1
|
Huang Z, Gong H, Sun Q, Yang J, Yan X, Xu F. Research progress on emulsion vaccine adjuvants. Heliyon 2024; 10:e24662. [PMID: 38317888 PMCID: PMC10839794 DOI: 10.1016/j.heliyon.2024.e24662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Vaccination is the most cost-effective method for preventing various infectious diseases. Compared with conventional vaccines, new-generation vaccines, especially recombinant protein or synthetic peptide vaccines, are safer but less immunogenic than crude inactivated microbial vaccines. The immunogenicity of these vaccines can be enhanced using suitable adjuvants. This is the main reason why adjuvants are of great importance in vaccine development. Several novel human emulsion-based vaccine adjuvants (MF59, AS03) have been approved for clinical use. This paper reviews the research progress on emulsion-based adjuvants and focuses on their mechanism of action. An outlook can be provided for the development of emulsion-based vaccine adjuvants.
Collapse
Affiliation(s)
- Zhuanqing Huang
- Department of Ophthalmology, The No. 944 Hospital of Joint Logistic Support Force of PLA, Gansu 735000, China
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre, PLA General Hospital, Beijing 100853, China
| | - Hui Gong
- Medical School of Chinese PLA, Beijing 100853, China
| | - Qi Sun
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre, PLA General Hospital, Beijing 100853, China
| | - Jinjin Yang
- The Fifth medical center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xiaochuan Yan
- Department of Ophthalmology, The No. 944 Hospital of Joint Logistic Support Force of PLA, Gansu 735000, China
| | - Fenghua Xu
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre, PLA General Hospital, Beijing 100853, China
| |
Collapse
|
2
|
Dinadayala P, Gleizal G, Guinamand S, Bonifassi P, Haensler J. Characterization of antigen adjuvant interactions in polyacrylate adjuvanted vaccines. Biochem Biophys Rep 2023; 33:101405. [DOI: 10.1016/j.bbrep.2022.101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
|
3
|
Carnet F, Perrin-Cocon L, Paillot R, Lotteau V, Pronost S, Vidalain PO. An inventory of adjuvants used for vaccination in horses: the past, the present and the future. Vet Res 2023; 54:18. [PMID: 36864517 PMCID: PMC9983233 DOI: 10.1186/s13567-023-01151-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/27/2023] [Indexed: 03/04/2023] Open
Abstract
Vaccination is one of the most widely used strategies to protect horses against pathogens. However, available equine vaccines often have limitations, as they do not always provide effective, long-term protection and booster injections are often required. In addition, research efforts are needed to develop effective vaccines against emerging equine pathogens. In this review, we provide an inventory of approved adjuvants for equine vaccines worldwide, and discuss their composition and mode of action when available. A wide range of adjuvants are used in marketed vaccines for horses, the main families being aluminium salts, emulsions, polymers, saponins and ISCOMs. We also present veterinary adjuvants that are already used for vaccination in other species and are currently evaluated in horses to improve equine vaccination and to meet the expected level of protection against pathogens in the equine industry. Finally, we discuss new adjuvants such as liposomes, polylactic acid polymers, inulin, poly-ε-caprolactone nanoparticles and co-polymers that are in development. Our objective is to help professionals in the horse industry understand the composition of marketed equine vaccines in a context of mistrust towards vaccines. Besides, this review provides researchers with a list of adjuvants, either approved or at least evaluated in horses, that could be used either alone or in combination to develop new vaccines.
Collapse
Affiliation(s)
- Flora Carnet
- grid.508204.bLABÉO, 14280 Saint-Contest, France ,grid.412043.00000 0001 2186 4076BIOTARGEN, Normandie University, UNICAEN, 14280 Saint-Contest, France
| | - Laure Perrin-Cocon
- grid.462394.e0000 0004 0450 6033CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Romain Paillot
- grid.451003.30000 0004 0387 5232School of Equine and Veterinary Physiotherapy, Writtle University College, Lordship Road, Writtle, Chelmsford, CM1 3RR UK
| | - Vincent Lotteau
- grid.462394.e0000 0004 0450 6033CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Stéphane Pronost
- LABÉO, 14280, Saint-Contest, France. .,BIOTARGEN, Normandie University, UNICAEN, 14280, Saint-Contest, France.
