1
|
Du L, Jia S, Zhang W, Cai C, Liu Y, Wang C, Zhu Y, Ma X, Yang X, Wei Z, Xu K. Oral Yeast-Cell Microcapsule-Mediated DNA Vaccines Against Clostridium perfringens Induce Effective Intestinal Immunity and Modulate Gut Microbiota. Vaccines (Basel) 2024; 12:1360. [PMID: 39772022 PMCID: PMC11680129 DOI: 10.3390/vaccines12121360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives:Clostridium perfringens is a common opportunistic pathogen that causes gastrointestinal diseases in livestock and poultry. Our preliminary research has demonstrated that administering oral yeast-cell microcapsule (YCM)-mediated DNA vaccines can effectively stimulate mucosal immunity, thereby preventing the occurrence of gastrointestinal diseases. Methods: In this study, the C. perfringens α-toxin gene was first cloned and the H126G and C-terminal (C247-370) mutations were created. The corresponding DNA vaccine cassettes driven by a CMV promoter were constructed and were cloned into a yeast shuttle vector. Recombinant yeast strains transformed with these shuttle vectors were then prepared as the YCMs for the subsequent oral immunization of mice. Results: Oral administration of recombinant YCMs can induce an effective immune response, and the H126G YCM performed much better than C247-370. Further evidence suggested that YCM administration may contribute to modulating the gut environment by altering gut microbiota and enhancing bacterial richness. Conclusions: Our study indicated that the oral administration of YCM-mediated DNA vaccines can induce effective intestinal immunity and may also alter the composition of the gut microbiota, suggesting a promising candidate vaccine strategy against C. perfringens-induced animal diseases.
Collapse
Affiliation(s)
- Lihong Du
- Hainan Institute of Northwest A&F University, Sanya 572024, China; (L.D.); (S.J.); (W.Z.); (C.C.); (Y.L.); (C.W.)
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Shaona Jia
- Hainan Institute of Northwest A&F University, Sanya 572024, China; (L.D.); (S.J.); (W.Z.); (C.C.); (Y.L.); (C.W.)
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Wenqiang Zhang
- Hainan Institute of Northwest A&F University, Sanya 572024, China; (L.D.); (S.J.); (W.Z.); (C.C.); (Y.L.); (C.W.)
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Chang Cai
- Hainan Institute of Northwest A&F University, Sanya 572024, China; (L.D.); (S.J.); (W.Z.); (C.C.); (Y.L.); (C.W.)
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Yufei Liu
- Hainan Institute of Northwest A&F University, Sanya 572024, China; (L.D.); (S.J.); (W.Z.); (C.C.); (Y.L.); (C.W.)
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Chuhan Wang
- Hainan Institute of Northwest A&F University, Sanya 572024, China; (L.D.); (S.J.); (W.Z.); (C.C.); (Y.L.); (C.W.)
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Yufei Zhu
- DAYU Bioengineering (Xi’an) Industrial Development Research Institute, Xi’an 710000, China; (Y.Z.); (X.M.)
- Shanxi Dayu Biological Functions Co., Ltd., Yunchen 044000, China
| | - Xiaotao Ma
- DAYU Bioengineering (Xi’an) Industrial Development Research Institute, Xi’an 710000, China; (Y.Z.); (X.M.)
- Shanxi Dayu Biological Functions Co., Ltd., Yunchen 044000, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Zehui Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Kun Xu
- Hainan Institute of Northwest A&F University, Sanya 572024, China; (L.D.); (S.J.); (W.Z.); (C.C.); (Y.L.); (C.W.)
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| |
Collapse
|
2
|
He J, Miao R, Chen Y, Wang H, Liu M. The dual role of regulatory T cells in hepatitis B virus infection and related hepatocellular carcinoma. Immunology 2024; 171:445-463. [PMID: 38093705 DOI: 10.1111/imm.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/27/2023] [Indexed: 03/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major contributor to cancer-related deaths worldwide. Hepatitis B virus (HBV) infection is a major etiologic factor leading to HCC. While there have been significant advancements in controlling HBV replication, achieving a complete cure for HBV-related HCC (HBV-HCC) remains an intricate challenge. HBV persistence is attributed to a myriad of mechanisms, encompassing both innate and adaptive immune responses. Regulatory T cells (Tregs) are pivotal in upholding immune tolerance and modulating excessive immune activation. During HBV infection, Tregs mediate specific T cell suppression, thereby contributing to both persistent infection and the mitigation of liver inflammatory responses. Studies have demonstrated an augmented expression of circulating and intrahepatic Tregs in HBV-HCC, which correlates with impaired CD8+ T cell function. Consequently, Tregs play a dual role in the context of HBV infection and the progression of HBV-HCC. In this comprehensive review, we discuss pertinent studies concerning Tregs in HBV infection, HBV-related cirrhosis and HCC. Furthermore, we summarize Treg responses to antiviral therapy and provide Treg-targeted therapies specific to HBV and HCC.
