1
|
de Swart RL, Belov GA. Advantages and challenges of Newcastle disease virus as a vector for respiratory mucosal vaccines. Curr Opin Virol 2023; 62:101348. [PMID: 37591130 DOI: 10.1016/j.coviro.2023.101348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
Newcastle disease virus (NDV) is an avian pathogen with an unsegmented negative-strand RNA genome. Properties such as the ease of genome modification, respiratory tract tropism, and self-limiting replication in mammals make NDV an attractive vector for vaccine development. Experimental NDV-based vaccines against multiple human and animal pathogens elicited both systemic and mucosal immune responses and were protective in preclinical animal studies, but their real-life efficacy remains to be demonstrated. Only recently, the first results of clinical trials of NDV-based vaccines against SARS-CoV-2 became available, highlighting the challenges that need to be overcome to fully realize the potential of NDV as a platform for the rapid development of economically affordable and effective mucosal vaccines.
Collapse
Affiliation(s)
- Rik L de Swart
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, the Netherlands.
| | - George A Belov
- Department of Veterinary Medicine and Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
2
|
Klink AC, Rula O, Sushko M, Bezymennyi M, Mezinov O, Gaidash O, Bai X, Stegniy A, Sapachova M, Datsenko R, Skorokhod S, Nedosekov V, Hill NJ, Ninua L, Kovalenko G, Ducluzeau AL, Mezhenskyi A, Buttler J, Drown DM, Causey D, Stegniy B, Gerilovych A, Bortz E, Muzyka D. Discovery of Avian Paramyxoviruses APMV-1 and APMV-6 in Shorebirds and Waterfowl in Southern Ukraine. Viruses 2023; 15:699. [PMID: 36992408 PMCID: PMC10058161 DOI: 10.3390/v15030699] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 03/12/2023] Open
Abstract
Emerging RNA virus infections are a growing concern among domestic poultry industries due to the severe impact they can have on flock health and economic livelihoods. Avian paramyxoviruses (APMV; avulaviruses, AaV) are pathogenic, negative-sense RNA viruses that cause serious infections in the respiratory and central nervous systems. APMV was detected in multiple avian species during the 2017 wild bird migration season in Ukraine and studied using PCR, virus isolation, and sequencing. Of 4090 wild bird samples collected, mostly from southern Ukraine, eleven isolates were grown in ovo and identified for APMV serotype by hemagglutinin inhibition test as: APMV-1, APMV-4, APMV-6, and APMV-7. To build One Health's capacity to characterize APMV virulence and analyze the potential risks of spillover to immunologically naïve populations, we sequenced virus genomes in veterinary research labs in Ukraine using a nanopore (MinION) platform. RNA was extracted and amplified using a multiplex tiling primer approach to specifically capture full-length APMV-1 (n = 5) and APMV-6 (n = 2) genomes at high read depth. All APMV-1 and APMV-6 fusion (F) proteins possessed a monobasic cleavage site, suggesting these APMVs were likely low virulence, annually circulating strains. Utilization of this low-cost method will identify gaps in viral evolution and circulation in this understudied but important critical region for Eurasia.
Collapse
Affiliation(s)
- Amy C. Klink
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Oleksandr Rula
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, 61023 Kharkiv, Ukraine
| | - Mykola Sushko
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, 03151 Kyiv, Ukraine
| | - Maksym Bezymennyi
- Institute for Veterinary Medicine, National Academy of Agrarian Sciences, 03151 Kyiv, Ukraine
| | - Oleksandr Mezinov
- The F.E. Falz-Fein Biosphere Reserve “Askania Nova”, Askania-Nova, 75230 Kakhovka Raion, Ukraine
| | - Oleksandr Gaidash
- Institute of Natural Sciences, Department of Zoology, H.S. Skovoroda Kharkiv National Pedagogical University, 61022 Kharkiv, Ukraine
- Danube Biosphere Reserve, National Academy of Sciences of Ukraine, 68355 Vilkove, Ukraine
| | - Xiao Bai
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Anton Stegniy
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, 61023 Kharkiv, Ukraine
| | - Maryna Sapachova
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, 03151 Kyiv, Ukraine
| | - Roman Datsenko
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, 03151 Kyiv, Ukraine
| | - Sergiy Skorokhod
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, 03151 Kyiv, Ukraine
| | - Vitalii Nedosekov
- Department of Epizootology, The National University of Life and Environmental Science of Ukraine, 03041 Kyiv, Ukraine
| | - Nichola J. Hill
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA
| | - Levan Ninua
- Institute of Ecology, Ilia State University, Tbilisi 0162, Georgia
| | - Ganna Kovalenko
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
- Institute for Veterinary Medicine, National Academy of Agrarian Sciences, 03151 Kyiv, Ukraine
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Anne Lise Ducluzeau
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Andriy Mezhenskyi
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, 03151 Kyiv, Ukraine
| | - Jeremy Buttler
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Devin M. Drown
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Douglas Causey
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Borys Stegniy
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, 61023 Kharkiv, Ukraine
| | - Anton Gerilovych
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, 61023 Kharkiv, Ukraine
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, 03151 Kyiv, Ukraine
| | - Eric Bortz
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
- Institute for Veterinary Medicine, National Academy of Agrarian Sciences, 03151 Kyiv, Ukraine
| | - Denys Muzyka
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, 61023 Kharkiv, Ukraine
- Danube Biosphere Reserve, National Academy of Sciences of Ukraine, 68355 Vilkove, Ukraine
| |
Collapse
|
3
|
Hu Z, He X, Deng J, Hu J, Liu X. Current situation and future direction of Newcastle disease vaccines. Vet Res 2022; 53:99. [PMID: 36435802 PMCID: PMC9701384 DOI: 10.1186/s13567-022-01118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
Newcastle disease (ND) is one of the most economically devastating infectious diseases affecting the poultry industry. Virulent Newcastle disease virus (NDV) can cause high mortality and severe tissue lesions in the respiratory, gastrointestinal, neurological, reproductive and immune systems of poultry. Tremendous progress has been made in preventing morbidity and mortality caused by ND based on strict biosecurity and wide vaccine application. In recent decades, the continual evolution of NDV has resulted in a total of twenty genotypes, and genetic variation may be associated with disease outbreaks in vaccinated chickens. In some countries, the administration of genotype-matched novel vaccines in poultry successfully suppresses the circulation of virulent NDV strains in the field. However, virulent NDV is still endemic in many regions of the world, especially in low- and middle-income countries, impacting the livelihood of millions of people dependent on poultry for food. In ND-endemic countries, although vaccination is implemented for disease control, the lack of genotype-matched vaccines that can reduce virus infection and transmission as well as the inadequate administration of vaccines in the field undermines the effectiveness of vaccination. Dissection of the profiles of existing ND vaccines is fundamental for establishing proper vaccination regimes and developing next-generation vaccines. Therefore, in this article, we provide a broad review of commercial and experimental ND vaccines and promising new platforms for the development of next-generation vaccines.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaozheng He
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jing Deng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China.
