1 adopts a clear secondary, native-like structure, including the typical cysteine-knot fold, as evidenced by CD spectroscopy. Binding and competition studies with bevacizumab in ELISA and surface plasmon resonance analysis revealed that peptide 1 represents the complete bevacizumab binding site, including the hairpin loop (β5-turn-β6) and the structure-supporting β2-α2-β3 loop. Vaccination with peptide 1 elicited high titers of cross-reactive antibodies to VEGF, with potent neutralizing activity. Moreover, vaccination-induced antisera displayed strong angiostatic and tumor-growth-inhibiting properties in a preclinical mouse model for colorectal carcinoma, whereas antibodies raised with peptides exclusively encompassing the β5-turn-β6 loop (peptides 15 and 20) did not. Immunization with peptide 1 or 7 (murine analog of 1) in combination with the potent adjuvant raffinose fatty acid sulfate ester (RFASE) showed significant inhibition of tumor growth in the B16F10 murine melanoma model. Based on these data, we conclude that this vaccination technology, which is currently being investigated in a phase I clinical trial (NCT02237638), can potentially outperform currently applied anti-VEGF therapeutics.
Collapse
|
9
|
Histological and transcriptome analyses of testes from Duroc and Meishan boars. Sci Rep 2016; 6:20758. [PMID: 26865000 PMCID: PMC4749976 DOI: 10.1038/srep20758] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/07/2016] [Indexed: 12/14/2022] Open
Abstract
Meishan boars are known for their early sexual maturity. However, they exhibit a significantly smaller testicular size and a reduced proportion of Sertoli cells and daily sperm production compared with Duroc boars. The testes of Duroc and Meishan boars at 20, 75 and 270 days of age were used for histological and transcriptome analyses. Haematoxylin-eosin staining was conducted to observe histological structure of the testes in Duroc and Meishan boars at different ages. Although spermatogenesis occurred prior to 75 days in Meishan boars, the number of spermatogonia and Sertoli cells in Meishan boars were less than in Duroc boars at adulthood. The diameters of the seminiferous tubules of the testes differed significantly during the initiation of development of the seminiferous tubules between the two breeds. We obtained differentially expressed functional genes and analysed seven pathways involved in male sexual maturity and spermatogenesis using RNA-seq. We also detected four main alternative splicing events and many single nucleotide polymorphisms from testes. Eight functionally important genes were validated by qPCR, and Neurotrophin 3 was subjected to quantification and cellular localization analysis. Our study provides the first transcriptome evidence for the differences in sexual function development between Meishan and Duroc boars.
Collapse
|
10
|
Sørensen KM, Westley C, Goodacre R, Engelsen SB. Simultaneous quantification of the boar-taint compounds skatole and androstenone by surface-enhanced Raman scattering (SERS) and multivariate data analysis. Anal Bioanal Chem 2015; 407:7787-95. [DOI: 10.1007/s00216-015-8945-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/14/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
|
11
|
Han X, Gu L, Xia C, Feng J, Cao X, Du X, Zeng X, Song T. Effect of immunization against GnRH on hypothalamic and testicular function in rams. Theriogenology 2014; 83:642-9. [PMID: 25433833 DOI: 10.1016/j.theriogenology.2014.10.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 11/15/2022]
Abstract
The objective was to determine effects of active immunization against GnRH on reproductive function in Tibetan rams. Peripubertal Tibetan rams (n = 30) were randomly and equally allocated into three groups: control (no treatment); surgically castrated; or immunized against 100-μg d-Lys6-GnRH-tandem-dimer peptide conjugated to ovalbumin in Specol adjuvant at 24 weeks of age (with a booster 8 weeks later). Blood samples (for antibody titers and hormone concentrations) were collected at 4-week intervals until rams were killed (40 weeks). Immunization triggered a good antibody response in all immunized rams (P < 0.01). Compared with intact controls, anti-GnRH immunization reduced (P < 0.01) serum concentrations of testosterone, inhibin A, LH, and FSH, and it induced testicular atrophy (suppression of spermatogenesis). Androstenone concentrations in fat tissues of GnRH-immunized rams were also rendered nondetectable (P < 0.001). Furthermore, mRNA expressions of GnRH receptor, LH-β, and FSH-β in the pituitary and of LH receptor, FSH receptor, and inhibin α and βA subunits in the testes were decreased in immunized rams compared with intact controls (P < 0.05). This was apparently the first report that active immunization against GnRH-tandem-dimer-ovalbumin conjugate in Specol adjuvant was an effective alternative to surgical castration for Tibetan rams under practical Tibetan plateau conditions.
Collapse
Affiliation(s)
- Xingfa Han
- Isotope Research Lab, Sichuan Agricultural University, Ya'an, P.R. China
| | - Longjun Gu
- Isotope Research Lab, Sichuan Agricultural University, Ya'an, P.R. China
| | - Chenyang Xia
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, P.R. China
| | - Jing Feng
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, P.R. China
| | - Xiaohan Cao
- Isotope Research Lab, Sichuan Agricultural University, Ya'an, P.R. China
| | - Xiaogang Du
- Isotope Research Lab, Sichuan Agricultural University, Ya'an, P.R. China
| | - Xianyin Zeng
- Isotope Research Lab, Sichuan Agricultural University, Ya'an, P.R. China.
| | - Tianzeng Song
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, P.R. China.
