1
|
Han B, Yue F, Zhang X, Xu K, Zhang Z, Sun Z, Mu L, Li X. Genetically engineering of Saccharomyces cerevisiae for enhanced oral delivery vaccine vehicle. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109425. [PMID: 38316348 DOI: 10.1016/j.fsi.2024.109425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
As a series of our previous studies reported, recombinant yeast can be the oral vaccines to deliver designed protein and DNA, as well as functional shRNA, into dendritic cells (DCs) in mice for specific immune regulation. Here, we report the further optimization of oral yeast-based vaccine from two aspects (yeast characteristics and recombinant DNA constitution) to improve the effect of immune regulation. After screening four genes in negative regulation of glucan synthesis in yeast (MNN9, GUP1, PBS2 and EXG1), this research combined HDR-based genome editing technology with Cre-loxP technology to acquire 15 gene-knockout strains without drug resistance-gene to exclude biosafety risks; afterward, oral feeding experiments were performed on the mice using 15 oral recombinant yeast-based vaccines constructed by the gene-knockout strains harboring pCMV-MSTN plasmid to screen the target strain with more effective inducing mstn-specific antibody which in turn increasing weight gain effect. And subsequently based on the selected gene-knockout strain, the recombinant DNA in the oral recombinant yeast-based vaccine is optimized via a combination of protein fusion expression (OVA-MSTN) and interfering RNA technology (shRNA-IL21), comparison in terms of both weight gain effect and antibody titer revealed that the selected gene-knockout strain (GUP1ΔEXG1Δ) combined with specific recombinant DNA (pCMV-OVA-MSTN-shIL2) had a better effect of the vaccine. This study provides a useful reference to the subsequent construction of a more efficient oral recombinant yeast-based vaccine in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Baoquan Han
- Department of Urology, Shenzhen University General Hospital, Shenzhen, 518055, China; College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Feng Yue
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Kun Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhiying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Zhongyi Sun
- Department of Urology, Shenzhen University General Hospital, Shenzhen, 518055, China.
| | - Lu Mu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaoyu Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
2
|
Yue F, Du L, Wang R, Han B, Zhang X, Yao Z, Zhang W, Cai C, Zhang Z, Xu K. In vivo Protein Interference: Oral Administration of Recombinant Yeast-Mediated Partial Leptin Reduction for Obesity Control. Front Microbiol 2022; 13:923656. [PMID: 35774455 PMCID: PMC9237534 DOI: 10.3389/fmicb.2022.923656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022] Open
Abstract
Obesity-related diseases are always the major health problems that concern the whole world. Serial studies have reported that obesity development is closely related to the out-of-control leptin encoded by the obesity gene (ob). The latest report declaimed “Less Is More,” a model explaining that partial leptin reduction triggers leptin sensitization and contributes to obesity control. Here, we came up with a novel concept, in vivo protein interference (iPRTi), an interesting protein knock-down strategy for in vivo partial leptin reduction. First, the specific immune response against leptin induced by the oral administration of ob recombinant yeast was confirmed. Subsequentally, leptin resistance was observed in diet-induced obese mice, and oral administration with ob recombinant yeast declined the circulating leptin and reduced significantly the body weight gain. To further investigate whether the iPRTi strategy is capable of obesity management, the diet-induced obese mice were administrated with ob recombinant yeast. All the indexes examined including the circulating leptin, triglyceride, and total cholesterol, as well as food intake and weight gain, demonstrated a positive effect of the iPRTi strategy on obesity control. In short, this study provides a novel strategy for the potential application of recombinant yeast for the therapy of obese individuals with leptin resistance.