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
4
|
Yang W, Dai J, Liu J, Guo M, Liu X, Hu S, Gu M, Hu J, Hu Z, Gao R, Liu K, Chen Y, Liu X, Wang X. Intranasal Immunization with a Recombinant Avian Paramyxovirus Serotypes 2 Vector-Based Vaccine Induces Protection against H9N2 Avian Influenza in Chicken. Viruses 2022; 14:v14050918. [PMID: 35632659 PMCID: PMC9144924 DOI: 10.3390/v14050918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/16/2022] Open
Abstract
Commercial inactivated vaccines against H9N2 avian influenza (AI) have been developed in China since 1990s and show excellent immunogenicity with strong HI antibodies. However, currently approved vaccines cannot meet the clinical demand for a live-vectored vaccine. Newcastle disease virus (NDV) vectored vaccines have shown effective protection in chickens against H9N2 virus. However, preexisting NDV antibodies may affect protective efficacy of the vaccine in the field. Here, we explored avian paramyxovirus serotype 2 (APMV-2) as a vector for developing an H9N2 vaccine via intranasal delivery. APMV-2 belongs to the same genus as NDV, distantly related to NDV in the phylogenetic tree, based on the sequences of Fusion (F) and hemagglutinin-neuraminidase (HN) gene, and has low cross-reactivity with anti-NDV antisera. We incorporated hemagglutinin (HA) of H9N2 into the junction of P and M gene in the APMV-2 genome by being flanked with the gene start, gene end, and UTR of each gene of APMV-2-T4 to generate seven recombinant APMV-2 viruses rAPMV-2/HAs, rAPMV-2-NPUTR-HA, rAPMV-2-PUTR-HA, rAPMV-2-FUTR-HA, rAPMV-2-HNUTR-HA, rAPMV-2-LUTR-HA, and rAPMV-2-MUTR-HA, expressing HA. The rAPMV-2/HAs displayed similar pathogenicity compared with the parental APMV-2-T4 virus and expressed HA protein in infected CEF cells. The NP-UTR facilitated the expression and secretion of HA protein in cells infected with rAPMV-2-NPUTR-HA. Animal studies demonstrated that immunization with rAPMV-2-NPUTR-HA elicited effective H9N2-specific antibody (6.14 ± 1.2 log2) responses and conferred complete immune protection to prevent viral shedding in the oropharyngeal and cloacal swabs from chickens challenged with H9N2 virus. This study suggests that our recombinant APMV-2 virus is safe and immunogenic and can be a useful tool in the combat of H9N2 outbreaks in chicken.
Collapse
Affiliation(s)
- Wenhao Yang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
| | - Jing Dai
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
| | - Jingjing Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
| | - Mengjiao Guo
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Zenglei Hu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225000, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Kaituo Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225000, China
| | - Yu Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
- Correspondence: (X.L.); (X.W.)
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
- Correspondence: (X.L.); (X.W.)
| |
Collapse
|
5
|
Pathotyping of Newcastle Disease Virus: a Novel Single BsaHI Digestion Method of Detection and Differentiation of Avirulent Strains (Lentogenic and Mesogenic Vaccine Strains) from Virulent Virus. Microbiol Spectr 2021; 9:e0098921. [PMID: 34878298 PMCID: PMC8653816 DOI: 10.1128/spectrum.00989-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We provide a novel single restriction enzyme (RE; BsaHI) digestion approach for detecting distinct pathotypes of Newcastle disease virus (NDV). After scanning 4,000 F gene nucleotide sequences in the NCBI database, we discovered a single RE (BsaHI) digestion site in the cleavage site. APMV-I “F gene” class II-specific primer-based reverse transcriptase PCR was utilized to amplify a 535-bp fragment, which was then digested with the RE (BsaHI) for pathotyping avian NDV field isolates and pigeon paramyxovirus-1 isolates. The avirulent (lentogenic and mesogenic strains) produced 189- and 346-bp fragments, respectively, but the result in velogenic strains remained undigested with 535-bp fragments. In addition, 45 field NDV isolates and 8 vaccine strains were used to confirm the approach. The sequence-based analysis also agrees with the data obtained utilizing the single RE (BsaHI) digestion approach. The proposed technique has the potential to distinguish between avirulent and virulent strains in a short time span, making it valuable in NDV surveillance and monitoring research. IMPORTANCE The extensive use of the NDV vaccine strain and the existence of avirulent NDV strains in wild birds makes it difficult to diagnose Newcastle Disease virus (NDV). The intracerebral pathogenicity index (ICPI) and/or sequencing-based identification, which are required to determine virulent NDV, are time-consuming, costly, difficult, and cruel techniques. We evaluated 4,000 F gene nucleotide sequences and discovered a restriction enzyme (RE; BsaHI) digestion technique for detecting NDV and vaccine pathotypes in a short time span, which is cost-effective and useful for field cases as well as for large-scale NDV monitoring and surveillance. The data acquired using the single RE BsaHI digestion technique agree with the sequence-based analysis.
Collapse
|
6
|
Hu Z, Liu X. "Antigen Camouflage and Decoy" Strategy to Overcome Interference From Maternally Derived Antibody With Newcastle Disease Virus-Vectored Vaccines: More Than a Simple Combination. Front Microbiol 2021; 12:735250. [PMID: 34512613 PMCID: PMC8432293 DOI: 10.3389/fmicb.2021.735250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Ariyama N, Tapia R, Godoy C, Agüero B, Valdés V, Berrios F, García Borboroglu P, Pütz K, Alegria R, Barriga GP, Medina R, Neira V. Avian orthoavulavirus 1 (Newcastle Disease virus) antibodies in five penguin species, Antarctic peninsula and Southern Patagonia. Transbound Emerg Dis 2021; 68:3096-3102. [PMID: 33587778 DOI: 10.1111/tbed.14037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 11/29/2022]
Abstract
Avian orthoavulavirus 1 (AOaV-1) causes Newcastle disease, one of the most important and contagious infections in poultry, where migratory birds can play a key role as a reservoir. Seven hundred and seven serum samples were collected from five penguin species (King, Magellanic, Gentoo, Chinstrap and Adelie penguins) in the Antarctic and Sub-Antarctic zones. Using a competitive ELISA to detect antibodies against AOaV-1, we identified positive individuals in all penguin species. The Magellanic penguin showed the highest seropositivity rate (30.3%), suggesting it could be a natural reservoir of this virus. At the Antarctic zones, Chinstrap penguin showed the highest occurrence (7.5%). Interesting, positive sera was only obtained in Sub-Antarctic and Northern zones at the Antarctic peninsula, no seroreactivity was observed in Southern locations. Further studies are needed to establish the role of these penguin species in the epidemiology of the AOaV-1 and determine the effects of this virus in these populations.