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France.
| |
Collapse
|
4
|
Shin J, Choe S, Park GN, Song S, Kim KS, An BH, Hyun BH, An DJ. Isolation and Genetic Characterization of a Bovine Coronavirus KBR-1 Strain from Calf Feces in South Korea. Viruses 2022; 14:v14112376. [PMID: 36366474 PMCID: PMC9695762 DOI: 10.3390/v14112376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 01/31/2023] Open
Abstract
Bovine coronavirus (BCoV) causes severe diarrhea in neonatal calves, winter dysentery in adult cattle, and respiratory disease in feedlot cattle, resulting in economic losses. A total of 16/140 calf diarrheic feces samples collected in South Korea between 2017 and 2018 were positive for BCoV. Phylogenetic analysis of the complete spike and hemagglutinin/esterase genes revealed that the 16 Korean BCoV strains belonged to group GIIa along with Korean strains isolated after 2000, whereas Korean BCoV strains isolated before 2000 belonged to group GI. Mice and goats inoculated with an inactivated KBR-1 strain (isolated from this study) generated higher antibody titers (96 ± 13.49 and 73 ± 13.49, respectively) when mixed with the Montanide01 adjuvant than when mixed with the Carbopol or IMS1313 adjuvants. Viral antigens were detected in the large intestine, jejunum, and ileum of calves inoculated with inactivated KBR-1 vaccine (104.0 TCID50/mL) at 14 days of post-challenge (DPC). However, no viral antigens were detected in calves vaccinated with a higher dose of inactivated KBR-1 strain (106.0 TCID50/mL) at 14 DPC, and they had high antibody titers and stable diarrhea scores. Currently, the group GIIa is prevalent in cows in South Korea, and although further research is needed in the future, the recently isolated KBR-1 strain has potential value as a new vaccine candidate.
Collapse
Affiliation(s)
- Jihye Shin
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - SeEun Choe
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Gyu-Nam Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Sok Song
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Ki-Sun Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Byung-Hyun An
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, GwanAk-Ro 1, GwanAk-Gu, Seoul 08826, Korea
| | - Bang-Hun Hyun
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
- Correspondence: ; Tel.: +82-54-912-0795
| |
Collapse
|
5
|
Lee W, Suresh M. Vaccine adjuvants to engage the cross-presentation pathway. Front Immunol 2022; 13:940047. [PMID: 35979365 PMCID: PMC9376467 DOI: 10.3389/fimmu.2022.940047] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Adjuvants are indispensable components of vaccines for stimulating optimal immune responses to non-replicating, inactivated and subunit antigens. Eliciting balanced humoral and T cell-mediated immunity is paramount to defend against diseases caused by complex intracellular pathogens, such as tuberculosis, malaria, and AIDS. However, currently used vaccines elicit strong antibody responses, but poorly stimulate CD8 cytotoxic T lymphocyte (CTL) responses. To elicit potent CTL memory, vaccines need to engage the cross-presentation pathway, and this requirement has been a crucial bottleneck in the development of subunit vaccines that engender effective T cell immunity. In this review, we focus on recent insights into DC cross-presentation and the extent to which clinically relevant vaccine adjuvants, such as aluminum-based nanoparticles, water-in oil emulsion (MF59) adjuvants, saponin-based adjuvants, and Toll-like receptor (TLR) ligands modulate DC cross-presentation efficiency. Further, we discuss the feasibility of using carbomer-based adjuvants as next generation of adjuvant platforms to elicit balanced antibody- and T-cell based immunity. Understanding of the molecular mechanism of DC cross-presentation and the mode of action of adjuvants will pave the way for rational design of vaccines for infectious diseases and cancer that require balanced antibody- and T cell-based immunity.
Collapse
|
6
|
Malburet C, Leclercq L, Cotte JF, Thiebaud J, Cottet H. Study of Interactions between Antigens and Polymeric Adjuvants in Vaccines by Frontal Analysis Continuous Capillary Electrophoresis. Biomacromolecules 2020; 21:3364-3373. [PMID: 32609507 DOI: 10.1021/acs.biomac.0c00782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vaccine adjuvants are used to enhance the immune response induced by antigens that have insufficient immunostimulatory capabilities. The present work aims at developing a frontal analysis continuous capillary electrophoresis (FACCE) methodology for the study of antigen-adjuvant interactions in vaccine products. After method optimization using three cationic model proteins, namely lysozyme, cytochrome c, and ribonuclease A, FACCE was successfully implemented to quantify the free antigen and thus to determine the interaction parameters (stoichiometry and binding constant) between an anionic polymeric adjuvant (polyacrylic acid, SPA09) and a cationic vaccine antigen in development for the treatment for Staphylococcus aureus. The influence of the ionic strength of the medium on the interactions was investigated. A strong dependence of the binding parameters with the ionic strength was observed. The concentration of the polymeric adjuvant was also found to significantly modify the ionic strength of the formulation, the extent of which could be estimated and corrected.