Collapse
Affiliation(s)
- Jinan He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Miao
- Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yao Chen
- Department of Internal Medicine, Northeast Yunnan Regional Central Hospital, Zhaotong, Yunan, China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Lin N, Yin W, Miller H, Byazrova MG, Herrada AA, Benlagha K, Lee P, Guan F, Lei J, Gong Q, Yan Y, Filatov A, Liu C. The role of regulatory T cells and follicular T helper cells in HBV infection. Front Immunol 2023; 14:1169601. [PMID: 37275865 PMCID: PMC10235474 DOI: 10.3389/fimmu.2023.1169601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/20/2023] [Indexed: 06/07/2023] Open
Abstract
Hepatitis B has become one of the major global health threats, especially in developing countries and regions. Hepatitis B virus infection greatly increases the risk for liver diseases such as cirrhosis and cancer. However, treatment for hepatitis B is limited when considering the huge base of infected people. The immune response against hepatitis B is mediated mainly by CD8+ T cells, which are key to fighting invading viruses, while regulatory T cells prevent overreaction of the immune response process. Additionally, follicular T helper cells play a key role in B-cell activation, proliferation, differentiation, and formation of germinal centers. The pathogenic process of hepatitis B virus is generally the result of a disorder or dysfunction of the immune system. Therefore, we present in this review the critical functions and related biological processes of regulatory T cells and follicular T helper cells during HBV infection.
Collapse
Affiliation(s)
- Nengqi Lin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Department of Research and Development, BD Biosciences, San Jose, CA, United States
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Andrés A. Herrada
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Youqing Yan
- Department of Infectious Disease, Wuhan No.7 Hospital, Wuhan, China
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Boni C, Janssen HLA, Rossi M, Yoon SK, Vecchi A, Barili V, Yoshida EM, Trinh H, Rodell TC, Laccabue D, Alfieri A, Brillo F, Fisicaro P, Acerbi G, Pedrazzi G, Andreone P, Cursaro C, Margotti M, Santoro R, Piazzolla V, Brunetto MR, Coco B, Cavallone D, Zhao Y, Joshi A, Woo J, Lau AH, Gaggar A, Subramanian GM, Massetto B, Fung S, Ahn SH, Ma X, Mangia A, Ferrari C. Combined GS-4774 and Tenofovir Therapy Can Improve HBV-Specific T-Cell Responses in Patients With Chronic Hepatitis. Gastroenterology 2019; 157:227-241.e7. [PMID: 30930022 DOI: 10.1053/j.gastro.2019.03.044] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 03/05/2019] [Accepted: 03/24/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS One strategy to treat chronic hepatitis B virus (HBV) infection could be to increase the functions of virus-specific T cells. We performed a multicenter phase 2 study to evaluate the safety and efficacy of GS-4774, a yeast-based therapeutic vaccine engineered to express HBV antigens, given with tenofovir disoproxil fumarate (TDF) to untreated patients with chronic HBV infection. METHODS We performed an open-label study at 34 sites in Canada, Italy, New Zealand, Romania, South Korea, and United States from July 2014 to August 2016. Adults who were positive for HB surface antigen (HBsAg) > 6 months and levels of HBV DNA ≥2000 IU/mL who had not received antiviral treatment for HBV within 3 months of screening were randomly assigned (1:2:2:2) to groups given oral TDF 300 mg daily alone (n = 27; controls) or with 2, 10, or 40 yeast units GS-4774 (n = 168), administered subcutaneously every 4 weeks until week 20 for a total of 6 doses. Blood samples were collected and analyzed and patients received regular physical examinations. Efficacy was measured by decrease in HBsAg from baseline to week 24. Specific responses to HBV (production of interferon gamma [IFNG], tumor necrosis factor [TNF], interleukin 2 [IL2], and degranulation) were measured in T cells derived from 12 HBeAg-negative patients with genotype D infections, after overnight or 10 days of stimulation of peripheral blood mononuclear cells with peptides from the entire HBV proteome. T-regulatory cells were analyzed for frequency and phenotype. Data from studies of immune cells were compared with data on reductions in HBsAg, HBV DNA, and alanine aminotransferase in blood samples from patients. RESULTS GS-4774 was safe and well tolerated but did not produce significant decreases in levels of HBsAg. Production of IFNG, TNF, and IL2 increased significantly at weeks 24 and 48, compared with baseline, in HBV-specific CD8+ T cells from patients given GS-4774 but not from controls. GS-4774 