Collapse
|
3
|
Rodrigues Barbosa J, Dos Santos Freitas MM, da Silva Martins LH, de Carvalho RN. Polysaccharides of mushroom Pleurotus spp.: New extraction techniques, biological activities and development of new technologies. Carbohydr Polym 2019; 229:115550. [PMID: 31826512 DOI: 10.1016/j.carbpol.2019.115550] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
The biodiversity of mushrooms Pleurotus spp. is impressive due to its complexity and diversity related to the composition of chemical structures such as polysaccharides, glycoproteins and secondary metabolites such as alkaloids, flavonoids and betalains. Recent studies of polysaccharides and their structural elucidation have helped to direct research and development of technologies related to pharmacological action, production of bioactive foods and application of new, more sophisticated extraction tools. The diversity of bioactivities related to these biopolymers, their mechanisms and routes of action are constant focus of researches. The elucidation of bioactivities has helped to formulate new vaccines and targeted drugs. In this context, in terms of polysaccharides and the diversity of mushrooms Pleurotus spp., this review seeks to revisit the genus, making an updated approach on the recent discoveries of polysaccharides, new extraction techniques and bioactivities, emphasising on their mechanisms and routes in order to update the reader on the recent technologies related to these polymers.
Collapse
Affiliation(s)
- Jhonatas Rodrigues Barbosa
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Maurício Madson Dos Santos Freitas
- LAPOA/FEA (Laboratory of Products of Animal Origin/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Luiza Helena da Silva Martins
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Raul Nunes de Carvalho
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| |
Collapse
|
4
|
Torres-Velarde J, Llera-Herrera R, Ibarra-Castro L, García-Gasca T, García-Gasca A. Post-transcriptional silencing of myostatin-1 in the spotted rose snapper (Lutjanus guttatus) promotes muscle hypertrophy. Mol Biol Rep 2019; 47:443-450. [DOI: 10.1007/s11033-019-05147-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
|
5
|
Significant body mass increase by oral administration of a cascade of shIL21-MSTN yeast-based DNA vaccine in mice. Biomed Pharmacother 2019; 118:109147. [PMID: 31302418 DOI: 10.1016/j.biopha.2019.109147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022] Open
Abstract
Base on the practical of MSTN-specific yeast-based protein vaccine in mice as described previously, this research was designed for developing a better DNA vaccine (a cascade of shIL21-MSTN yeast-based DNA vaccine) than solely MSTN yeast-based DNA vaccine to block the endogenous MSTN in the murine model. We first constructed the target vectors, including CMV-driven MSTN expression vector and a combined shIL21-MSTN vector which containing MSTN expression cassette and shIL21 (short hairpin RNA-IL21) expression cassette. After necessary validation, recombinant yeast vaccines harboring different vectors were well prepared. Subsequently, after 2-month administration, the MSTN-specific immune response was detected with western blots. The commercial ELISA assays indicated that the production of IL21 and IL6 were decreased compared with control groups. More importantly, the MSTN-specific antibody titer was much higher in the shIL21-MSTN group than MSTN group, which was consistent with the western blots result. The most important finding was significant body mass increased after oral administration of these yeast-based DNA vaccines, in which the shIL21-MSTN vaccine is slightly higher than the sole MSTN vaccine in mice. In this study, we confirmed the role of different MSTN-specific yeast-based DNA vaccines on increasing body mass in mice, to provide a good inspiration for livestock breeding through the new type of immunoregulatory method. On the other hand, we also detected the possible modulating role of shIL21 on the dendritic cell-mediated immune function which needs more practical application and deeper exploration.
Collapse
|
6
|
Han B, Xu K, Liu Z, Ge W, Shao S, Li P, Yan N, Li X, Zhang Z. Oral yeast-based DNA vaccine confers effective protection from Aeromonas hydrophila infection on Carassius auratus. FISH & SHELLFISH IMMUNOLOGY 2019; 84:948-954. [PMID: 30445667 DOI: 10.1016/j.fsi.2018.10.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 06/09/2023]
Abstract
Our previous study has demonstrated that recombinant yeast can induce specific immune responses in Carassius auratus and may serve as a potential carrier for oral DNA vaccines in aquaculture. In this study, we further developed an effective yeast-based oral DNA vaccine against the bacteria Aeromonas hydrophila, which was expected to provide protection from the motile aeromonad septicemia (MAS). First, two candidate antigen genes, ompG and omp48, were cloned from the Aeromonas hydrophila genome DNA. Then, relative yeast-eukaryote shuttle vectors were constructed and their expression in eukaryotes was validated. Next, crucian carps were orally administered with ompG or omp48 recombinant yeast, and the expression of the genes in the intestinal mucosa was confirmed by immunohistochemistry (IHC). The specific immune responses were further detected by Western blot and enzyme-linked immunosorbent assay (ELISA). The ELISA results showed that the production of the OVA-specific antibody in the OVA-ompG group was significantly higher than that of the OVA-omp48 group, indicating that the OVA-ompG group elicited obviously stronger immune response than OVA-omp48. Finally, the challenge experiment against Aeromonas hydrophila infection demonstrated decreased fish mortality rate after the oral administration of the OVA-ompG yeast vaccine. In conclusion, our work provided a framework for the further development of oral yeast-based fishery vaccines.