Collapse
Affiliation(s)
- Camille Malburet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.,Analytical Sciences, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, Marcy-l'Étoile 69280, France
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-François Cotte
- Analytical Sciences, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, Marcy-l'Étoile 69280, France
| | - Jérôme Thiebaud
- Analytical Sciences, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, Marcy-l'Étoile 69280, France
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
7
|
Garinot M, Piras-Douce F, Probeck P, Chambon V, Varghese K, Liu Y, Luna E, Drake D, Haensler J. A potent novel vaccine adjuvant based on straight polyacrylate. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2020; 2:100054. [PMID: 32776001 PMCID: PMC7398942 DOI: 10.1016/j.ijpx.2020.100054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/18/2020] [Indexed: 02/03/2023]
Abstract
A structure-activity study was conducted to identify the structural characteristics underlying the adjuvant activity of straight (i.e. non-crosslinked) polyacrylate polymers (PAAs) in order to select a new PAA adjuvant candidate for future clinical development. The study revealed that the adjuvant effect of PAA was mainly influenced by polymer size (Mw) and dose. Maximal effects were obtained with large PAAs above 350 kDa and doses above 100 μg in mice. Small PAAs below 10 kDa had virtually no adjuvant effect. HPSEC analysis revealed that PAA polydispersity index and ramification had less impact on adjuvanticity. Heat stability studies indicated that residual persulfate could be detrimental to PAA stability. Hence, this impurity was systematically eliminated by diafiltration along with small Mw PAAs and residual acrylic acid that could potentially affect product safety, potency and stability. The selected PAA, termed SPA09, displayed an adjuvant effect that was superior to that of a standard emulsion adjuvant when tested with CMV-gB in mice, even in the absence of binding to the antigen. The induced immune response was dominated by strong IFNγ, IgG2c and virus neutralizing titers. The activity of SPA09 was then confirmed on human cells via the innate immune module of the human MIMIC® system. Straight polyacrylate (350 kDa < Mw < 650 kDa; termed SPA09) is a strong adjuvant easy to formulate with vaccine antigens SPA09 induces Th-1 type immune responses in mice, dominated by strong IFN-γ, IgG2c and virus neutralizing titers SPA09 can activate human antigen presenting cells when tested via the innate immune module (PTE) of the human MIMIC® system SPA09 constitutes a straightforward new adjuvant candidate for future clinical development
Collapse
Affiliation(s)
- Marie Garinot
- Research and External Innovation, Sanofi Pasteur, Marcy L'Etoile, France
| | | | | | | | - Kucku Varghese
- Global Clinical Immunology, Sanofi Pasteur, Swiftwater, PA, USA
| | - Yuanqing Liu
- Research and External Innovation, Sanofi Pasteur, Marcy L'Etoile, France
| | | | | | - Jean Haensler
- Research and External Innovation, Sanofi Pasteur, Marcy L'Etoile, France
| |
Collapse
|
8
|
Abstract
Adjuvants are included in vaccine formulations to enhance the immunogenicity and efficacy of vaccines. MF59® is an oil-in-water emulsion adjuvant and licensed for use in pandemic and seasonal influenza vaccines in many countries. MF59 is safe and well tolerated in humans. MF59-adjuvanted vaccination spares vaccine dose and enhances hemagglutination inhibiting antibodies against homologous and heterologous influenza virus strains. The mechanisms of MF59 involve rapid induction of chemokines, inflammatory cytokines, recruiting multiple immune cells, uric acid and benign apoptosis of certain innate immune cells. The adjuvant effects of MF59 on generating vaccine-specific isotype-switched IgG antibodies, effector CD8 T cells, and protective immunity were retained even in a CD4-deficient condition by inducing effective immune-competent microenvironment with various innate and antigen presenting cells in a mouse model. CD4-independent adjuvant effects of MF59 might contribute to improving the vaccine efficacy in children, the elderly, and immunocompromised patients as well as in healthy adults. Further studies will be needed to broaden the use of MF59 in various vaccine antigens and populations as well as lead to better understanding of the action mechanisms of MF59 adjuvant.