had greater effects on CD8+ than CD4+ T cells, which were not affected at all or very weakly by TDF with or without GS-4774. GS-4774 did not affect responses of T cells to other viruses tested. HBV core peptides induced the greatest production of IFNG by T cells following overnight stimulation, whereas HBV envelope antigens did not induce a response. Following 10 days of stimulation, production of IFNG and TNF increased with time of exposure to GS-4774; the greatest levels of responses were to HBV envelope antigens followed by core and polymerase peptides. We observed a correlation in patients given GS-4774 between increased T-cell functions and reductions in numbers of T-regulatory cells. CONCLUSIONS In a phase 2 study of patients with chronic HBV infection given TDF with or without GS-4774, we found that vaccination can increase production of IFNG, TNF, and IL2 by CD8+ T cells exposed to antigenic peptides, with little effect on CD4+ T cells. Although GS-4774 did not reduce levels of HBsAg in patients, its strong immune stimulatory effect on CD8+ T cells might be used in combination with other antiviral agents to boost the antivirus immune response. Clinicaltrials.gov no: NCT02174276.
Collapse
Affiliation(s)
- Carolina Boni
- Laboratory of Viral Immunopathology, Department of Medicine and Surgery, University of Parma and Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Harry L A Janssen
- Toronto Center for Liver Diseases, University Health Network, Toronto, Ontario, Canada
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Department of Medicine and Surgery, University of Parma and Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Seung Kew Yoon
- The Catholic University of Korea, College of Medicine, Seoul, South Korea
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Department of Medicine and Surgery, University of Parma and Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Valeria Barili
- Laboratory of Viral Immunopathology, Department of Medicine and Surgery, University of Parma and Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria of Parma, Parma, Italy
| | | | - Huy Trinh
- San Jose Gastroenterology, San Jose, California
| | | | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Department of Medicine and Surgery, University of Parma and Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Arianna Alfieri
- Laboratory of Viral Immunopathology, Department of Medicine and Surgery, University of Parma and Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Federica Brillo
- Laboratory of Viral Immunopathology, Department of Medicine and Surgery, University of Parma and Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Paola Fisicaro
- Laboratory of Viral Immunopathology, Department of Medicine and Surgery, University of Parma and Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Greta Acerbi
- Laboratory of Viral Immunopathology, Department of Medicine and Surgery, University of Parma and Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Giuseppe Pedrazzi
- Department of Neuroscience, Biophysics and Medical Physics Unit, University of Parma, Parma, Italy
| | - Pietro Andreone
- Hepatology Unit, Department of Medical and Surgical Sciences, University Hospital of Bologna, Italy
| | - Carmela Cursaro
- Hepatology Unit, Department of Medical and Surgical Sciences, University Hospital of Bologna, Italy
| | - Marzia Margotti
- Hepatology Unit, Department of Medical and Surgical Sciences, University Hospital of Bologna, Italy
| | - Rosanna Santoro
- Liver Unit, IRCCS, "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Valeria Piazzolla
- Liver Unit, IRCCS, "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Maurizia R Brunetto
- Hepatology and Liver Physiopathology Laboratory and Internal Medicine, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Barbara Coco
- Hepatology and Liver Physiopathology Laboratory and Internal Medicine, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Daniela Cavallone
- Hepatology and Liver Physiopathology Laboratory and Internal Medicine, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Yang Zhao
- Gilead Sciences, Inc, Foster City, California
| | | | - Jacky Woo
- Gilead Sciences, Inc, Foster City, California
| | | | - Anuj Gaggar
- Gilead Sciences, Inc, Foster City, California
| | | | | | - Scott Fung
- Toronto Center for Liver Diseases, University Health Network, Toronto, Ontario, Canada
| | | | - Xiaoli Ma
- Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Alessandra Mangia
- Liver Unit, IRCCS, "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Department of Medicine and Surgery, University of Parma and Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria of Parma, Parma, Italy.