Collapse
Affiliation(s)
- Naomi Ariyama
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Rodrigo Tapia
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Claudia Godoy
- Global Penguin Society, San Francisco, CA, USA.,Parque Pingüino Rey, Porvenir, Chile
| | - Belén Agüero
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Valentina Valdés
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Felipe Berrios
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | | | | | - Raul Alegria
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Gonzalo P Barriga
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratory of Emerging Viruses, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Rafael Medina
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Víctor Neira
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Sunflower seed oil containing ginseng stem-leaf saponins (E515-D) is a safe adjuvant for Newcastle disease vaccine. Poult Sci 2020; 99:4795-4803. [PMID: 32988514 PMCID: PMC7598328 DOI: 10.1016/j.psj.2020.06.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Vaccination is an effective method to prevent Newcastle disease (ND) in chickens. Marcol 52 and #10 white oil are mineral-based adjuvants and can be found in commercial inactivated ND virus vaccines. The present study demonstrated that a vegetable origin oil E515-D had lower polycyclic aromatic hydrocarbons and higher flash point than the commercial products Marcol 52 and #10 white oil. E515-D could be mixed with an aqueous phase containing ND virus antigen to form a stable water-in-oil vaccine emulsion and exhibited more potent adjuvant effects on the immune response than Marcol 52 and #10 white oil. Moreover, the absorption of E515-D-adjuvanted vaccine was faster than absorption of Marcol 52- and #10 white oil-adjuvanted vaccines when ND virus vaccines were injected in broilers. Therefore, E515-D was safe and could be a suitable adjuvant used in vaccines for food animals. In addition,E515-D is not easy to be flammable during shipping and storage owing to its higher flash point.
Collapse
|
9
|
Comparative Protective Efficacies of Novel Avian Paramyxovirus-Vectored Vaccines against Virulent Infectious Bronchitis Virus in Chickens. Viruses 2020; 12:v12070697. [PMID: 32605292 PMCID: PMC7411825 DOI: 10.3390/v12070697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/02/2022] Open
Abstract
Viral vectored vaccines are desirable alternatives for conventional infectious bronchitis virus (IBV) vaccines. We have recently shown that a recombinant Newcastle disease virus (rNDV) strain LaSota expressing the spike (S) protein of IBV strain Mass-41 (rLaSota/IBV-S) was a promising vaccine candidate for IBV. Here we evaluated a novel chimeric rNDV/avian paramyxovirus serotype 2 (rNDV/APMV-2) as a vaccine vector against IBV. The rNDV/APMV-2 vector was chosen because it is much safer than the rNDV strain LaSota vector, particularly for young chicks and chicken embryos. In order to determine the effectiveness of this vector, a recombinant rNDV/APMV-2 expressing the S protein of IBV strain Mass-41 (rNDV/APMV-2/IBV-S) was constructed. The protective efficacy of this vector vaccine was compared to that of the rNDV vector vaccine. In one study, groups of one-day-old specific-pathogenic-free (SPF) chickens were immunized with rLaSota/IBV-S and rNDV/APMV-2/IBV-S and challenged four weeks later with the homologous highly virulent IBV strain Mass-41. In another study, groups of broiler chickens were single (at day one or three weeks of age) or prime-boost (prime at day one and boost at three weeks of age) immunized with rLaSota/IBV-S and/or rNDV-APMV-2/IBV-S. At weeks six of age, chickens were challenged with a highly virulent IBV strain Mass-41. Our challenge study showed that novel rNDV/APMV-2/IBV-S provided similar protection as rLaSota/IBV-S in SPF chickens. However, compared to prime-boost immunization of chickens with chimeric rNDV/APMV-2, rLaSota/IBV-S and/or a live IBV vaccine, single immunization of chickens with rLaSota/IBV-S, or live IBV vaccine provided better protection against IBV. In conclusion, we have developed the novel rNDV/APMV-2 vector expressing S protein of IBV that can be a safer vaccine against IB in chickens. Our results also suggest a single immunization with a LaSota vectored IBV vaccine candidate provides better protection than prime-boost immunization regimens.
Collapse
|
10
|
Hu Z, Ni J, Cao Y, Liu X. Newcastle Disease Virus as a Vaccine Vector for 20 Years: A Focus on Maternally Derived Antibody Interference. Vaccines (Basel) 2020; 8:vaccines8020222. [PMID: 32422944 PMCID: PMC7349365 DOI: 10.3390/vaccines8020222] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
It has been 20 years since Newcastle disease virus (NDV) was first used as a vector. The past two decades have witnessed remarkable progress in vaccine generation based on the NDV vector and optimization of the vector. Protective antigens of a variety of pathogens have been expressed in the NDV vector to generate novel vaccines for animals and humans, highlighting a great potential of NDV as a vaccine vector. More importantly, the research work also unveils a major problem restraining the NDV vector vaccines in poultry, i.e., the interference from maternally derived antibody (MDA). Although many efforts have been taken to overcome MDA interference, a lack of understanding of the mechanism of vaccination inhibition by MDA in poultry still hinders vaccine improvement. In this review, we outline the history of NDV as a vaccine vector by highlighting some milestones. The recent advances in the development of NDV-vectored vaccines or therapeutics for animals and humans are discussed. Particularly, we focus on the mechanisms and hypotheses of vaccination inhibition by MDA and the efforts to circumvent MDA interference with the NDV vector vaccines. Perspectives to fill the gap of understanding concerning the mechanism of MDA interference in poultry and to improve the NDV vector vaccines are also proposed.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jie Ni
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
11
|
Shirvani E, Varghese BP, Paldurai A, Samal SK. A recombinant avian paramyxovirus serotype 3 expressing the hemagglutinin protein protects chickens against H5N1 highly pathogenic avian influenza virus challenge. Sci Rep 2020; 10:2221. [PMID: 32042001 PMCID: PMC7010735 DOI: 10.1038/s41598-020-59124-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) is a devastating disease of poultry and a serious threat to public health. Vaccination with inactivated virus vaccines has been applied for several years as one of the major policies to control highly pathogenic avian influenza virus (HPAIV) infections in chickens. Viral-vectored HA protein vaccines are a desirable alternative for inactivated vaccines. However, each viral vector possesses its own advantages and disadvantages for the development of a HA-based vaccine against HPAIV. Recombinant Newcastle disease virus (rNDV) strain LaSota expressing HA protein vaccine has shown promising results against HPAIV; however, its replication is restricted only to the respiratory tract. Therefore, we thought to evaluate avian paramyxovirus serotype 3 (APMV-3) strain Netherlands as a safe vaccine vector against HPAIV, which has high efficiency replication in a greater range of host organs. In this study, we generated rAPMV-3 expressing the HA protein of H5N1 HPAIV using reverse genetics and evaluated the induction of neutralizing antibodies and protection by rAPMV3 and rNDV expressing the HA protein against HPAIV challenge in chickens. Our results showed that immunization of chickens with rAPMV-3 or rNDV expressing HA protein provided complete protection against HPAIV challenge. However, immunization of chickens with rAPMV-3 expressing HA protein induced higher level of neutralizing antibodies compared to that of rNDV expressing HA protein. These results suggest that a rAPMV-3 expressing HA protein might be a better vaccine for mass-vaccination of commercial chickens in field conditions.