Collapse
Affiliation(s)
- Eun-Ju Ko
- a Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences , Georgia State University , Atlanta , GA , USA.,b Vaccine Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| | - Sang-Moo Kang
- a Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences , Georgia State University , Atlanta , GA , USA
| |
Collapse
|
9
|
Increased, Durable B-Cell and ADCC Responses Associated with T-Helper Cell Responses to HIV-1 Envelope in Macaques Vaccinated with gp140 Occluded at the CD4 Receptor Binding Site. J Virol 2017; 91:JVI.00811-17. [PMID: 28701402 PMCID: PMC5599767 DOI: 10.1128/jvi.00811-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023] Open
Abstract
Strategies are needed to improve the immunogenicity of HIV-1 envelope (Env) antigens (Ag) for more long-lived, efficacious HIV-1 vaccine-induced B-cell responses. HIV-1 Env gp140 (native or uncleaved molecules) or gp120 monomeric proteins elicit relatively poor B-cell responses which are short-lived. We hypothesized that Env engagement of the CD4 receptor on T-helper cells results in anergic effects on T-cell recruitment and consequently a lack of strong, robust, and durable B-memory responses. To test this hypothesis, we occluded the CD4 binding site (CD4bs) of gp140 by stable cross-linking with a 3-kDa CD4 miniprotein mimetic, serving to block ligation of gp140 on CD4+ T cells while preserving CD4-inducible (CDi) neutralizing epitopes targeted by antibody-dependent cellular cytotoxicity (ADCC) effector responses. Importantly, immunization of rhesus macaques consistently gave superior B-cell (P < 0.001) response kinetics and superior ADCC (P < 0.014) in a group receiving the CD4bs-occluded vaccine compared to those of animals immunized with gp140. Of the cytokines examined, Ag-specific interleukin-4 (IL-4) T-helper enzyme-linked immunosorbent spot (ELISpot) assays of the CD4bs-occluded group increased earlier (P = 0.025) during the inductive phase. Importantly, CD4bs-occluded gp140 antigen induced superior B-cell and ADCC responses, and the elevated B-cell responses proved to be remarkably durable, lasting more than 60 weeks postimmunization. IMPORTANCE Attempts to develop HIV vaccines capable of inducing potent and durable B-cell responses have been unsuccessful until now. Antigen-specific B-cell development and affinity maturation occurs in germinal centers in lymphoid follicles through a critical interaction between B cells and T follicular helper cells. The HIV envelope binds the CD4 receptor on T cells as soluble shed antigen or as antigen-antibody complexes, causing impairment in the activation of these specialized CD4-positive T cells. We proposed that CD4-binding impairment is partly responsible for the relatively poor B-cell responses to HIV envelope-based vaccines. To test this hypothesis, we blocked the CD4 binding site of the envelope antigen and compared it to currently used unblocked envelope protein. We found superior and durable B-cell responses in macaques vaccinated with an occluded CD4 binding site on the HIV envelope antigen, demonstrating a potentially important new direction in future design of new HIV vaccines.
Collapse
|
10
|
Collins KA, Snaith R, Cottingham MG, Gilbert SC, Hill AVS. Enhancing protective immunity to malaria with a highly immunogenic virus-like particle vaccine. Sci Rep 2017; 7:46621. [PMID: 28422178 PMCID: PMC5395940 DOI: 10.1038/srep46621] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
The leading malaria vaccine in development is the circumsporozoite protein (CSP)-based particle vaccine, RTS,S, which targets the pre-erythrocytic stage of Plasmodium falciparum infection. It induces modest levels of protective efficacy, thought to be mediated primarily by CSP-specific antibodies. We aimed to enhance vaccine efficacy by generating a more immunogenic CSP-based particle vaccine and therefore developed a next-generation RTS,S-like vaccine, called R21. The major improvement is that in contrast to RTS,S, R21 particles are formed from a single CSP-hepatitis B surface antigen (HBsAg) fusion protein, and this leads to a vaccine composed of a much higher proportion of CSP than in RTS,S. We demonstrate that in BALB/c mice R21 is immunogenic at very low doses and when administered with the adjuvants Abisco-100 and Matrix-M it elicits sterile protection against transgenic sporozoite challenge. Concurrent induction of potent cellular and humoral immune responses was also achieved by combining R21 with TRAP-based viral vectors and protective efficacy was significantly enhanced. In addition, in contrast to RTS,S, only a minimal antibody response to the HBsAg carrier was induced. These studies identify an anti-sporozoite vaccine component that may improve upon the current leading malaria vaccine RTS,S. R21 is now under evaluation in Phase 1/2a clinical trials.