| |
Collapse
|
5
|
HBV Immune-Therapy: From Molecular Mechanisms to Clinical Applications. Int J Mol Sci 2019; 20:ijms20112754. [PMID: 31195619 PMCID: PMC6600394 DOI: 10.3390/ijms20112754] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection represents a worldwide public health concern with approximately 250 million people chronically infected and at risk of developing liver cirrhosis and hepatocellular carcinoma. Nucleos(t)ide analogues (NUC) are the most widely used therapies for HBV infection, but they often require long-lasting administration to avoid the risk of HBV reactivation at withdrawal. Therefore, there is an urgent need to develop novel treatments to shorten the duration of NUC therapy by accelerating virus control, and to complement the effect of available anti-viral therapies. In chronic HBV infection, virus-specific T cells are functionally defective, and this exhaustion state is a key determinant of virus persistence. Reconstitution of an efficient anti-viral T cell response may thus represent a rational strategy to treat chronic HBV patients. In this perspective, the enhancement of adaptive immune responses by a checkpoint inhibitor blockade, specific T cell vaccines, lymphocyte metabolism targeting, and autologous T cell engineering, including chimeric antigen receptor (CAR) and TCR-redirected T cells, constitutes a promising immune modulatory approach for a therapeutic restoration of protective immunity. The advances of the emerging immune-based therapies in the setting of the HBV research field will be outlined.
Collapse
|
6
|
Palma ML, Garcia-Bates TM, Martins FS, Douradinha B. Genetically engineered probiotic Saccharomyces cerevisiae strains mature human dendritic cells and stimulate Gag-specific memory CD8 + T cells ex vivo. Appl Microbiol Biotechnol 2019; 103:5183-5192. [PMID: 31020381 DOI: 10.1007/s00253-019-09842-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022]
Abstract
Recombinant Saccharomyces cerevisiae strains expressing HIV antigens have shown promising pre-clinical results. Probiotic S. cerevisiae strains naturally induce gut immunity; thus, genetically engineered probiotic strains could be used to stimulate immune responses against HIV in the mucosa. Probiotic strains have a higher rate of heterologous protein production, meaning higher antigen's epitope expression levels per yeast cell. We expressed HIV-1 Gag protein in the probiotic yeasts' surface, which was eagerly phagocytosed by and induced type 1 polarization of human monocyte-derived dendritic cells (DCs) from healthy donors in vitro. We further matured DCs derived from HIV-1+ donors with transformed yeasts and incubated them with autologous T cells. Only DCs matured with Gag-expressing probiotic strains were able to efficiently present antigen to CD8+ T cells and induced their clonal expansion. Our results show that genetically engineered probiotic S. cerevisiae strains are a promising vaccination strategy against HIV.
Collapse
Affiliation(s)
- Mariana L Palma
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, 15261, USA
| | - Tatiana M Garcia-Bates
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, 15261, USA
| | - Flaviano S Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Bruno Douradinha
- Unità di Medicina Rigenerativa ed Immunologia, Fondazione Ri.MED c/o IRCCS-ISMETT, Via Ernesto Tricomi 5, 90127, Palermo, Italy.
| |
Collapse
|
7
|
|
8
|
Wang HC, Hung WC, Chen LT, Pan MR. From Friend to Enemy: Dissecting the Functional Alteration of Immunoregulatory Components during Pancreatic Tumorigenesis. Int J Mol Sci 2018; 19:E3584. [PMID: 30428588 PMCID: PMC6274888 DOI: 10.3390/ijms19113584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a 5-year survival rate of approximately 8%. More than 80% of patients are diagnosed at an unresectable stage due to metastases or local extension. Immune system reactivation in patients by immunotherapy may eliminate tumor cells and is a new strategy for cancer treatment. The anti-CTLA-4 antibody ipilimumab and anti-PD-1 antibodies pembrolizumab and nivolumab have been approved for cancer therapy in different countries. However, the results of immunotherapy on PDAC are unsatisfactory. The low response rate may be due to poor immunogenicity with low tumor mutational burden in pancreatic cancer cells and desmoplasia that prevents the accumulation of immune cells in tumors. The immunosuppressive tumor microenvironment in PDAC is important in tumor progression and treatment resistance. Switching from an immune tolerance to immune activation status is crucial to overcome the inability of self-defense in cancer. Therefore, thoroughly elucidation of the roles of various immune-related factors, tumor microenvironment, and tumor cells in the development of PDAC may provide appropriate direction to target inflammatory pathway activation as a new therapeutic strategy for preventing and treating this cancer.