Collapse
Affiliation(s)
- Edris Shirvani
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Berin P Varghese
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Anandan Paldurai
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Siba K Samal
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
12
|
SEROLOGICAL SURVEY FOR SELECT INFECTIOUS AGENTS IN WILD MAGELLANIC PENGUINS (SPHENISCUS MAGELLANICUS) IN ARGENTINA, 1994–2008. J Wildl Dis 2020. [DOI: 10.7589/2019-01-022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Tsunekuni R, Tanikawa T, Nakaya T, Saito T. Improvement of a recombinant avian avulavirus serotype 10 vectored vaccine by the addition of untranslated regions. Vaccine 2019; 38:822-829. [PMID: 31718900 DOI: 10.1016/j.vaccine.2019.10.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND We have previously developed a recombinant avian avulavirus serotype 10 (rAAvV-10/HA) expressing the hemagglutinin (HA) gene of a highly pathogenic avian influenza virus (HPAIV) as an emergency vaccine for poultry. rAAvV-10/HA can overcome the activity of the anti-AAvV-1 (Newcastle disease virus) antibody acquired by commercial chickens upon routine vaccination. Most chickens do not have the anti-AAvV-10 antibody, which could interfere with the vaccine efficacy. However, the vaccine efficacy of rAAvV-10/HA is not satisfactory in chickens even though it affords protection against an HPAIV challenge. In the present study, we improved the rAAvV-10/HA vaccine by enhancing the expression of the exogenous HA protein. METHODS The 5' and 3' untranslated regions (UTR) of each AAvV-10 gene were flanked with the exogenous HA gene cassette to modify rAAvV-10/HA, yielding different rAAv10-UTRs. As a control, rAAv10-nonUTR that did not contain any UTRs was generated. The effects of UTRs on mRNA transcription, HA protein expression, and vaccine efficacy were then examined using embryonated chicken eggs and white leghorn chickens. RESULTS The proportion of the HA gene mRNA among the vector-derived mRNAs (1.55-1.84-fold increase vs. the control) and HA protein levels (148-1151-fold increase vs. the control) in cells infected with rAAv10-UTRs were higher than in those infected with rAAv10-nonUTR. In vivo, vaccination of chickens with rAAv10-UTRs resulted in 100% protection against an HPAIV challenge. No chickens vaccinated with rAAv10-NP-UTR, rAAv10-F-UTR, or rAAv10-HN-UTR shed the virus in the throat and cloaca swabs. By contrast, rAAv10-nonUTR vaccination offered 70% protection, with 50% of chickens shedding the virus in the cloaca or throat swabs after the challenge. We conclude that the AAvV-10 UTRs can enhance the expression of the exogenous HA gene, resulting in improved efficacy of the rAAvV-10/HA vector vaccine. This improvement aids in the protection of flocks worldwide from the highly pathogenic avian influenza.
Collapse
Affiliation(s)
- Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan.
| | - Taichiro Tanikawa
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan.
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan; United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1193, Japan.
| |
Collapse
|
14
|
Absalón AE, Cortés-Espinosa DV, Lucio E, Miller PJ, Afonso CL. Epidemiology, control, and prevention of Newcastle disease in endemic regions: Latin America. Trop Anim Health Prod 2019; 51:1033-1048. [PMID: 30877525 PMCID: PMC6520322 DOI: 10.1007/s11250-019-01843-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/07/2019] [Indexed: 12/17/2022]
Abstract
Newcastle disease (ND) infects wild birds and poultry species worldwide, severely impacting the economics of the poultry industry. ND is especially problematic in Latin America (Mexico, Colombia, Venezuela, and Peru) where it is either endemic or re-emerging. The disease is caused by infections with one of the different strains of virulent avian Newcastle disease virus (NDV), recently renamed Avian avulavirus 1. Here, we describe the molecular epidemiology of Latin American NDVs, current control and prevention methods, including vaccines and vaccination protocols, as well as future strategies for control of ND. Because the productive, cultural, economic, social, and ecological conditions that facilitate poultry endemicity in South America are similar to those in the developing world, most of the problems and control strategies described here are applicable to other continents.
Collapse
Affiliation(s)
- A E Absalón
- Vaxbiotek, S.C. San Lorenzo 122-7, 72700, Cuautlancingo, Puebla, Mexico.
- Instituto Politécnico Nacional, CIBA-Tlaxcala, Carr. Est. Santa Ines Tecuexcomac-Tepetitla Km. 1.5, 90700, Tepetitla, Tlaxcala, Mexico.
| | | | - E Lucio
- Boehringer Ingelheim Animal Health, PO Drawer 2497, Gainesville, GA, 30503-2497, USA
| | - P J Miller
- Department of Population Health, College of Veterinary Medicine, The University of Georgia, 953 College Station Road, Athens, GA, 30602, USA
| | - C L Afonso
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, USDA/ARS, Athens, GA, 30605, USA.
| |
Collapse
|
15
|
Butt SL, Taylor TL, Volkening JD, Dimitrov KM, Williams-Coplin D, Lahmers KK, Miller PJ, Rana AM, Suarez DL, Afonso CL, Stanton JB. Rapid virulence prediction and identification of Newcastle disease virus genotypes using third-generation sequencing. Virol J 2018; 15:179. [PMID: 30466441 PMCID: PMC6251111 DOI: 10.1186/s12985-018-1077-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/10/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Newcastle disease (ND) outbreaks are global challenges to the poultry industry. Effective management requires rapid identification and virulence prediction of the circulating Newcastle disease viruses (NDV), the causative agent of ND. However, these diagnostics are hindered by the genetic diversity and rapid evolution of NDVs. METHODS An amplicon sequencing (AmpSeq) workflow for virulence and genotype prediction of NDV samples using a third-generation, real-time DNA sequencing platform is described here. 1D MinION sequencing of barcoded NDV amplicons was performed using 33 egg-grown isolates, (15 NDV genotypes), and 15 clinical swab samples collected from field outbreaks. Assembly-based data analysis was performed in a customized, Galaxy-based AmpSeq workflow. MinION-based results were compared to previously published sequences and to sequences obtained using a previously published Illumina MiSeq workflow. RESULTS For all egg-grown isolates, NDV was detected and virulence and genotype were accurately predicted. For clinical samples, NDV was detected in ten of eleven NDV samples. Six of the clinical samples contained two mixed genotypes as determined by MiSeq, of which the MinION method detected both genotypes in four samples. Additionally, testing a dilution series of one NDV isolate resulted in NDV detection in a dilution as low as 101 50% egg infectious dose per milliliter. This was accomplished in as little as 7 min of sequencing time, with a 98.37% sequence identity compared to the expected consensus obtained by MiSeq. CONCLUSION The depth of sequencing, fast sequencing capabilities, accuracy of the consensus sequences, and the low cost of multiplexing allowed for effective virulence prediction and genotype identification of NDVs currently circulating worldwide. The sensitivity of this protocol was preliminary tested using only one genotype. After more extensive evaluation of the sensitivity and specificity, this protocol will likely be applicable to the detection and characterization of NDV.