| |
Collapse
|
12
|
Li H, Gariépy C, Jin Y, Font I Furnols M, Fortin J, Rocha LM, Faucitano L. Effects of ractopamine administration and castration method on muscle fiber characteristics and sensory quality of the longissimus muscle in two Piétrain pig genotypes. Meat Sci 2014; 102:27-34. [PMID: 25529286 DOI: 10.1016/j.meatsci.2014.10.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/18/2014] [Accepted: 10/25/2014] [Indexed: 02/01/2023]
Abstract
Single and combined effects of ractopamine supplementation (RAC, 7.5 vs. 0 ppm), castration method (surgical castration: SC vs. immuno-castration: IM) and genotype (genotype A: GA vs. GB containing 25% or 50% Piétrain) were determined on longissimus muscle (LM) fiber traits and quality of pork (n=512). RAC increased fiber IIX cross-sectional area (P=0.009) and decreased glycolytic potential (P=0.02) and pork tenderness (P<0.001). Fiber traits indicated that LM of IM pigs was more oxidative (P<0.05) and meat had slightly higher (P=0.04) off-flavor score and WBSF than SC. LM from GB pigs was paler (P<0.05) and had greater (P<0.05) glycolytic potential, IIX fiber cross sectional area and pork off-flavor than GA. RAC supplementation, castration method and genotype or their combination affected some fiber traits and some quality parameters but differences reported were small indicating these treatments or their combination could be used without major prejudice to meat quality.
Collapse
Affiliation(s)
- Hui Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Agriculture and Agri-Food Canada, Food Research and Development Centre, Saint-Hyacinthe, QC J2S 8E3, Canada; Agriculture and Agri-Food Canada, Dairy and Swine and Development Research Centre, Sherbrooke, QC J1M 0C8, Canada; Institute of Agricultural and Livestock Products, Inner Mongolia Academy of Agricultural & Husbandry Sciences, Hohhot, Inner Mongolia 010031, China
| | - Claude Gariépy
- Agriculture and Agri-Food Canada, Food Research and Development Centre, Saint-Hyacinthe, QC J2S 8E3, Canada.
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | | | - Jacinthe Fortin
- Agriculture and Agri-Food Canada, Food Research and Development Centre, Saint-Hyacinthe, QC J2S 8E3, Canada
| | - Luiene M Rocha
- Agriculture and Agri-Food Canada, Dairy and Swine and Development Research Centre, Sherbrooke, QC J1M 0C8, Canada; Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, HoustonPavillon Paul-Comtois, Québec City, QC G1V A06, Canada
| | - Luigi Faucitano
- Agriculture and Agri-Food Canada, Dairy and Swine and Development Research Centre, Sherbrooke, QC J1M 0C8, Canada
| |
Collapse
|
13
|
Active immunization against GnRH reduces the synthesis of GnRH in male rats. Theriogenology 2013; 80:1109-16. [DOI: 10.1016/j.theriogenology.2013.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 07/27/2013] [Accepted: 08/22/2013] [Indexed: 11/24/2022]
|
14
|
Stevens NE, Fraser CK, Alsharifi M, Brown MP, Diener KR, Hayball JD. An empirical approach towards the efficient and optimal production of influenza-neutralizing ovine polyclonal antibodies demonstrates that the novel adjuvant CoVaccine HT™ is functionally superior to Freund's adjuvant. PLoS One 2013; 8:e68895. [PMID: 23894371 PMCID: PMC3720891 DOI: 10.1371/journal.pone.0068895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 06/01/2013] [Indexed: 11/18/2022] Open
Abstract
Passive immunotherapies utilising polyclonal antibodies could have a valuable role in preventing and treating infectious diseases such as influenza, particularly in pandemic situations but also in immunocompromised populations such as the elderly, the chronically immunosuppressed, pregnant women, infants and those with chronic diseases. The aim of this study was to optimise current methods used to generate ovine polyclonal antibodies. Polyclonal antibodies to baculovirus-expressed recombinant influenza haemagglutinin from A/Puerto Rico/8/1934 H1N1 (PR8) were elicited in sheep using various immunisation regimens designed to investigate the priming immunisation route, adjuvant formulation, sheep age, and antigen dose, and to empirically ascertain which combination maximised antibody output. The novel adjuvant CoVaccine HT™ was compared to Freund’s adjuvant which is currently the adjuvant of choice for commercial production of ovine polyclonal Fab therapies. CoVaccine HT™ induced significantly higher titres of functional ovine anti-haemagglutinin IgG than Freund’s adjuvant but with fewer side effects, including reduced site reactions. Polyclonal hyperimmune sheep sera effectively neutralised influenza virus in vitro and, when given before or after influenza virus challenge, prevented the death of infected mice. Neither the age of the sheep nor the route of antigen administration appeared to influence antibody titre. Moreover, reducing the administrated dose of haemagglutinin antigen minimally affected antibody titre. Together, these results suggest a cost effective way of producing high and sustained yields of functional ovine polyclonal antibodies specifically for the prevention and treatment of globally significant diseases.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Aging/immunology
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Dose-Response Relationship, Immunologic
- Female
- Freund's Adjuvant/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Injections, Intraperitoneal
- Injections, Subcutaneous
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/prevention & control
- Sheep
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Natalie E. Stevens
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, SA, Australia
- Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia
| | - Cara K. Fraser
- Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Gilles Plains, SA, Australia
| | - Mohammed Alsharifi
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Michael P. Brown
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, SA, Australia
- Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Kerrilyn R. Diener
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, SA, Australia
- Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia
- * E-mail: (KRD); (JDH)
| | - John D. Hayball
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, SA, Australia
- Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, Australia
- * E-mail: (KRD); (JDH)
| |
Collapse
|