Collapse
Affiliation(s)
- Hui-Ching Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan.
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
9
|
Pereira LMS, Gomes STM, Ishak R, Vallinoto ACR. Regulatory T Cell and Forkhead Box Protein 3 as Modulators of Immune Homeostasis. Front Immunol 2017; 8:605. [PMID: 28603524 PMCID: PMC5445144 DOI: 10.3389/fimmu.2017.00605] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
The transcription factor forkhead box protein 3 (FOXP3) is an essential molecular marker of regulatory T cell (Treg) development in different microenvironments. Tregs are cells specialized in the suppression of inadequate immune responses and the maintenance of homeostatic tolerance. Studies have addressed and elucidated the role played by FOXP3 and Treg in countless autoimmune and infectious diseases as well as in more specific cases, such as cancer. Within this context, the present article reviews aspects of the immunoregulatory profile of FOXP3 and Treg in the management of immune homeostasis, including issues relating to pathology as well as immune tolerance.
Collapse
Affiliation(s)
- Leonn Mendes Soares Pereira
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.,Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Samara Tatielle Monteiro Gomes
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.,Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Ricardo Ishak
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | |
Collapse
|
10
|
Thind K, Padrnos LJ, Ramanathan RK, Borad MJ. Immunotherapy in pancreatic cancer treatment: a new frontier. Therap Adv Gastroenterol 2017; 10:168-194. [PMID: 28286568 PMCID: PMC5330603 DOI: 10.1177/1756283x16667909] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pancreatic cancer is a highly aggressive and lethal cancer characterized by high invasiveness, local and extensive dissemination at time of diagnosis and resistance to treatment. Few therapies have shown efficacy in the past and even standard of care therapies yield only modest improvements in the mortality of patients with advanced or metastatic disease. Efforts have been undertaken to study the pancreatic tumor microenvironment and have established its complex and immunosuppressive nature which could explain the high resistance to chemotherapy. Novel therapies targeting the tumor microenvironment with an aim to decrease this resistance, improve immune tolerance and increase the efficacy of the current treatment have shown some promising preliminary results in preclinical and clinical trials. We review the current advances in the field of immunotherapy and their effectiveness as a potential treatment strategy in the pancreatic cancer.
Collapse
Affiliation(s)
- Komal Thind
- Department of Internal Medicine, Cleveland Clinic Akron General, Akron, OH, USA
| | - Leslie J. Padrnos
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | - Mitesh J. Borad
- Division of Hematology/Oncology, Mayo Clinic Arizona, 5777 E. Mayo Boulevard, Phoenix, AZ 85054, USA
| |
Collapse
|
11
|
Gabitzsch ES, Tsang KY, Palena C, David JM, Fantini M, Kwilas A, Rice AE, Latchman Y, Hodge JW, Gulley JL, Madan RA, Heery CR, Balint JP, Jones FR, Schlom J. The generation and analyses of a novel combination of recombinant adenovirus vaccines targeting three tumor antigens as an immunotherapeutic. Oncotarget 2016; 6:31344-59. [PMID: 26374823 PMCID: PMC4741610 DOI: 10.18632/oncotarget.5181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
Phenotypic heterogeneity of human carcinoma lesions, including heterogeneity in expression of tumor-associated antigens (TAAs), is a well-established phenomenon. Carcinoembryonic antigen (CEA), MUC1, and brachyury are diverse TAAs, each of which is expressed on a wide range of human tumors. We have previously reported on a novel adenovirus serotype 5 (Ad5) vector gene delivery platform (Ad5 [E1-, E2b-]) in which regions of the early 1 (E1), early 2 (E2b), and early 3 (E3) genes have been deleted. The unique deletions in this platform result in a dramatic decrease in late gene expression, leading to a marked reduction in host immune response to the vector. Ad5 [E1-, E2b-]-CEA vaccine (ETBX-011) has been employed in clinical studies as an active vaccine to induce immune responses to CEA in metastatic colorectal cancer patients. We report here the development of novel recombinant Ad5 [E1-, E2b-]-brachyury and-MUC1 vaccine constructs, each capable of activating antigen-specific human T cells in vitro and inducing antigen-specific CD4+ and CD8+ T cells in vaccinated mice. We also describe the use of a combination of the three vaccines (designated Tri-Ad5) of Ad5 [E1-, E2b-]-CEA, Ad5 [E1-, E2b-]-brachyury and Ad5 [E1-, E2b-]-MUC1, and demonstrate that there is minimal to no “antigenic competition” in in vitro studies of human dendritic cells, or in murine vaccination studies. The studies reported herein support the rationale for the application of Tri-Ad5 as a therapeutic modality to induce immune responses to a diverse range of human TAAs for potential clinical studies.