Collapse
Affiliation(s)
- Baoquan Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Kun Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Zhongtian Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Wei Ge
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Simin Shao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Pengcheng Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Nana Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xinyi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhiying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
7
|
Govea-Alonso DO, Beltrán-López J, Salazar-González JA, Vargas-Morales J, Rosales-Mendoza S. Progress and future opportunities in the development of vaccines against atherosclerosis. Expert Rev Vaccines 2016; 16:337-350. [DOI: 10.1080/14760584.2017.1258309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dania O. Govea-Alonso
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, SLP, México
| | - Josué Beltrán-López
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, SLP, México
| | - Jorge A. Salazar-González
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, SLP, México
| | - Juan Vargas-Morales
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, SLP, México
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, SLP, México
| |
Collapse
|
8
|
Wang X, Wang Z, Xu H, Xiang B, Dang R, Yang Z. Orally Administrated Whole Yeast Vaccine Against Porcine Epidemic Diarrhea Virus Induced High Levels of IgA Response in Mice and Piglets. Viral Immunol 2016; 29:526-531. [PMID: 27598459 DOI: 10.1089/vim.2016.0067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The mucosal immune response against the porcine epidemic diarrhea virus (PEDV) is very important in piglets. To develop a PEDV vaccine suitable for inducing high levels of intestinal IgA in piglets, recombinant yeast expressing the PEDV S1 gene was constructed and tested by oral immunization of mice and piglets. The S1-specific IgG and IgA were tested at 0, 14, and 28 days postimmunization (dpi) in mice. Compared to the control group, the mice treated with S1 expressing yeast, demonstrated significantly higher levels of IgG and IgA against PEDV from 14 dpi onward. The recombinant yeast inducing a fecal IgA response in piglets was also tested. PEDV-specific IgA could be detected at 7 dpi and increased to 28 dpi. We demonstrated that whole recombinant yeast can be used as a PEDV vaccine vector for inducing high levels of IgA against PEDV in piglets. This could be a good vaccine candidate for PEDV control in piglets.
Collapse
Affiliation(s)
- Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University , Shaanxi Yangling, China
| | - Zhenbing Wang
- College of Veterinary Medicine, Northwest A&F University , Shaanxi Yangling, China
| | - Hongyu Xu
- College of Veterinary Medicine, Northwest A&F University , Shaanxi Yangling, China
| | - Biao Xiang
- College of Veterinary Medicine, Northwest A&F University , Shaanxi Yangling, China
| | - Ruiyi Dang
- College of Veterinary Medicine, Northwest A&F University , Shaanxi Yangling, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University , Shaanxi Yangling, China
| |
Collapse
|
9
|
Moon HY, Lee DW, Sim GH, Kim HJ, Hwang JY, Kwon MG, Kang BK, Kim JM, Kang HA. A new set of rDNA-NTS-based multiple integrative cassettes for the development of antibiotic-marker-free recombinant yeasts. J Biotechnol 2016; 233:190-9. [PMID: 27411901 DOI: 10.1016/j.jbiotec.2016.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 11/15/2022]
Abstract
The traditional yeast Saccharomyces cerevisiae has been widely used as a host system to produce recombinant proteins and metabolites of great commercial value. To engineer recombinant yeast that stably maintains expression cassettes without an antibiotic resistance gene, we developed new multiple integration cassettes by exploiting the non-transcribed spacer (NTS) of ribosomal DNA (rDNA) in combination with defective selection markers. The 5' and 3'-fragments of rDNA-NTS2 were used as flanking sequences for the expression cassettes carrying a set of URA3, LEU2, HIS3, and TRP1 selection markers with truncated promoters of different lengths. The integration numbers of NTS-based expression cassettes, ranging from one to ∼30 copies, showed a proportional increase with the extent of decreased expression of the auxotrophic markers. The NTS-based cassettes were used to construct yeast strains expressing the capsid protein of red-spotted grouper necrosis virus (RG-NNVCP) in a copy number-dependent manner. Oral administration of the recombinant yeast, harboring ∼30 copies of the integrated RG-NNVCP cassettes, provoked efficient immune responses in mice. In contrast, for the NTS cassettes expressing a truncated 3-hydroxyl-3-methylglutaryl-CoA reductase, the integrant carrying only 4 copies was screened as the highest producer of squalene, showing a 150-fold increase compared to that of the wild-type strain. The multiple integrated cassettes were stably retained under prolonged nonselective conditions. Altogether, our results strongly support that rDNA-NTS integrative cassettes are useful tools to construct recombinant yeasts carrying optimal copies of a desired expression cassette without an antibiotic marker gene, which are suitable as oral vaccines or feed additives for animal and human consumption.