Collapse
Affiliation(s)
- Katharine A. Collins
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Rebecca Snaith
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Matthew G. Cottingham
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Sarah C. Gilbert
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Adrian V. S. Hill
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| |
Collapse
|
11
|
Gartlan KH, Krashias G, Wegmann F, Hillson WR, Scherer EM, Greenberg PD, Eisenbarth SC, Moghaddam AE, Sattentau QJ. Sterile inflammation induced by Carbopol elicits robust adaptive immune responses in the absence of pathogen-associated molecular patterns. Vaccine 2016; 34:2188-96. [PMID: 27005810 PMCID: PMC4850248 DOI: 10.1016/j.vaccine.2016.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/07/2016] [Accepted: 03/12/2016] [Indexed: 11/27/2022]
Abstract
Carbopol induces Th1/IgG2a responses without PRR activation. Carbopol polymer morphology is changed by APC phagocytosis leading to ROS induction. This study highlights a potentially novel mechanism for in vivo cellular activation.
Carbopol is a polyanionic carbomer used in man for topical application and drug delivery purposes. However parenteral administration of Carbopol in animal models results in systemic adjuvant activity including strong pro-inflammatory type-1 T-cell (Th1) polarization. Here we investigated potential pathways of immune activation by Carbopol by comparison with other well-characterized adjuvants. Carbopol administration triggered rapid and robust leukocyte recruitment, pro-inflammatory cytokine secretion and antigen capture largely by inflammatory monocytes. The induction of antigen specific Th1 cells by Carbopol was found to occur via a non-canonical pathway, independent of MyD88/TRIF signaling and in the absence of pattern-recognition-receptor (PRR) activation typically associated with Th1/Ig2a induction. Using multispectral fluorescence imaging (Imagestream) and electron microscopy we demonstrated that phagocytic uptake of Carbopol particles followed by entry into the phagosomal/lysosomal pathway elicited conformational changes to the polymer and reactive oxygen species (ROS) production. We therefore conclude that Carbopol may mediate its adjuvant activity via novel mechanisms of antigen presenting cell activation and Th1 induction, leading to enhanced IgG2a responses independent of microbial pattern recognition.
Collapse
Affiliation(s)
- Kate H Gartlan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - George Krashias
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Frank Wegmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - William R Hillson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Erin M Scherer
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | - Amin E Moghaddam
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Quentin J Sattentau
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
12
|
The Carbomer-Lecithin Adjuvant Adjuplex Has Potent Immunoactivating Properties and Elicits Protective Adaptive Immunity against Influenza Virus Challenge in Mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1004-12. [PMID: 26135973 PMCID: PMC4550664 DOI: 10.1128/cvi.00736-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 06/17/2015] [Indexed: 01/06/2023]
Abstract
The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8+ T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines.
Collapse
|
13
|
Bowles EJ, Schiffner T, Rosario M, Needham GA, Ramaswamy M, McGouran J, Kessler B, LaBranche C, McMichael AJ, Montefiori D, Sattentau QJ, Hanke T, Stewart-Jones GBE. Comparison of neutralizing antibody responses elicited from highly diverse polyvalent heterotrimeric HIV-1 gp140 cocktail immunogens versus a monovalent counterpart in rhesus macaques. PLoS One 2014; 9:e114709. [PMID: 25490553 PMCID: PMC4260879 DOI: 10.1371/journal.pone.0114709] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 11/12/2014] [Indexed: 12/22/2022] Open
Abstract
Eliciting neutralizing antibodies capable of inactivating a broad spectrum of HIV-1 strains is a major goal of HIV-1 vaccine design. The challenge is that envelopes (Envs) of circulating viruses are almost certainly different from any Env used in a vaccine. A novel immunogen composed of a highly diverse set of gp140 Envs including subtypes A, B, C, D and F was developed to stimulate a more cross-neutralizing antibody response. Env heterotrimers composed of up to 54 different gp140s were produced with the aim of focusing the response to the conserved regions of Env while reducing the dominance of any individual hypervariable region. Heterotrimeric gp140 Envs of inter- and intra-subtype combinations were shown to bind CD4 and a panel of neutralizing monoclonal antibodies with similar affinity to monovalent UG37 gp140. Macaques immunized with six groups of heterotrimer mixtures showed slightly more potent neutralizing antibody responses in TZM-BL tier 1 and A3R5 tier 2 pseudovirus assays than macaques immunized with monovalent Env gp140, and exhibited a marginally greater focus on the CD4-binding site. Carbopol enhanced neutralization when used as an adjuvant instead of RIBI in combination with UG37 gp140. These data indicate that cross-subtype heterotrimeric gp140 Envs may elicit some improvement of the neutralizing antibody response in macaques compared to monovalent gp140 Env.