Collapse
Affiliation(s)
- Salman L. Butt
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA 30605 USA
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 USA
| | - Tonya L. Taylor
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA 30605 USA
| | | | - Kiril M. Dimitrov
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA 30605 USA
| | - Dawn Williams-Coplin
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA 30605 USA
| | - Kevin K. Lahmers
- Department of Biomedical Sciences & Pathobiology,VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA USA
| | - Patti J. Miller
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA 30605 USA
- Department of Population Health, College of Veterinary Medicine, 953 College Station Road, Athens, GA 30602 USA
| | - Asif M. Rana
- Hivet Animal Health Business, 667-P, Johar Town, Lahore, Pakistan
| | - David L. Suarez
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA 30605 USA
| | - Claudio L. Afonso
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA 30605 USA
| | - James B. Stanton
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
16
|
Tsunekuni R, Hikono H, Tanikawa T, Kurata R, Nakaya T, Saito T. Recombinant Avian Paramyxovirus Serotypes 2, 6, and 10 as Vaccine Vectors for Highly Pathogenic Avian Influenza in Chickens with Antibodies Against Newcastle Disease Virus. Avian Dis 2018; 61:296-306. [PMID: 28957006 DOI: 10.1637/11512-100616-regr1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recombinant Newcastle disease virus (rNDV) expressing the hemagglutinin of highly pathogenic avian influenza virus (HPAIV HA) induces protective immunity against HPAIV in chickens. However, the efficacy of rNDV vectors is hampered when chickens are pre-immune to NDV, and most commercial chickens are routinely vaccinated against NDV. We recently showed that avian paramyxovirus serotypes 2, 6, and 10 (APMV-2, APMV-6, and APMV-10), which belong to the same genus as NDV, have low cross-reactivity with anti-NDV antisera. Here, we used reverse genetics to generate recombinant APMV-2, APMV-6, and APMV-10 (rAPMV-2/HA, rAPMV-6/HA, and rAPMV-10/HA) that expressed an HA protein derived of subtype H5N1 HPAIV, A/chicken/Yamaguchi/7/2004. Chickens pre-immunized against NDV (age, 7 wk) were vaccinated with rAPMV/HAs; 14 days after vaccination, chickens were challenged with a lethal dose of HPAIV. Immunization of chickens pre-immunized against NDV with rAPMV-2/HA, rAPMV-6/HA, or rAPMV-10/HA protected 50%, 50%, and 25%, respectively, in groups of chickens given an rAPMV/HA with 106 median embryo infectious dose (EID50) or 50%, 50%, and 90%, respectively, in those with 107 EID50; in contrast, rNDV/HA protected none of the chicken vaccinated with 106 EID50 and induced only partial protection even with 107 EID50. Therefore, the presence of anti-NDV antibodies did not hamper the efficacy of rAPMV-2/HA, rAPMV-6/HA, or rAPMV-10/HA. These results suggest that rAPMV-2, rAPMV-6, and rAPMV-10 are potential vaccine vectors, especially for commercial chickens, which are routinely vaccinated against NDV.
Collapse
Affiliation(s)
- Ryota Tsunekuni
- A Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan
| | - Hirokazu Hikono
- B National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan
| | - Taichiro Tanikawa
- A Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan
| | - Riho Kurata
- B National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan
| | - Takaaki Nakaya
- C Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takehiko Saito
- A Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan
| |
Collapse
|
17
|
Next-generation sequencing of five new avian paramyxoviruses 8 isolates from Kazakhstan indicates a low genetic evolution rate over four decades. Arch Virol 2017; 163:331-336. [PMID: 29058150 PMCID: PMC5799330 DOI: 10.1007/s00705-017-3593-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/22/2017] [Indexed: 11/06/2022]
Abstract
Five avian paramyxoviruses of serotype 8 (APMV-8) were isolated during a study monitoring wild birds in Kazakhstan in 2013 and each was further characterized. The viruses were isolated from three White-fronted geese (Anser albifrons), one Whooper swan (Cygnus cygnus), and one Little stint (Calidris minuta). Before our study, only two complete APMV-8 sequences had been reported worldwide since their discovery in the USA and Japan in the 1970s. We report the complete genome sequences of the newly detected viruses and analyze the genetic evolution of the APMV-8 viruses over four decades.
Collapse
|
18
|
Yoshida A, Samal SK. Avian Paramyxovirus Type-3 as a Vaccine Vector: Identification of a Genome Location for High Level Expression of a Foreign Gene. Front Microbiol 2017; 8:693. [PMID: 28473820 PMCID: PMC5397467 DOI: 10.3389/fmicb.2017.00693] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 04/04/2017] [Indexed: 01/10/2023] Open
Abstract
Avian paramyxovirus serotype 3 (APMV-3) causes infection in a wide variety of avian species, but it does not cause apparent diseases in chickens. On the contrary, APMV-1, also known as Newcastle disease virus (NDV), can cause severe disease in chickens. Currently, natural low virulence strains of NDV are used as live-attenuated vaccines throughout the world. NDV is also being evaluated as a vaccine vector against poultry pathogens. However, due to routine vaccination programs, chickens often possess pre-existing antibodies against NDV, which may cause the chickens to be less sensitive to recombinant NDV vaccines expressing antigens of other avian pathogens. Therefore, it may be possible for an APMV-3 vector vaccine to circumvent this issue. In this study, we determined the optimal insertion site in the genome of APMV-3 for high level expression of a foreign gene. We generated recombinant APMV-3 viruses expressing the green fluorescent protein (GFP) by inserting the GFP gene at five different intergenic regions in the genome. The levels of GFP transcription and translation were evaluated. Interestingly, the levels of GFP transcription and translation did not follow the 3′-to-5′ attenuation mechanism of non-segmented, negative-sense RNA viruses. The insertion of GFP gene into the P-M gene junction resulted in higher level of expression of GFP than when the gene was inserted into the upstream N-P gene junction. Unlike NDV, insertion of GFP did not attenuate the growth efficiency of AMPV-3. Thus, APMV-3 could be a more useful vaccine vector for avian pathogens than NDV.