Collapse
Affiliation(s)
- Hye Yun Moon
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul 156-756, South Korea
| | - Dong Wook Lee
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul 156-756, South Korea
| | - Gyu Hun Sim
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul 156-756, South Korea
| | - Hong-Jin Kim
- College of Pharmacy, Chung-Ang University, Seoul 156-756, South Korea
| | - Jee Youn Hwang
- Pathology Division, National Institute of Fisheries Science (NIFS), Busan 46083, South Korea
| | - Mun-Gyeong Kwon
- Pathology Division, National Institute of Fisheries Science (NIFS), Busan 46083, South Korea
| | - Bo-Kyu Kang
- Green Cross Veterinary Products Co. LTD., Yongin, Kyunggi-Do, South Korea
| | - Jong Man Kim
- Green Cross Veterinary Products Co. LTD., Yongin, Kyunggi-Do, South Korea
| | - Hyun Ah Kang
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul 156-756, South Korea; Bio-Integration Research Center for Nutra-Pharmaceutical Epigenetics, Chung-Ang University, Seoul 156-756, South Korea.
| |
Collapse
|
10
|
Liu Z, Zhou G, Ren C, Xu K, Yan Q, Li X, Zhang T, Zhang Z. Oral administration of myostatin-specific recombinant Saccharomyces cerevisiae vaccine in rabbit. Vaccine 2016; 34:2378-82. [DOI: 10.1016/j.vaccine.2016.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/02/2016] [Accepted: 03/14/2016] [Indexed: 11/25/2022]
|
11
|
Kong WH, Sung DK, Kim H, Yang JA, Ieronimakis N, Kim KS, Lee J, Kim DH, Yun SH, Hahn SK. Self-adjuvanted hyaluronate – antigenic peptide conjugate for transdermal treatment of muscular dystrophy. Biomaterials 2016; 81:93-103. [DOI: 10.1016/j.biomaterials.2015.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/28/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023]
|
12
|
Kenngott EE, Kiefer R, Schneider-Daum N, Hamann A, Schneider M, Schmitt MJ, Breinig F. Surface-modified yeast cells: A novel eukaryotic carrier for oral application. J Control Release 2016; 224:1-7. [DOI: 10.1016/j.jconrel.2015.12.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 12/11/2022]
|
13
|
Yan N, Xu K, Li X, Liu Y, Bai Y, Zhang X, Han B, Chen Z, Zhang Z. Recombinant Saccharomyces cerevisiae serves as novel carrier for oral DNA vaccines in Carassius auratus. FISH & SHELLFISH IMMUNOLOGY 2015; 47:758-765. [PMID: 26481518 DOI: 10.1016/j.fsi.2015.10.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Oral delivery of DNA vaccines represents a promising vaccinating method for fish. Recombinant yeast has been proved to be a safe carrier for delivering antigen proteins and DNAs to some species in vivo. However, whether recombinant yeast can be used to deliver functional DNAs for vaccination to fish is still unknown. In this study, red crucian carp (Carassius auratus) was orally administrated with recombinant Saccharomyces cerevisiae harboring CMV-EGFP expression cassette. On day 5 post the first vaccination, EGFP expression in the hindgut was detected under fluorescence microscope. To further study whether the delivered gene could induce specific immune responses, the model antigen ovalbumin (OVA) was used as immunogen, and oral administrations were conducted with recombinant S. cerevisiae harboring pCMV-OVA mammalian gene expression cassette as gene delivery or pADH1-OVA yeast gene expression cassette as protein delivery. Each administration was performed with three different doses, and the OVA-specific serum antibody was detected in all the experimental groups by western blotting and enzyme-linked immunosorbent assay (ELISA). ELISA assay also revealed that pCMV-OVA group with lower dose (pCMV-OVA-L) and pADH1-OVA group with moderate dose (pADH1-OVA-M) triggered relatively stronger antibody response than the other two doses. Moreover, the antibody level induced by pCMV-OVA-L group was significantly higher than pADH1-OVA-M group at the same serum dilutions. All the results suggested that recombinant yeast can be used as a potential carrier for oral DNA vaccines and would help to develop more practical strategies to control infectious diseases in aquaculture.