Collapse
Affiliation(s)
- Emma J. Bowles
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
- * E-mail: (EJB); (GSJ)
| | - Torben Schiffner
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Maximillian Rosario
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Gemma A. Needham
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Meghna Ramaswamy
- Division of Retrovirology, Centre for AIDS Reagents, National Institute of Biological Standards and Control, South Mimms, Potters Bar, Herts, United Kingdom
| | - Joanna McGouran
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benedikt Kessler
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Celia LaBranche
- Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Andrew J. McMichael
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - David Montefiori
- Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Quentin J. Sattentau
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Tomáš Hanke
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, United Kingdom
| | - Guillaume B. E. Stewart-Jones
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
- * E-mail: (EJB); (GSJ)
| |
Collapse
|
14
|
Lai RPJ, Hock M, Radzimanowski J, Tonks P, Hulsik DL, Effantin G, Seilly DJ, Dreja H, Kliche A, Wagner R, Barnett SW, Tumba N, Morris L, LaBranche CC, Montefiori DC, Seaman MS, Heeney JL, Weissenhorn W. A fusion intermediate gp41 immunogen elicits neutralizing antibodies to HIV-1. J Biol Chem 2014; 289:29912-26. [PMID: 25160627 PMCID: PMC4208001 DOI: 10.1074/jbc.m114.569566] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/01/2014] [Indexed: 11/06/2022] Open
Abstract
The membrane-proximal external region (MPER) of the human immunodeficiency virus, type 1 (HIV-1) envelope glycoprotein subunit gp41 is targeted by potent broadly neutralizing antibodies 2F5, 4E10, and 10E8. These antibodies recognize linear epitopes and have been suggested to target the fusion intermediate conformation of gp41 that bridges viral and cellular membranes. Anti-MPER antibodies exert different degrees of membrane interaction, which is considered to be the limiting factor for the generation of such antibodies by immunization. Here we characterize a fusion intermediate conformation of gp41 (gp41(int)-Cys) and show that it folds into an elongated ∼ 12-nm-long extended structure based on small angle x-ray scattering data. Gp41(int)-Cys was covalently linked to liposomes via its C-terminal cysteine and used as immunogen. The gp41(int)-Cys proteoliposomes were administered alone or in prime-boost regimen with trimeric envelope gp140(CA018) in guinea pigs and elicited high anti-gp41 IgG titers. The sera interacted with a peptide spanning the MPER region, demonstrated competition with broadly neutralizing antibodies 2F5 and 4E10, and exerted modest lipid binding, indicating the presence of MPER-specific antibodies. Although the neutralization potency generated solely by gp140(CA018) was higher than that induced by gp41(int)-Cys, the majority of animals immunized with gp41(int)-Cys proteoliposomes induced modest breadth and potency in neutralizing tier 1 pseudoviruses and replication-competent simian/human immunodeficiency viruses in the TZM-bl assay as well as responses against tier 2 HIV-1 in the A3R5 neutralization assay. Our data thus demonstrate that liposomal gp41 MPER formulation can induce neutralization activity, and the strategy serves to improve breadth and potency of such antibodies by improved vaccination protocols.
Collapse
Affiliation(s)
- Rachel P J Lai
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Miriam Hock
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France
| | - Jens Radzimanowski
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France
| | - Paul Tonks
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - David Lutje Hulsik
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France
| | - Gregory Effantin
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France
| | - David J Seilly
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Hanna Dreja
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Alexander Kliche
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Susan W Barnett
- Novartis Vaccines and Diagnostics Inc., Cambridge, Massachusetts 02139
| | - Nancy Tumba
- National Institute for Communicable Diseases, Centre for HIV and Sexually Transmitted Infections, 1 Modderfontein Road, Sandringham 2131, South Africa
| | - Lynn Morris
- National Institute for Communicable Diseases, Centre for HIV and Sexually Transmitted Infections, 1 Modderfontein Road, Sandringham 2131, South Africa
| | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, and
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, and
| | - Michael S Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115
| | - Jonathan L Heeney
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom,
| | - Winfried Weissenhorn
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France,
| |
Collapse
|
15
|
