1
|
Ciccolella M, Andreone S, Mancini J, Sestili P, Negri D, Pacca AM, D’Urso MT, Macchia D, Canese R, Pang K, SaiYing Ko T, Decadt Y, Schiavoni G, Mattei F, Belardelli F, Aricò E, Bracci L. Anticancer Effects of Sublingual Type I IFN in Combination with Chemotherapy in Implantable and Spontaneous Tumor Models. Cells 2021; 10:845. [PMID: 33917958 PMCID: PMC8068355 DOI: 10.3390/cells10040845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Salivary gland tumors are a heterogeneous group of neoplasms representing less than 10% of all head and neck tumors. Among salivary gland tumors, salivary duct carcinoma (SDC) is a rare, but highly aggressive malignant tumor resembling ductal breast carcinoma. Sublingual treatments are promising for SDC due to the induction of both local and systemic biological effects and to reduced systemic toxicity compared to other administration routes. In the present study, we first established that the sublingual administration of type I IFN (IFN-I) is safe and feasible, and exerts antitumor effects both as monotherapy and in combination with chemotherapy in transplantable tumor models, i.e., B16-OVA melanoma and EG.7-OVA lymphoma. Subsequently, we proved that sublingual IFN-I in combination with cyclophosphamide (CTX) induces a long-lasting reduction of tumor mass in NeuT transgenic mice that spontaneously develop SDC. Most importantly, tumor shrinkage in NeuT transgenic micewas accompanied by the emergence of tumor-specific cellular immune responses both in the blood and in the tumor tissue. Altogether, these results provide evidence that sublingual IFN holds promise in combination with chemotherapy for the treatment of cancer.
Collapse
Affiliation(s)
- Maria Ciccolella
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.C.); (S.A.); (J.M.); (G.S.); (F.M.)
| | - Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.C.); (S.A.); (J.M.); (G.S.); (F.M.)
| | - Jacopo Mancini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.C.); (S.A.); (J.M.); (G.S.); (F.M.)
| | - Paola Sestili
- National Center for the Control and Evaluation of Medicines, 00161 Rome, Italy;
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Anna Maria Pacca
- Animal Research and Welfare Centre, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.P.); (M.T.D.); (D.M.)
| | - Maria Teresa D’Urso
- Animal Research and Welfare Centre, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.P.); (M.T.D.); (D.M.)
| | - Daniele Macchia
- Animal Research and Welfare Centre, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.P.); (M.T.D.); (D.M.)
| | - Rossella Canese
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Ken Pang
- Biolingus AG, CH-6052 Hergiswil NW, Switzerland; (K.P.); (T.S.K.); (Y.D.)
- Murdoch Children’s Research Institute, Parkville 3052, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville 3010, Australia
| | - Thomas SaiYing Ko
- Biolingus AG, CH-6052 Hergiswil NW, Switzerland; (K.P.); (T.S.K.); (Y.D.)
| | - Yves Decadt
- Biolingus AG, CH-6052 Hergiswil NW, Switzerland; (K.P.); (T.S.K.); (Y.D.)
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.C.); (S.A.); (J.M.); (G.S.); (F.M.)
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.C.); (S.A.); (J.M.); (G.S.); (F.M.)
| | - Filippo Belardelli
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche, 00133 Rome, Italy;
| | - Eleonora Aricò
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Laura Bracci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.C.); (S.A.); (J.M.); (G.S.); (F.M.)
| |
Collapse
|
2
|
Bozeman EN, He S, Shafizadeh Y, Selvaraj P. Therapeutic efficacy of PD-L1 blockade in a breast cancer model is enhanced by cellular vaccines expressing B7-1 and glycolipid-anchored IL-12. Hum Vaccin Immunother 2016; 12:421-30. [PMID: 26308597 DOI: 10.1080/21645515.2015.1076953] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immunotherapeutic approaches have emerged as promising strategies to treat various cancers, including breast cancer. A single approach, however, is unlikely to effectively combat the complex, immune evasive strategies found within the tumor microenvironment, thus novel, effective combination treatments must be explored. In this study, we investigated the efficacy of a combination therapy consisting of PD-L1 immune checkpoint blockade and whole cell vaccination in a HER-2 positive mouse model of breast cancer. We demonstrate that tumorigenicity is completely abrogated when adjuvanted with immune stimulatory molecules (ISMs) B7-1 and a cell-surface anchored (GPI) form of IL-12 or GM-CSF. Irradiated cellular vaccines expressing the combination of adjuvants B7-1 and GPI-IL-12 completely inhibited tumor formation which was correlative with robust HER-2 specific CTL activity. However, in a therapeutic setting, both cellular vaccination and PD-L1 blockade induced only 10-20% tumor regression when administered alone but resulted in 50% tumor regression as a combination therapy. This protection was significantly hindered following CD4 or CD8 depletion indicating the essential role played by cellular immunity. Collectively, these pre-clinical studies provide a strong rationale for further investigation into the efficacy of combination therapy with tumor cell vaccines adjuvanted with membrane-anchored ISMs along with PD-L1 blockade for the treatment of breast cancer.