Collapse
Affiliation(s)
- Nana Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Kun Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xinyi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuwan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yichun Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaohan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Baoquan Han
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhilong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhiying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
14
|
Xu K, Zhang T, Guo L, Xin Y, Zhang L, Zhang Z. Alternative methods for the efficient construction of short hairpin RNA expression vectors. Anal Biochem 2015; 478:23-5. [PMID: 25794926 DOI: 10.1016/j.ab.2015.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 11/22/2022]
Abstract
Short hairpin RNA (shRNA)-mediated RNA interference has become a basic technique in modern molecular biology and biochemistry for studying gene function and biological pathways. Here, we report two alternative and efficient methods to construct shRNA expression vectors based respectively on multiple-step sequential PCR and primer extension-homologous recombination (PE-HR). Neither method requires synthesizing long oligonucleotides containing hairpin sequences as used in traditional approaches. The hairpin sequences may produce mutations during oligo synthesis, pose problems in annealing, and lead to inefficient cloning. The PE-HR method further provides rapid and economical construction of shRNA expression vectors without needing the ligation procedure.
Collapse
Affiliation(s)
- Kun Xu
- College of Animal Science & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tingting Zhang
- College of Animal Science & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Lijun Guo
- College of Animal Science & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Xin
- College of Animal Science & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Long Zhang
- College of Animal Science & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhiying Zhang
- College of Animal Science & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
15
|
A perspective on the use of Pleurotus for the development of convenient fungi-made oral subunit vaccines. Vaccine 2014; 33:25-33. [PMID: 25444808 DOI: 10.1016/j.vaccine.2014.10.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 01/15/2023]
Abstract
This review provides an outlook of the medical applications of immunomodulatory compounds taken from Pleurotus and proposes this fungus as a convenient host for the development of innovative vaccines. Although some fungal species, such as Saccharomyces and Pichia, occupy a relevant position in the biopharmaceutical field, these systems are essentially limited to the production of conventional expensive vaccines. Formulations made with minimally processed biomass constitute the ideal approach for developing low cost vaccines, which are urgently needed by low-income populations. The use of edible fungi has not been explored for the production and delivery of low cost vaccines, despite these organisms' attractive features. These include the fact that edible biomass can be produced at low costs in a short period of time, its high biosynthetic capacity, its production of immunomodulatory compounds, and the availability of genetic transformation methods. Perspectives associated to this biotechnological application are identified and discussed.