Collapse
Affiliation(s)
- Asuka Yoshida
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College ParkMD, USA
| | - Siba K Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College ParkMD, USA
| |
Collapse
|
19
|
Thampaisarn R, Bui VN, Trinh DQ, Nagai M, Mizutani T, Omatsu T, Katayama Y, Gronsang D, Le DHT, Ogawa H, Imai K. Characterization of avian paramyxovirus serotype 14, a novel serotype, isolated from a duck fecal sample in Japan. Virus Res 2016; 228:46-57. [PMID: 27884627 DOI: 10.1016/j.virusres.2016.11.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 01/11/2023]
Abstract
A hemagglutinating virus isolate designated 11OG0352, was obtained from a duck fecal sample. Genetic and virological analyses indicated that it might represent a novel serotype of avian paramyxovirus (APMV). Electron micrographs showed that the morphology of the virus particle was similar to that of APMV. The complete genome of this virus comprised 15,444 nucleotides complying with the paramyxovirus "rule of six" and contains six open reading frames (3'-N-P-M-F-HN-L-5'). The phylogenetic analysis of the whole genome revealed that the virus was a member of the genus Avulavirus, but that it was distinct from APMV-1 to APMV-13. Although the F-protein cleavage site was TREGK↓L, which resembles a lentogenic strain of APMV-1, the K residue at position -1 of the cleavage site was first discovered in APMV members. The phosphoprotein gene of isolate 11OG0352 contains a putative RNA editing site, 3'-AUUUUCCC-5' (negative sense) which sequence differs from that of other APMVs. The intracerebral pathogenicity index test did not detect virulence in infected chicks. In hemagglutination inhibition (HI) tests, an antiserum against this virus did not detectably react with other APMVs (serotypes 1-4, 6-9) except for low reciprocal cross-reactivity with APMV-6. We designated this isolate, as APMV-14/duck/Japan/11OG0352/2011 and propose that it is a novel APMV serotype. The HI test may not be widely applicable for the classification of a new serotype because of the limited availability of reference antisera against all serotypes and cross-reactivity data. The nucleotide sequence identities of the whole genome of 11OG0352 and other APMVs ranged from 46.3% to 56.1%. Such comparison may provide a useful tool for classifying new APMV isolates. However, the nucleotide sequence identity between APMV-12 and APMV-13 was higher (64%), which was nearly identical to the lowest nucleotide identity (67%) reported in subgroups within the serotype. Therefore, consensus criteria for using whole genome analysis should be established.
Collapse
Affiliation(s)
- Rapeewan Thampaisarn
- Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Vuong N Bui
- National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, Viet Nam
| | - Dai Q Trinh
- National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, Viet Nam
| | - Makoto Nagai
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Dulyatad Gronsang
- Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Duong H T Le
- Pasteur Institute of Ho Chi Minh City, 167 Pasteur, District 3, Ho Chi Minh City, Viet Nam
| | - Haruko Ogawa
- Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Kunitoshi Imai
- Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
20
|
Desingu PA, Singh SD, Dhama K, Karthik K, Vinodh Kumar OR, Malik YS. Phylogenetic analysis of Newcastle disease virus isolates occurring in India during 1989-2013. Virusdisease 2016; 27:203-6. [PMID: 27366774 DOI: 10.1007/s13337-016-0320-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022] Open
Abstract
The study details characterization of Newcastle disease virus (NDV) isolates recovered from commercial poultry flocks (chicken) and wild birds (crane) of India during the time period from 1989 to 2013. Phylogenetic analysis revealed that most of the NDV isolates belongs to class II, genotype XIIIa and a chicken isolate (108/BAREILLY/AD-IVRI/91) was of genotype VI, where it showed diversity of 3 % from the other viruses belonging to same genotype. Another chicken isolate (75/RAMPUR/AD-IVRI/89) grouped in genotype III and showed 4 % diversity with viruses of genotype III. The crane origin NDV identified as of genotype II corresponding to the vaccine virus. This appears to be the first report about existence of genotype XIIIa and its ancestral viruses are circulating in India for the last two decades in different species of birds. Furthermore, genetically distinct viruses belonging to genotypes II, III and VI are also circulating in India.
Collapse
Affiliation(s)
- P A Desingu
- Avian Diseases Section, Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, U.P. 243 122 India
| | - S D Singh
- Avian Diseases Section, Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, U.P. 243 122 India
| | - K Dhama
- Avian Diseases Section, Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, U.P. 243 122 India
| | - K Karthik
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, U.P. 243 122 India
| | - O R Vinodh Kumar
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, U.P. 243 122 India
| | - Y S Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, U.P. 243 122 India
| |
Collapse
|
21
|
Duan Z, Xu H, Ji X, Zhao J. Recombinant Newcastle disease virus-vectored vaccines against human and animal infectious diseases. Future Microbiol 2015; 10:1307-23. [PMID: 26234909 DOI: 10.2217/fmb.15.59] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent advances in recombinant genetic engineering techniques have brought forward a leap in designing new vaccines in modern medicine. One attractive strategy is the application of reverse genetics technology to make recombinant Newcastle disease virus (rNDV) deliver protective antigens of pathogens. In recent years, numerous studies have demonstrated that rNDV-vectored vaccines can induce quicker and better humoral and mucosal immune responses than conventional vaccines and are protective against pathogen challenges. With deeper understanding of NDV molecular biology, it is feasible to develop gene-modified rNDV vaccines accompanied by good safety, high efficacy, low toxicity and better immunogenicity. This review summarizes the development of reverse genetics technology in using NDV as a promising vaccine vector to design new vaccines for human and animal use.