Collapse
Affiliation(s)
| | - Kwong Yok Tsang
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin M David
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Massimo Fantini
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Kwilas
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Grover A, McLean JL, Troudt JM, Foster C, Izzo L, Creissen E, MacDonald E, Troy A, Izzo AA. Heat killed Saccharomyces cerevisiae as an adjuvant for the induction of vaccine-mediated immunity against infection with Mycobacterium tuberculosis. Vaccine 2016; 34:2798-805. [DOI: 10.1016/j.vaccine.2016.04.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 04/08/2016] [Accepted: 04/19/2016] [Indexed: 02/05/2023]
|
13
|
King TH, Guo Z, Hermreck M, Bellgrau D, Rodell TC. Construction and Immunogenicity Testing of Whole Recombinant Yeast-Based T-Cell Vaccines. Methods Mol Biol 2016; 1404:529-545. [PMID: 27076321 DOI: 10.1007/978-1-4939-3389-1_35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
GlobeImmune's Tarmogen(®) immunotherapy platform utilizes recombinant Saccharomyces cerevisiae yeast as a vaccine vector to deliver heterologous antigens for activation of disease-specific, targeted cellular immunity. The vaccines elicit immune-mediated killing of target cells expressing viral and cancer antigens in vivo via a CD8(+) CTL-mediated mechanism. Tarmogens are not neutralized by host immune responses and can be administered repeatedly to boost antigen-specific immunity. Production of the vaccines yields stable off-the-shelf products that avoid the need for patient-specific manufacturing found with other immunotherapeutic approaches. Tarmogens for the treatment of chronic hepatitis B and C and various cancers were well tolerated and immunogenic in phase 1 and 2 clinical trials encompassing >600 subjects. The platform is being widely utilized in basic vaccine research and the most rapid path to success in these endeavors follows from optimal immunoassay selection and execution. This chapter provides detailed methods for the construction and preclinical immunogenicity testing of yeast-based immunotherapeutic products to support the rapid and efficient use of this versatile technology.
Collapse
Affiliation(s)
- Thomas H King
- GlobeImmune, Inc., 1450 Infinite Drive, Louisville, CO, 80027, USA.
| | - Zhimin Guo
- GlobeImmune, Inc., 1450 Infinite Drive, Louisville, CO, 80027, USA
| | - Melanie Hermreck
- GlobeImmune, Inc., 1450 Infinite Drive, Louisville, CO, 80027, USA
| | - Donald Bellgrau
- GlobeImmune, Inc., 1450 Infinite Drive, Louisville, CO, 80027, USA
- Integrated Department of Immunology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Timothy C Rodell
- GlobeImmune, Inc., 1450 Infinite Drive, Louisville, CO, 80027, USA
| |
Collapse
|
14
|
Palena C, Hamilton DH. Immune Targeting of Tumor Epithelial-Mesenchymal Transition via Brachyury-Based Vaccines. Adv Cancer Res 2015. [PMID: 26216630 DOI: 10.1016/bs.acr.2015.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As a manifestation of their inherent plasticity, carcinoma cells undergo profound phenotypic changes during progression toward metastasis. One such phenotypic modulation is the epithelial-mesenchymal transition (EMT), an embryonically relevant process that can be reinstated by tumor cells, resulting in the acquisition of metastatic propensity, stem-like cell properties, and resistance to a variety of anticancer therapies, including chemotherapy, radiation, and some small-molecule targeted therapies. Targeting of the EMT is emerging as a novel intervention against tumor progression. This review focuses on the potential use of cancer vaccine strategies targeting tumor cells that exhibit mesenchymal-like features, with an emphasis on the current status of development of vaccine platforms directed against the T-box transcription factor brachyury, a novel cancer target involved in tumor EMT, stemness, and resistance to therapies. Also presented is a summary of potential mechanisms of resistance to immune-mediated attack driven by EMT and the development of novel combinatorial strategies based on the use of agents that alleviate tumor EMT for an optimized targeting of plastic tumor cells that are responsible for tumor recurrence and the establishment of therapeutic refractoriness.