Collapse
|
16
|
Watanabe N, Masubuchi D, Itoh M, Teradu S, Yazawa H, Uemura H. Oral administration of whole dihomo-γ-linolenic acid-producing Saccharomyces cerevisiae suppresses cutaneous inflammatory responses induced by croton oil application in mice. Appl Microbiol Biotechnol 2014; 98:8697-706. [PMID: 25070596 DOI: 10.1007/s00253-014-5949-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 01/10/2023]
Abstract
Polyunsaturated fatty acids have been attracting considerable interest because of their many biological activities and important roles in human health and nutrition. Dihomo-γ-linolenic acid (DGLA; C20: 3n-6) is known to have an anti-inflammatory activity, but its range of effects was not well studied because of its limited natural sources. Taking advantage of genetic tractability and increasing wealth of accessible data of Saccharomyces cerevisiae, we have previously constructed a DGLA-producing yeast strain by introducing two types of desaturase and one elongase genes to convert endogenous oleic acid (C18:1n-9) to DGLA. In this study, we investigated the efficacy of oral intake of heat-killed whole DGLA-producing yeast cells in the absence of lipid purification on cutaneous inflammation. Topical application of croton oil to mouse ears induces ear swelling in parallel with the increased production of chemokines and accumulation of infiltrating cells into the skin sites. These inflammatory reactions were significantly suppressed in a dose-dependent manner by oral intake of the DGLA-producing yeast cells for only 7 days. This suppression was not observed by the intake of the γ-linolenic acid-producing (C18:3n-6, an immediate precursor of DGLA) yeast, indicating DGLA itself suppressed the inflammation. Further analysis demonstrated that DGLA exerted an anti-inflammatory effect via prostaglandin E1 formation because naproxen, a cyclooxygenase inhibitor, attenuated the suppression. Since 25-fold of purified DGLA compared with that provided as a form of yeast was not effective, oral administration of the whole DGLA-producing yeast is considered to be a simple but efficient method to suppress inflammatory responses.
Collapse
Affiliation(s)
- Naoko Watanabe
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan,
| | | | | | | | | | | |
Collapse
|
17
|
Rosales-Mendoza S. Future directions for the development of Chlamydomonas-based vaccines. Expert Rev Vaccines 2014; 12:1011-9. [PMID: 24053395 DOI: 10.1586/14760584.2013.825455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Besides serving as a valuable model in biological sciences, Chamydomonas reinhardtii has been used during the last decade in the biotechnology arena to establish models for the low cost production of vaccines. Antigens from various pathogens including Plasmodium falciparum, foot and mouth disease virus, Staphylococcus aureus, classical swine fever virus (CSFV) as well as some auto-antigens, have been produced in C. reinhardtii. Although some of them have been functionally characterized with promising results, this review identifies future directions for the advancement in the exploitation of this robust and safe vaccine production platform. The present analysis reflects that important immunological implications exist for this system and remain unexplored, including the possible adjuvant effects of algae biomolecules, the effect of bioencapsulation on immunogenicity and the possible development of whole-cell vaccines as an approach to trigger cytotoxic immune responses. Recently described molecular strategies that aim to optimize the expression of nuclear-encoded target antigens are also discussed.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, México +52 444 826 2440 +52 444 826 2440
| |
Collapse
|
18
|
Jacob D, Ruffie C, Dubois M, Combredet C, Amino R, Formaglio P, Gorgette O, Pehau-Arnaudet G, Guery C, Puijalon O, Barale JC, Ménard R, Tangy F, Sala M. Whole Pichia pastoris yeast expressing measles virus nucleoprotein as a production and delivery system to multimerize Plasmodium antigens. PLoS One 2014; 9:e86658. [PMID: 24475165 PMCID: PMC3903550 DOI: 10.1371/journal.pone.0086658] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/11/2013] [Indexed: 12/13/2022] Open
Abstract
Yeasts are largely used as bioreactors for vaccine production. Usually, antigens are produced in yeast then purified and mixed with adjuvants before immunization. However, the purification costs and the safety concerns recently raised by the use of new adjuvants argue for alternative strategies. To this end, the use of whole yeast as both production and delivery system appears attractive. Here, we evaluated Pichia pastoris yeast as an alternative vaccine production and delivery system for the circumsporozoite protein (CS) of Plasmodium, the etiologic agent of malaria. The CS protein from Plasmodium berghei (Pb) was selected given the availability of the stringent C57Bl/6 mouse model of infection by Pb sporozoites, allowing the evaluation of vaccine efficacy in vivo. PbCS was multimerized by fusion to the measles virus (MV) nucleoprotein (N) known to auto-assemble in yeast in large-size ribonucleoprotein rods (RNPs). Expressed in P. pastoris, the N-PbCS protein generated highly multimeric and heterogenic RNPs bearing PbCS on their surface. Electron microscopy and immunofluorescence analyses revealed the shape of these RNPs and their localization in peripheral cytoplasmic inclusions. Subcutaneous immunization of C57Bl/6 mice with heat-inactivated whole P. pastoris expressing N-PbCS RNPs provided significant reduction of parasitemia after intradermal challenge with a high dose of parasites. Thus, in the absence of accessory adjuvants, a very low amount of PbCS expressed in whole yeast significantly decreased clinical damages associated with Pb infection in a highly stringent challenge model, providing a proof of concept of the intrinsic adjuvancy of this vaccine strategy. In addition to PbCS multimerization, the N protein contributed by itself to parasitemia delay and long-term mice survival. In the future, mixtures of whole recombinant yeasts expressing relevant Plasmodium antigens would provide a multivalent formulation applicable for antigen combination screening and possibly for large-scale production, distribution and delivery of a malaria vaccine in developing countries.