Collapse
Affiliation(s)
- Zhiqiang Duan
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Houqiang Xu
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xinqin Ji
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jiafu Zhao
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
22
|
Gogoi P, Ganar K, Kumar S. Avian Paramyxovirus: A Brief Review. Transbound Emerg Dis 2015; 64:53-67. [DOI: 10.1111/tbed.12355] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Indexed: 12/01/2022]
Affiliation(s)
- P. Gogoi
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| | - K. Ganar
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| | - S. Kumar
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| |
Collapse
|
23
|
Chaka H, Thompson P, Goutard F, Grosbois V. Evaluation of enzyme-linked immunosorbent assays and a haemagglutination inhibition tests for the detection of antibodies to Newcastle disease virus in village chickens using a Bayesian approach. Prev Vet Med 2015; 119:21-30. [DOI: 10.1016/j.prevetmed.2015.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 01/09/2015] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
|
24
|
Desingu PA, Singh SD, Dhama K, Kumar ORV, Singh R, Singh RK. A rapid method of accurate detection and differentiation of Newcastle disease virus pathotypes by demonstrating multiple bands in degenerate primer based nested RT-PCR. J Virol Methods 2014; 212:47-52. [PMID: 25449112 DOI: 10.1016/j.jviromet.2014.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/31/2014] [Accepted: 11/11/2014] [Indexed: 11/26/2022]
Abstract
A rapid and accurate method of detection and differentiation of virulent and avirulent Newcastle disease virus (NDV) pathotypes was developed. The NDV detection was carried out for different domestic avian field isolates and pigeon paramyxo virus-1 (25 field isolates and 9 vaccine strains) by using APMV-I "fusion" (F) gene Class II specific external primer A and B (535bp), internal primer C and D (238bp) based reverses transcriptase PCR (RT-PCR). The internal degenerative reverse primer D is specific for F gene cleavage position of virulent strain of NDV. The nested RT-PCR products of avirulent strains showed two bands (535bp and 424bp) while virulent strains showed four bands (535bp, 424bp, 349bp and 238bp) on agar gel electrophoresis. This is the first report regarding development and use of degenerate primer based nested RT-PCR for accurate detection and differentiation of NDV pathotypes by demonstrating multiple PCR band patterns. Being a rapid, simple, and economical test, the developed method could serve as a valuable alternate diagnostic tool for characterizing NDV isolates and carrying out molecular epidemiological surveillance studies for this important pathogen of poultry.
Collapse
Affiliation(s)
- P A Desingu
- Avian Diseases Section, Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - S D Singh
- Avian Diseases Section, Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - K Dhama
- Avian Diseases Section, Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - O R Vinodh Kumar
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - R Singh
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - R K Singh
- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
25
|
Grund C, Steglich C, Huthmann E, Beer M, Mettenleiter TC, Römer-Oberdörfer A. Avian paramyoxvirus-8 immunization reduces viral shedding after homologous APMV-8 challenge but fails to protect against Newcastle disease. Virol J 2014; 11:179. [PMID: 25297904 PMCID: PMC4203933 DOI: 10.1186/1743-422x-11-179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protection against infection by Newcastle disease virus (NDV), also designated as avian paramyxovirus subtype-1 (APMV-1), is mediated by immune responses to the two surface glycoproteins, hemagglutinin-neuraminidase (HN) and fusion (F) protein. Thus, a chimeric APMV-1 based vaccine that encodes APMV-8 HN- and F-proteins and expresses the hemagglutinin of avian influenza virus (AIV) H5N1, is able to protect against HPAIV H5N1 but fails to protect against NDV [PLoS One8:e72530, 2013]. However, it is unclear whether avirulent APMV-subtypes, like APMV-8 can induce subtype-specific immunity and protect from a homologous challenge. FINDINGS APMV-8 infections of 3- and 6-weeks-old specific pathogen free (SPF)-chickens did not induce any clinical signs but was associated with virus shedding for up to 6 days. Viral replication was only detected in oropharyngeal- and never in cloacal swabs. Upon reinfection with homologous APMV-8, viral shedding was restricted to day 2 and in contrast to naive SPF-chickens, only RNA but no infectious virus was recovered. No protection was induced against virulent NDV challenge, although morbidity and mortality was delayed in APMV-8 primed chickens. This lack of protection is in line with a lack of reactivity of APMV-8 specific sera to APMV-1 HN-protein: Neither by hemagglutin-inhibition (HI) test nor immunoblot analyses, cross-reactivity was detected, despite reactivity to internal proteins. CONCLUSIONS Immune responses mounted during asymptomatic APMV-8 infection limit secondary infection against homologues reinfection and facilitates a delay in the onset of disease in a subtype independent manner but is unable to protect against Newcastle disease, a heterologous APMV-subtype.
Collapse
Affiliation(s)
- Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Methyltransferase-defective avian metapneumovirus vaccines provide complete protection against challenge with the homologous Colorado strain and the heterologous Minnesota strain. J Virol 2014; 88:12348-63. [PMID: 25122790 DOI: 10.1128/jvi.01095-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and is associated with swollen head syndrome in chickens. Since its discovery in the 1970s, aMPV has been recognized as an economically important pathogen in the poultry industry worldwide. The conserved region VI (CR VI) of the large (L) polymerase proteins of paramyxoviruses catalyzes methyltransferase (MTase) activities that typically methylate viral mRNAs at guanine N-7 (G-N-7) and ribose 2'-O positions. In this study, we generated a panel of recombinant aMPV (raMPV) Colorado strains carrying mutations in the S-adenosyl methionine (SAM) binding site in the CR VI of L protein. These recombinant viruses were specifically defective in ribose 2'-O, but not G-N-7 methylation and were genetically stable and highly attenuated in cell culture and viral replication in the upper and lower respiratory tracts of specific-pathogen-free (SPF) young turkeys. Importantly, turkeys vaccinated with these MTase-defective raMPVs triggered a high level of neutralizing antibody and were completely protected from challenge with homologous aMPV Colorado strain and heterologous aMPV Minnesota strain. Collectively, our results indicate (i) that aMPV lacking 2'-O methylation is highly attenuated in vitro and in vivo and (ii) that inhibition of mRNA cap MTase can serve as a novel target to rationally design live attenuated vaccines for aMPV and perhaps other paramyxoviruses. IMPORTANCE Paramyxoviruses include many economically and agriculturally important viruses such as avian metapneumovirus (aMPV), and Newcastle disease virus (NDV), human pathogens such as human respiratory syncytial virus, human metapneumovirus, human parainfluenza virus type 3, and measles virus, and highly lethal emerging pathogens such as Nipah virus and Hendra virus. For many of them, there is no effective vaccine or antiviral drug. These viruses share common strategies for viral gene expression and replication. During transcription, paramyxoviruses produce capped, methylated, and polyadenylated mRNAs. Using aMPV as a model, we found that viral ribose 2'-O methyltransferase (MTase) is a novel approach to rationally attenuate the virus for vaccine purpose. Recombinant aMPV (raMPV) lacking 2'-O MTase were not only highly attenuated in turkeys but also provided complete protection against the challenge of homologous and heterologous aMPV strains. This novel approach can be applicable to other animal and human paramyxoviruses for rationally designing live attenuated vaccines.