Envelope variants circulating as initial neutralization breadth developed in two HIV-infected subjects stimulate multiclade neutralizing antibodies in rabbits. J Virol 2014; 88:12949-67. [PMID: 25210191 DOI: 10.1128/jvi.01812-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED Identifying characteristics of the human immunodeficiency virus type 1 (HIV-1) envelope that are effective in generating broad, protective antibodies remains a hurdle to HIV vaccine design. Emerging evidence of the development of broad and potent neutralizing antibodies in HIV-infected subjects suggests that founder and subsequent progeny viruses may express unique antigenic motifs that contribute to this developmental pathway. We hypothesize that over the course of natural infection, B cells are programmed to develop broad antibodies by exposure to select populations of emerging envelope quasispecies variants. To test this hypothesis, we identified two unrelated subjects whose antibodies demonstrated increasing neutralization breadth against a panel of HIV-1 isolates over time. Full-length functional env genes were cloned longitudinally from these subjects from months after infection through 2.6 to 5.8 years of infection. Motifs associated with the development of breadth in published, cross-sectional studies were found in both subjects. We compared the immunogenicity of envelope vaccines derived from time points obtained during and after broadening of neutralization activity within these subjects. Rabbits were coimmunized four times with selected multiple gp160 DNAs and gp140-trimeric envelope proteins. The affinity of the polyclonal response increased as a function of boosting. The most rapid and persistent neutralization of multiclade tier 1 viruses was elicited by envelopes that were circulating in plasma at time points prior to the development of 50% neutralization breadth in both human subjects. The breadth elicited in rabbits was not improved by exposure to later envelope variants. These data have implications for vaccine development in describing a target time point to identify optimal envelope immunogens. IMPORTANCE Vaccine protection against viral infections correlates with the presence of neutralizing antibodies; thus, vaccine components capable of generating potent neutralization are likely to be critical constituents in an effective HIV vaccine. However, vaccines tested thus far have elicited only weak antibody responses and very modest, waning protection. We hypothesized that B cells develop broad antibodies by exposure to the evolving viral envelope population and tested this concept using multiple envelopes from two subjects who developed neutralization breadth within a few years of infection. We compared different combinations of envelopes from each subject to identify the most effective immunogens and regimens. In each subject, use of HIV envelopes circulating during the early development and maturation of breadth generated more-potent antibodies that were modestly cross neutralizing. These data suggest a new approach to identifying envelope immunogens that may be more effective in generating protective antibodies in humans.
Collapse
|
16
|
Fox CB, Kramer RM, Barnes V L, Dowling QM, Vedvick TS. Working together: interactions between vaccine antigens and adjuvants. THERAPEUTIC ADVANCES IN VACCINES 2014; 1:7-20. [PMID: 24757512 DOI: 10.1177/2051013613480144] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of vaccines containing adjuvants has the potential to enhance antibody and cellular immune responses, broaden protective immunity against heterogeneous pathogen strains, enable antigen dose sparing, and facilitate efficacy in immunocompromised populations. Nevertheless, the structural interplay between antigen and adjuvant components is often not taken into account in the published literature. Interactions between antigen and adjuvant formulations should be well characterized to enable optimum vaccine stability and efficacy. This review focuses on the importance of characterizing antigen-adjuvant interactions by summarizing findings involving widely used adjuvant formulation platforms, such as aluminum salts, emulsions, lipid vesicles, and polymer-based particles. Emphasis is placed on the physicochemical basis of antigen-adjuvant associations and the appropriate analytical tools for their characterization, as well as discussing the effects of these interactions on vaccine potency.
Collapse
|
17
|
Stabilizing exposure of conserved epitopes by structure guided insertion of disulfide bond in HIV-1 envelope glycoprotein. PLoS One 2013; 8:e76139. [PMID: 24146829 PMCID: PMC3797752 DOI: 10.1371/journal.pone.0076139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022] Open
Abstract
Entry of HIV-1 into target cells requires binding of the viral envelope glycoprotein (Env) to cellular receptors and subsequent conformational changes that culminates in fusion of viral and target cell membranes. Recent structural information has revealed that these conformational transitions are regulated by three conserved but potentially flexible layers stacked between the receptor-binding domain (gp120) and the fusion arm (gp41) of Env. We hypothesized that artificial insertion of a covalent bond will ‘snap’ Env into a conformation that is less mobile and stably expose conserved sites. Therefore, we analyzed the interface between these gp120 layers (layers 1, 2 and 3) and identified residues that may form disulfide bonds when substituted with cysteines. We subsequently probed the structures of the resultant mutant gp120 proteins by assaying their binding to a variety of ligands using Surface Plasmon Resonance (SPR) assay. We found that a single disulfide bond strategically inserted between the highly conserved layers 1 and 2 (C65-C115) is able to ‘lock’ gp120 in a CD4 receptor bound conformation (in the absence of CD4), as indicated by the lower dissociation constant (Kd) for the CD4-induced (CD4i) epitope binding 17b antibody. When disulfide-stabilized monomeric (gp120) and trimeric (gp140) Envs were used to immunize rabbits, they were found to elicit a higher proportion of antibodies directed against both CD4i and CD4 binding site epitopes than the wild-type proteins. These results demonstrate that structure-guided stabilization of inter-layer interactions within HIV-1 Env can be used to expose conserved epitopes and potentially overcome the sequence diversity of these molecules.