Collapse
Affiliation(s)
- Daria Jacob
- Institut Pasteur, Viral Genomics and Vaccination Unit, Paris, France
- CNRS, URA3015, Paris, France
| | - Claude Ruffie
- Institut Pasteur, Viral Genomics and Vaccination Unit, Paris, France
- CNRS, URA3015, Paris, France
| | - Myriam Dubois
- Institut Pasteur, Viral Genomics and Vaccination Unit, Paris, France
- CNRS, URA3015, Paris, France
| | - Chantal Combredet
- Institut Pasteur, Viral Genomics and Vaccination Unit, Paris, France
- CNRS, URA3015, Paris, France
| | - Rogerio Amino
- Institut Pasteur, Malaria Biology and Genetics Unit, Paris, France
| | | | - Olivier Gorgette
- Institut Pasteur, Molecular Immunology of Parasites Unit, Paris, France
- CNRS, URA2581, Paris, France
- Institut Pasteur, Malaria Biology and Genetics Unit, Team Malaria Targets and Drug Development, Paris, France
| | | | - Charline Guery
- Institut Pasteur, Viral Genomics and Vaccination Unit, Paris, France
- CNRS, URA3015, Paris, France
| | - Odile Puijalon
- Institut Pasteur, Molecular Immunology of Parasites Unit, Paris, France
- CNRS, URA2581, Paris, France
| | - Jean-Christophe Barale
- Institut Pasteur, Molecular Immunology of Parasites Unit, Paris, France
- CNRS, URA2581, Paris, France
- Institut Pasteur, Malaria Biology and Genetics Unit, Team Malaria Targets and Drug Development, Paris, France
| | - Robert Ménard
- Institut Pasteur, Malaria Biology and Genetics Unit, Paris, France
| | - Frédéric Tangy
- Institut Pasteur, Viral Genomics and Vaccination Unit, Paris, France
- CNRS, URA3015, Paris, France
| | - Monica Sala
- Institut Pasteur, Viral Genomics and Vaccination Unit, Paris, France
- CNRS, URA3015, Paris, France
- * E-mail:
| |
Collapse
|
19
|
Nguyen NL, Kim JM, Park JA, Park SM, Jang YS, Yang MS, Kim DH. Expression and purification of an immunogenic dengue virus epitope using a synthetic consensus sequence of envelope domain III and Saccharomyces cerevisiae. Protein Expr Purif 2013; 88:235-42. [PMID: 23376461 DOI: 10.1016/j.pep.2013.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/06/2013] [Accepted: 01/20/2013] [Indexed: 12/24/2022]
Abstract
A synthetic consensus gene was designed based on residues of the amino acid sequences of dengue envelope domain III (scEDIII) from all four serotypes, and codon optimization for expression was conducted using baker's yeast, Saccharomyces cerevisiae. The synthetic gene was cloned into a yeast episomal expression vector, pYEGPD-TER, which was designed to direct cloned gene expression using the glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter, a functional signal peptide of the amylase 1A protein from rice, and the GAL7 terminator. PCR and back-transformation into Escherichia coli confirmed the presence of the scEDIII gene-containing plasmid in the transformants. Northern blot analysis showed the presence of the scEDIII-specific transcript. Western blot analysis indicated that expressed scEDIII, with mobility similar to purified EDIII from E. coli, was successfully secreted into the culture media. Quantitative ELISA revealed that the recombinant scEDIII comprised approximately 0.1-0.6% of cell-free extract. In addition, 0.1-0.6 mg of scEDIII protein per liter of culture filtrate was detected on day 1 and peaked on day 3 after cultivation. The secreted scEDIII protein can be purified to ≥90% purity with 85% recovery using a simple ion-exchange FPLC followed by molecular weight cut-off. Upon administration of the purified protein to mice, mouse sera contained antibodies that were specific to all four serotypes of dengue virus. Moreover, a balanced immune response against all four serotypes was observed, suggesting that it may be possible to develop an effective tetravalent dengue vaccine using S. cerevisiae.