Collapse
|
27
|
Tsunekuni R, Hikono H, Saito T. Evaluation of avian paramyxovirus serotypes 2 to 10 as vaccine vectors in chickens previously immunized against Newcastle disease virus. Vet Immunol Immunopathol 2014; 160:184-91. [DOI: 10.1016/j.vetimm.2014.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/26/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
|
28
|
Chimeric newcastle disease virus protects chickens against avian influenza in the presence of maternally derived NDV immunity. PLoS One 2013; 8:e72530. [PMID: 24023747 PMCID: PMC3762792 DOI: 10.1371/journal.pone.0072530] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/10/2013] [Indexed: 02/08/2023] Open
Abstract
Newcastle disease virus (NDV), an avian paramyxovirus type 1, is a promising vector for expression of heterologous proteins from a variety of unrelated viruses including highly pathogenic avian influenza virus (HPAIV). However, pre-existing NDV antibodies may impair vector virus replication, resulting in an inefficient immune response against the foreign antigen. A chimeric NDV-based vector with functional surface glycoproteins unrelated to NDV could overcome this problem. Therefore, an NDV vector was constructed which carries the fusion (F) and hemagglutinin-neuraminidase (HN) proteins of avian paramyxovirus type 8 (APMV-8) instead of the corresponding NDV proteins in an NDV backbone derived from the lentogenic NDV Clone 30 and a gene expressing HPAIV H5 inserted between the F and HN genes. After successful virus rescue by reverse genetics, the resulting chNDVFHN PMV8H5 was characterized in vitro and in vivo. Expression and virion incorporation of the heterologous proteins was verified by Western blot and electron microscopy. Replication of the newly generated recombinant virus was comparable to parental NDV in embryonated chicken eggs. Immunization with chNDVFHN PMV8H5 stimulated full protection against lethal HPAIV infection in chickens without as well as with maternally derived NDV antibodies. Thus, tailored NDV vector vaccines can be provided for use in the presence or absence of routine NDV vaccination.
Collapse
|
29
|
Nayak B, Nayak S, Paldurai A, Kumar S, De Nardi R, Terregino C, Collins PL, Samal SK. Evaluation of the genetic diversity of avian paramyxovirus type 4. Virus Res 2012. [PMID: 23178589 DOI: 10.1016/j.virusres.2012.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Avian paramyxoviruses (APMVs) belong to the genus Avulavirus in the family Paramyxoviridae and include at least nine serotypes, APMV-1 to -9, as well as two additional provisional serotypes. Newcastle disease virus (NDV), which comprises APMV-1, is the most extensively studied APMV because it is an important poultry pathogen. A moderate level of antigenic and genetic diversity is recognized for APMV-1 isolates, but our knowledge of the antigenic and genetic diversity of the other APMV serotypes is limited. APMV-4 is frequently isolated from waterfowl around the world. To date complete genome sequences of APMV-4 are available for only strains, which were isolated from ducks in Hong Kong, Korea and Belgium over a period of 37 years. We have carried out genome sequencing from the nucleocapsid (N) gene-end signal to the polymerase (L) gene-start signal of five APMV-4 strains recently isolated from Italy. Each of the eight APMV-4 strains has the same F protein cleavage site, DIQPR↓F. They also share a high level of nucleotide and amino acid sequence identity: for example, the F and HN glycoproteins have greater than 97% sequence identity between the various strains. Thus, comparison of these eight strains of APMV-4 did not provide evidence of substantial diversity, in contrast to similar studies with APMV-2, -3, and -6, in which the F and HN glycoproteins exhibited up to 20-30% amino acid sequence variation within a subgroup. Reciprocal cross-HI assay using post infection chicken sera also failed to detect significant antigenic variation among the available APMV-4 strains.
Collapse
Affiliation(s)
- Baibaswata Nayak
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Absalón AE, Mariano-Matías A, Vásquez-Márquez A, Morales-Garzón A, Cortés-Espinosa DV, Ortega-García R, Lucio-Decanini E. Complete genome sequence of a velogenic Newcastle disease virus isolated in Mexico. Virus Genes 2012; 45:304-10. [PMID: 22821201 DOI: 10.1007/s11262-012-0782-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/03/2012] [Indexed: 11/25/2022]
Abstract
In Mexico, the number of cases of the highly virulent Newcastle disease virus is increasing. In 2005, an outbreak of Newcastle disease occurred on an egg laying hen farm in the state of Puebla despite vaccination with the LaSota strain. Farmers experienced a major drop in egg production as a consequence of a field challenge virus. In this study, we characterize the virus, APMV1/chicken/Mexico/P05/2005, responsible for the outbreak. The virus is categorized as a velogenic virus with an intracranial pathogenicity index of 1.99 and a chicken embryo mean death time of 36 h. The complete genome length of the virus was sequenced as consisting of 15,192 bp. In addition, phylogenetic analysis classified the virus as a member of the class II, genotype V. The highly pathogenic nature of the virus has been linked to the amino acid sequence at the fusion protein cleavage site, which contains multiple basic amino acids (RRQKR↓F).
Collapse
Affiliation(s)
- Angel E Absalón
- Centro de Investigación en Biotecnología Aplicada, IPN, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla Km 1.5, Tepetitla, Tlaxcala, Mexico.
| | | | | | | | | | | | | |
Collapse
|
31
|
Replication, neurotropism, and pathogenicity of avian paramyxovirus serotypes 1-9 in chickens and ducks. PLoS One 2012; 7:e34927. [PMID: 22558104 DOI: 10.1371/journal.pone.0034927] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/08/2012] [Indexed: 11/19/2022] Open
Abstract
Avian paramyxovirus (APMV) serotypes 1-9 have been isolated from many different avian species. APMV-1 (Newcastle disease virus) is the only well-characterized serotype, because of the high morbidity, mortality, and economic loss caused by highly virulent strains. Very little is known about the pathogenesis, replication, virulence, and tropism of the other APMV serotypes. Here, this was evaluated for prototypes strains of APMV serotypes 2-9 in cell culture and in chickens and ducks. In cell culture, only APMV-1, -3 and -5 induced syncytium formation. In chicken DF1 cells, APMV-3 replicated with an efficiency approaching that of APMV-1, while APMV-2 and -5 replicated to lower, intermediate titers and the others were much lower. Mean death time (MDT) assay in chicken eggs and intracerebral pathogenicity index (ICPI) test in 1-day-old SPF chicks demonstrated that APMV types 2-9 were avirulent. Evaluation of replication in primary neuronal cells in vitro as well as in the brains of 1-day-old chicks showed that, among types 2-9, only APMV-3 was neurotropic, although this virus was not neurovirulent. Following intranasal infection of 1-day-old and 2-week-old chickens, replication of APMV types 2-9 was mostly restricted to the respiratory tract, although APMV-3 was neuroinvasive and neurotropic (but not neurovirulent) and also was found in the spleen. Experimental intranasal infection of 3-week-old mallard ducks with the APMVs did not produce any clinical signs (even for APMV-1) and exhibited restricted viral replication of the APMVs (including APMV-1) to the upper respiratory tract regardless of their isolation source, indicating avirulence of APMV types 1-9 in mallard ducks. The link between the presence of a furin cleavage site in the F protein, syncytium formation, systemic spread, and virulence that has been well-established with APMV-1 pathotypes was not evident with the other APMV serotypes.
Collapse
|