Collapse
Affiliation(s)
- Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
15
|
Immunological targeting of tumor cells undergoing an epithelial-mesenchymal transition via a recombinant brachyury-yeast vaccine. Oncotarget 2014; 4:1777-90. [PMID: 24125763 PMCID: PMC3858563 DOI: 10.18632/oncotarget.1295] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The embryonic T-box transcription factor brachyury is aberrantly expressed in a range of human tumors. Previous studies have demonstrated that brachyury is a driver of the epithelial-mesenchymal transition (EMT), a process associated with cancer progression. Brachyury expression in human tumor cells enhances tumor invasiveness in vitro and metastasis in vivo, and induces resistance to various conventional therapeutics including chemotherapy and radiation. These characteristics, and the selective expression of brachyury for a range of human tumor types vs. normal adult tissues, make brachyury an attractive tumor target. Due to its intracellular localization and the “undruggable” character of transcription factors, available options to target brachyury are currently limited. Here we report on the development and characterization of an immunological platform for the efficient targeting of brachyury-positive tumors consisting of a heat-killed, recombinant Saccharomyces cerevisiae (yeast)–brachyury vector-based vaccine (designated as GI-6301) that expresses the full-length human brachyury protein. We demonstrate that human dendritic cells treated with recombinant yeast-brachyury can activate and expand brachyury-specific CD4+ and CD8+ T cells in vitro that, in turn, can effectively lyse human tumor cells expressing the brachyury protein. Vaccination of mice with recombinant yeast-brachyury is also shown here to elicit brachyury-specific CD4+ and CD8+ T-cell responses, and to induce anti-tumor immunity in the absence of toxicity. Based on these results, a Phase I clinical trial of GI-6301 is currently ongoing in patients with advanced tumors; to our knowledge, this is the first vaccine platform aimed at targeting a driver of tumor EMT that has successfully reached the clinical stage.
Collapse
|
16
|
King TH, Kemmler CB, Guo Z, Mann D, Lu Y, Coeshott C, Gehring AJ, Bertoletti A, Ho ZZ, Delaney W, Gaggar A, Subramanian GM, McHutchison JG, Shrivastava S, Lee YJL, Kottilil S, Bellgrau D, Rodell T, Apelian D. A whole recombinant yeast-based therapeutic vaccine elicits HBV X, S and Core specific T cells in mice and activates human T cells recognizing epitopes linked to viral clearance. PLoS One 2014; 9:e101904. [PMID: 25051027 PMCID: PMC4106793 DOI: 10.1371/journal.pone.0101904] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/12/2014] [Indexed: 12/17/2022] Open
Abstract
Chronic hepatitis B infection (CHB) is characterized by sub-optimal T cell responses to viral antigens. A therapeutic vaccine capable of restoring these immune responses could potentially improve HBsAg seroconversion rates in the setting of direct acting antiviral therapies. A yeast-based immunotherapy (Tarmogen) platform was used to make a vaccine candidate expressing hepatitis B virus (HBV) X, surface (S), and Core antigens (X-S-Core). Murine and human immunogenicity models were used to evaluate the type and magnitude of HBV-Ag specific T cell responses elicited by the vaccine. C57BL/6J, BALB/c, and HLA-A*0201 transgenic mice immunized with yeast expressing X-S-Core showed T cell responses to X, S and Core when evaluated by lymphocyte proliferation assay, ELISpot, intracellular cytokine staining (ICS), or tumor challenge assays. Both CD4+ and CD8+ T cell responses were observed. Human T cells transduced with HBc18-27 and HBs183-91 specific T cell receptors (TCRs) produced interferon gamma (IFNγ following incubation with X-S-Core-pulsed dendritic cells (DCs). Furthermore, stimulation of peripheral blood mononuclear cells (PBMCs) isolated from CHB patients or from HBV vaccine recipients with autologous DCs pulsed with X-S-Core or a related product (S-Core) resulted in pronounced expansions of HBV Ag-specific T cells possessing a cytolytic phenotype. These data indicate that X-S-Core-expressing yeast elicit functional adaptive immune responses and supports the ongoing evaluation of this therapeutic vaccine in patients with CHB to enhance the induction of HBV-specific T cell responses.