Collapse
Affiliation(s)
- Ngoc-Luong Nguyen
- Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Zhang T, Sun L, Xin Y, Ma L, Zhang Y, Wang X, Xu K, Ren C, Zhang C, Chen Z, Yang H, Zhang Z. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin. BMC Biotechnol 2012; 12:97. [PMID: 23253888 PMCID: PMC3543327 DOI: 10.1186/1472-6750-12-97] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 12/15/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Yeast Saccharomyces cerevisiae is a widely-used system for protein expression. We previously showed that heat-killed whole recombinant yeast vaccine expressing mammalian myostatin can modulate myostatin function in mice, resulting in increase of body weight and muscle composition in these animals. Foreign DNA introduced into yeast cells can be lost soon unless cells are continuously cultured in selection media, which usually contain antibiotics. For cost and safety concerns, it is essential to optimize conditions to produce quality food and pharmaceutical products. RESULTS We developed a simple but effective method to engineer a yeast strain stably expressing mammalian myostatin. This method utilized high-copy-number integration of myostatin gene into the ribosomal DNA of Saccharomyces cerevisiae. In the final step, antibiotic selection marker was removed using the Cre-LoxP system to minimize any possible side-effects for animals. The resulting yeast strain can be maintained in rich culture media and stably express mammalian myostatin for two years. Oral administration of the recombinant yeast was able to induce immune response to myostatin and modulated the body weight of mice. CONCLUSIONS Establishment of such yeast strain is a step further toward transformation of yeast cells into edible vaccine to improve meat production in farm animals and treat human muscle-wasting diseases in the future.
Collapse
Affiliation(s)
- Tingting Zhang
- College of Animal Science & Technology, Shaan'xi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, YangLing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tellam RL, Cockett NE, Vuocolo T, Bidwell CA. Genes contributing to genetic variation of muscling in sheep. Front Genet 2012; 3:164. [PMID: 22952470 PMCID: PMC3429854 DOI: 10.3389/fgene.2012.00164] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/10/2012] [Indexed: 12/24/2022] Open
Abstract
Selective breeding programs aiming to increase the productivity and profitability of the sheep meat industry use elite, progeny tested sires. The broad genetic traits of primary interest in the progeny of these sires include skeletal muscle yield, fat content, eating quality, and reproductive efficiency. Natural mutations in sheep that enhance muscling have been identified, while a number of genome scans have identified and confirmed quantitative trait loci (QTL) for skeletal muscle traits. The detailed phenotypic characteristics of sheep carrying these mutations or QTL affecting skeletal muscle show a number of common biological themes, particularly changes in developmental growth trajectories, alterations of whole animal morphology, and a shift toward fast twitch glycolytic fibers. The genetic, developmental, and biochemical mechanisms underpinning the actions of some of these genetic variants are described. This review critically assesses this research area, identifies gaps in knowledge, and highlights mechanistic linkages between genetic polymorphisms and skeletal muscle phenotypic changes. This knowledge may aid the discovery of new causal genetic variants and in some cases lead to the development of biochemical and immunological strategies aimed at enhancing skeletal muscle.
Collapse
Affiliation(s)
- Ross L Tellam
- Division of Animal, Food and Health Sciences, Commonwealth Scientific and Industrial Research Organisation St Lucia, QLD, Australia
| | | | | | | |
Collapse
|
22
|
Wu B, Qi R, Li B, Yuan T, Liu H, He J, Lin Z, Li W, Fu Y, Niu D. Effect of active immunization against a recombinant mouse granulocyte-macrophage colony-stimulating factor/somatostatin fusion protein on the growth of mice. Mol Biol Rep 2012; 39:6773-9. [DOI: 10.1007/s11033-012-1502-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 01/24/2012] [Indexed: 12/15/2022]
|