Collapse
Affiliation(s)
- Erica N Bozeman
- a Department of Pathology and Laboratory Medicine ; Emory University School of Medicine ; Atlanta , GA USA
| | - Sara He
- a Department of Pathology and Laboratory Medicine ; Emory University School of Medicine ; Atlanta , GA USA
| | - Yalda Shafizadeh
- a Department of Pathology and Laboratory Medicine ; Emory University School of Medicine ; Atlanta , GA USA
| | - Periasamy Selvaraj
- a Department of Pathology and Laboratory Medicine ; Emory University School of Medicine ; Atlanta , GA USA
| |
Collapse
|
3
|
Lollini PL, De Giovanni C, Nanni P. Preclinical HER-2 Vaccines: From Rodent to Human HER-2. Front Oncol 2013; 3:151. [PMID: 23772419 PMCID: PMC3677144 DOI: 10.3389/fonc.2013.00151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/24/2013] [Indexed: 12/13/2022] Open
Abstract
Effective prevention of human cancer with vaccines against viruses, such as HBV and HPV, raises the question whether also non-virus related tumors could be prevented with immunological means. Studies in HER-2-transgenic mice showed that powerful anti-HER-2 vaccines, could almost completely prevent the onset of mammary carcinoma. Protective immune responses were orchestrated by T cells and their cytokines, and effected by antibodies against HER-2 gene product p185. Analogous findings were reported in a variety of other cancer immunoprevention systems, thus leading to the definition of oncoantigens, optimal target antigens that are causally involved in carcinogenesis and cancer progression. Prophylactic HER-2 vaccines were also effective in preventing metastasis outgrowth, indicating that concepts and approaches developed for cancer immunoprevention could prove fruitful in cancer immunotherapy as well. The availability of cancer-prone mice carrying a human HER-2 transgene is now fostering the design of novel vaccines against human p185. A further bridge toward human cancer was recently provided by novel immunodeficient models, like Rag2−/−;Il2rg−/− mice, which are permissive for metastatic spread of human HER-2+ cancer cells and can be engrafted with a functional human immune system, allowing for the first time the study of vaccines against oncoantigens to elicit human immune responses against human cancer cells in vivo.
Collapse
Affiliation(s)
- Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastases, Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum University of Bologna , Bologna , Italy
| | | | | |
Collapse
|
4
|
Tan Y, Meng Y, Wang Z, Shan F, Wang Q, Zhang N. Maturation of morphology, phenotype and functions of murine bone marrow-derived dendritic cells (DCs) induced by polysaccharide Kureha (PSK). Hum Vaccin Immunother 2012; 8:1808-16. [PMID: 23032163 DOI: 10.4161/hv.21993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of this work was to evaluate the influence of protein-bound polysaccharide Kureha(PSK) on murine dendritic cells (DCs). These impacts of PSK on DCs from bone marrow derived DCs(BMDCs) were assessed with inverted phase contrast microscope, conventional scanning electron microscopy (SEM), transmission electron microscopy (TEM) for morphology, fluorescence activated cell sorting (FACS) analysis, cytochemistry assay for key surface molecules, FITC-dextran for phagocytosis, bio-assay and enzyme linked immunosorbent assay (ELISA) for cytokine production. We found that under the influence of PSK, immature DCs changed into mature DCs with decrease of antigens up-taking, simultaneously high expression of key surface molecules of the MHC classII,CD40, CD80, CD86 and CD83 as well as more production of IL-12p70 and tumor necrosis factor α (TNF-α). These data indicate that PSK could markedly promote maturation of DCs and this adjuvant-like activity may have potential therapeutic value in vaccine preparation.
Collapse
Affiliation(s)
- Yonggang Tan
- Department of Oncology; Shengjing Hospital; China Medical University; Shenyang, P.R. China
| | | | | | | | | | | |
Collapse
|