Collapse
|
18
|
Qiu Y, Gao Y, Zhang S, Guo L, Chen J, Xu B. Immunological effects of microneedle-mediated insulin delivery: Preliminary rat studies. Int J Pharm 2013; 444:103-5. [DOI: 10.1016/j.ijpharm.2013.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/11/2013] [Indexed: 11/28/2022]
|
19
|
Cayabyab MJ, Macovei L, Campos-Neto A. Current and novel approaches to vaccine development against tuberculosis. Front Cell Infect Microbiol 2012; 2:154. [PMID: 23230563 PMCID: PMC3515764 DOI: 10.3389/fcimb.2012.00154] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/20/2012] [Indexed: 11/29/2022] Open
Abstract
Antibiotics and vaccines are the two most successful medical countermeasures that humans have created against a number of pathogens. However a select few e.g., Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB) have evaded eradication by vaccines and therapeutic approaches. TB is a global public health problem that kills 1.4 million people per year. The past decade has seen significant progress in developing new vaccine candidates, but the most fundamental questions in understanding disease progression and protective host responses that are responsible for controlling Mtb infection still remain poorly resolved. Current TB treatment requires intense chemotherapy with several antimicrobials, while the only approved vaccine is the classical viable whole-cell based Bacille-Calmette-Guerin (BCG) that protects children from severe forms of TB, but fails to protect adults. Taken together, there is a growing need to conduct basic and applied research to develop novel vaccine strategies against TB. This review is focused on the discussion surrounding current strategies and innovations being explored to discover new protective antigens, adjuvants, and delivery systems in the hopes of creating an efficacious TB vaccine.
Collapse
Affiliation(s)
- Mark J Cayabyab
- Forsyth Institute Cambridge, MA, USA ; Harvard School of Dental Medicine Boston, MA, USA
| | | | | |
Collapse
|
20
|
Lai RPJ, Seaman MS, Tonks P, Wegmann F, Seilly DJ, Frost SDW, LaBranche CC, Montefiori DC, Dey AK, Srivastava IK, Sattentau Q, Barnett SW, Heeney JL. Mixed adjuvant formulations reveal a new combination that elicit antibody response comparable to Freund's adjuvants. PLoS One 2012; 7:e35083. [PMID: 22509385 PMCID: PMC3324409 DOI: 10.1371/journal.pone.0035083] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/08/2012] [Indexed: 12/04/2022] Open
Abstract
Adjuvant formulations capable of inducing high titer and high affinity antibody responses would provide a major advance in the development of vaccines to viral infections such as HIV-1. Although oil-in-water emulsions, such as Freund's adjuvant (FCA/FIA), are known to be potent, their toxicity and reactogenicity make them unacceptable for human use. Here, we explored different adjuvants and compared their ability to elicit antibody responses to FCA/FIA. Recombinant soluble trimeric HIV-1 gp140 antigen was formulated in different adjuvants, including FCA/FIA, Carbopol-971P, Carbopol-974P and the licensed adjuvant MF59, or combinations of MF59 and Carbopol. The antigen-adjuvant formulation was administered in a prime-boost regimen into rabbits, and elicitation of antigen binding and neutralizing antibodies (nAbs) was evaluated. When used individually, only FCA/FIA elicited significantly higher titer of nAbs than the control group (gp140 in PBS (p<0.05)). Sequential prime-boost immunizations with different adjuvants did not offer improvements over the use of FCA/FIA or MF59. Remarkably however, the concurrent use of the combination of Carbopol-971P and MF59 induced potent adjuvant activity with significantly higher titer nAbs than FCA/FIA (p<0.05). This combination was not associated with any obvious local or systemic adverse effects. Antibody competition indicated that the majority of the neutralizing activities were directed to the CD4 binding site (CD4bs). Increased antibody titers to the gp41 membrane proximal external region (MPER) and gp120 V3 were detected when the more potent adjuvants were used. These data reveal that the combination of Carbopol-971P and MF59 is unusually potent for eliciting nAbs to a variety of HIV-1 nAb epitopes.
Collapse
Affiliation(s)
- Rachel P. J. Lai
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michael S. Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Paul Tonks
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Frank Wegmann
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - David J. Seilly
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Simon D. W. Frost
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Celia C. LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Antu K. Dey
- Novartis Vaccines and Diagnostics Inc., Massachusetts, United States of America
| | | | - Quentin Sattentau
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Susan W. Barnett
- Novartis Vaccines and Diagnostics Inc., Massachusetts, United States of America
| | - Jonathan L. Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|