Collapse
Affiliation(s)
- Thomas H. King
- GlobeImmune, Inc., Louisville, Colorado, United States of America
- * E-mail:
| | | | - Zhimin Guo
- GlobeImmune, Inc., Louisville, Colorado, United States of America
| | - Derrick Mann
- GlobeImmune, Inc., Louisville, Colorado, United States of America
| | - Yingnian Lu
- GlobeImmune, Inc., Louisville, Colorado, United States of America
| | - Claire Coeshott
- GlobeImmune, Inc., Louisville, Colorado, United States of America
| | - Adam J. Gehring
- Molecular Microbiology and Immunology & Saint Louis University Liver Center, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- Agency for Science, Technology and Research (A*STAR), Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - Antonio Bertoletti
- Agency for Science, Technology and Research (A*STAR), Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - Zi Z. Ho
- Agency for Science, Technology and Research (A*STAR), Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - William Delaney
- Gilead Sciences Inc., Foster City, California, United States of America
| | - Anuj Gaggar
- Gilead Sciences Inc., Foster City, California, United States of America
| | | | | | - Shikha Shrivastava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yu-Jin L. Lee
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shyamasundaran Kottilil
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Donald Bellgrau
- GlobeImmune, Inc., Louisville, Colorado, United States of America
- Integrated Department of Immunology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Timothy Rodell
- GlobeImmune, Inc., Louisville, Colorado, United States of America
| | - David Apelian
- GlobeImmune, Inc., Louisville, Colorado, United States of America
| |
Collapse
|
17
|
Ardiani A, Gameiro SR, Palena C, Hamilton DH, Kwilas A, King TH, Schlom J, Hodge JW. Vaccine-mediated immunotherapy directed against a transcription factor driving the metastatic process. Cancer Res 2014; 74:1945-57. [PMID: 24520078 DOI: 10.1158/0008-5472.can-13-2045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Numerous reports have now demonstrated that the epithelial-to-mesenchymal transition (EMT) process is involved in solid tumor progression, metastasis, and drug resistance. Several transcription factors have been implicated as drivers of EMT and metastatic progression, including Twist. Overexpression of Twist has been shown to be associated with poor prognosis and drug resistance for many carcinomas and other tumor types. The role of Twist in experimental cancer metastases has been principally studied in the 4T1 mammary tumor model, where silencing of Twist in vitro has been shown to greatly reduce in vivo metastatic spread. Transcription factors such as Twist are generally believed to be "undruggable" because of their nuclear location and lack of a specific groove for tight binding of a small molecule inhibitor. An alternative approach to drug therapy targeting transcription factors driving the metastatic process is T-cell-mediated immunotherapy. A therapeutic vaccine platform that has been previously characterized consists of heat-killed recombinant Saccharomyces cerevisiae (yeast) capable of expressing tumor-associated antigen protein. We report here the construction and characterization of a recombinant yeast expressing the entire Twist protein, which is capable of inducing both CD8(+) and CD4(+) Twist-specific T-cell responses in vivo. Vaccination of mice reduced the size of primary transplanted 4T1 tumors and had an even greater antitumor effect on lung metastases of the same mice, which was dependent on Twist-specific CD8(+) T cells. These studies provide the rationale for vaccine-induced T-cell-mediated therapy of transcription factors involved in driving the metastatic process.
Collapse
Affiliation(s)
- Andressa Ardiani
- Authors' Affiliations: Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland; and GlobeImmune Inc., Louisville, Colorado
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gameiro SR, Jammeh ML, Hodge JW. Cancer vaccines targeting carcinoembryonic antigen: state-of-the-art and future promise. Expert Rev Vaccines 2013; 12:617-29. [PMID: 23750792 DOI: 10.1586/erv.13.40] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Concurrent with the US FDA's approval of the first therapeutic cancer vaccine, and supported by mounting clinical evidence indicating that targeting carcinoembryonic antigen (CEA) can safely overcome pre-existing tolerance, a multitude of novel CEA cancer vaccines are now in various stages of development. Since cancer-driven immune suppression often limits the efficacy of vaccines, numerous strategies are being examined in both preclinical and clinical settings to overcome immunosuppressive elements, including the combined use of vaccines with certain chemotherapies, immune checkpoint inhibitors, small-molecule targeted therapies and radiation. This review discusses the current state and future direction of therapeutic cancer vaccines targeting CEA, based on advances achieved over the last 5 years.
Collapse
Affiliation(s)
- Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
19
|
|