1
|
Ebenig A, Lange MV, Mühlebach MD. Versatility of live-attenuated measles viruses as platform technology for recombinant vaccines. NPJ Vaccines 2022; 7:119. [PMID: 36243743 PMCID: PMC9568972 DOI: 10.1038/s41541-022-00543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Live-attenuated measles virus (MeV) has been extraordinarily effective in preventing measles infections and their often deadly sequelae, accompanied by remarkable safety and stability since their first licensing in 1963. The advent of recombinant DNA technologies, combined with systems to generate infectious negative-strand RNA viruses on the basis of viral genomes encoded on plasmid DNA in the 1990s, paved the way to generate recombinant, vaccine strain-derived MeVs. These live-attenuated vaccine constructs can encode and express additional foreign antigens during transient virus replication following immunization. Effective humoral and cellular immune responses are induced not only against the MeV vector, but also against the foreign antigen cargo in immunized individuals, which can protect against the associated pathogen. This review aims to present an overview of the versatility of this vaccine vector as platform technology to target various diseases, as well as current research and developmental stages, with one vaccine candidate ready to enter phase III clinical trials to gain marketing authorization, MV-CHIK.
Collapse
Affiliation(s)
- Aileen Ebenig
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, D-63225, Langen, Germany
| | - Mona V Lange
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, D-63225, Langen, Germany
| | - Michael D Mühlebach
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, D-63225, Langen, Germany.
| |
Collapse
|
2
|
Erickson NEN, Berenik A, Lardner H, Lacoste S, Campbell J, Gow S, Waldner C, Ellis J. Evaluation of bovine respiratory syncytial virus (BRSV) and bovine herpesvirus (BHV) specific antibody responses between heterologous and homologous prime-boost vaccinated western Canadian beef calves. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2021; 62:37-44. [PMID: 33390597 PMCID: PMC7739395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bovine respiratory disease (BRD) is an economically important cause of morbidity and mortality in beef calves. Control of BRD is most often addressed through "homologous" vaccination utilizing the same injectable modified-live viral (MLV) vaccine for both priming and boosting. Heterologous prime-boosting uses different routes and antigenic forms for priming and boosting. Three vaccine protocols were compared: an injectable (IJ) MLV (IJ-MLV) group (IJ-MLV priming at ~48 days and boosted with IJ-MLV at weaning), intranasal (IN) MLV (IN-MLV) group (intranasal priming with MLV at ~24 hours, boosted twice with an IJ-MLV), and intranasal killed viral (IN-KV) group (primed with an IN-MLV at ~24 hours, boosted twice with an IJ-KV). Serum antibody concentrations determined by enzyme-linked immunosorbent assays (ELISAs) were compared and the IN-KV group had significantly higher BRSV-specific antibody concentrations after boosting compared with the 2 homologous groups. No differences in BHV-specific antibody concentrations were observed between any of the groups.
Collapse
Affiliation(s)
- Nathan E N Erickson
- Department of Large Animal Clinical Sciences (Erickson, Berenik, Campbell, Gow, Waldner), Department of Microbiology (Lacoste, Ellis), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8 (Lardner)
| | - Adam Berenik
- Department of Large Animal Clinical Sciences (Erickson, Berenik, Campbell, Gow, Waldner), Department of Microbiology (Lacoste, Ellis), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8 (Lardner)
| | - Herbert Lardner
- Department of Large Animal Clinical Sciences (Erickson, Berenik, Campbell, Gow, Waldner), Department of Microbiology (Lacoste, Ellis), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8 (Lardner)
| | - Stacey Lacoste
- Department of Large Animal Clinical Sciences (Erickson, Berenik, Campbell, Gow, Waldner), Department of Microbiology (Lacoste, Ellis), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8 (Lardner)
| | - John Campbell
- Department of Large Animal Clinical Sciences (Erickson, Berenik, Campbell, Gow, Waldner), Department of Microbiology (Lacoste, Ellis), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8 (Lardner)
| | - Sheryl Gow
- Department of Large Animal Clinical Sciences (Erickson, Berenik, Campbell, Gow, Waldner), Department of Microbiology (Lacoste, Ellis), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8 (Lardner)
| | - Cheryl Waldner
- Department of Large Animal Clinical Sciences (Erickson, Berenik, Campbell, Gow, Waldner), Department of Microbiology (Lacoste, Ellis), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8 (Lardner)
| | - John Ellis
- Department of Large Animal Clinical Sciences (Erickson, Berenik, Campbell, Gow, Waldner), Department of Microbiology (Lacoste, Ellis), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8 (Lardner)
| |
Collapse
|
3
|
Measles Vaccines Designed for Enhanced CD8 + T Cell Activation. Viruses 2020; 12:v12020242. [PMID: 32098134 PMCID: PMC7077255 DOI: 10.3390/v12020242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/26/2022] Open
Abstract
Priming and activation of CD8+ T cell responses is crucial to achieve anti-viral and anti-tumor immunity. Live attenuated measles vaccine strains have been used successfully for immunization for decades and are currently investigated in trials of oncolytic virotherapy. The available reverse genetics systems allow for insertion of additional genes, including heterologous antigens. Here, we designed recombinant measles vaccine vectors for priming and activation of antigen-specific CD8+ T cells. For proof-of-concept, we used cytotoxic T lymphocyte (CTL) lines specific for the melanoma-associated differentiation antigen tyrosinase-related protein-2 (TRP-2), or the model antigen chicken ovalbumin (OVA), respectively. We generated recombinant measles vaccine vectors with TRP-2 and OVA epitope cassette variants for expression of the full-length antigen or the respective immunodominant CD8+ epitope, with additional variants mediating secretion or proteasomal degradation of the epitope. We show that these recombinant measles virus vectors mediate varying levels of MHC class I (MHC-I)-restricted epitope presentation, leading to activation of cognate CTLs, as indicated by secretion of interferon-gamma (IFNγ) in vitro. Importantly, the recombinant OVA vaccines also mediate priming of naïve OT-I CD8+ T cells by dendritic cells. While all vaccine variants can prime and activate cognate T cells, IFNγ release was enhanced using a secreted epitope variant and a variant with epitope strings targeted to the proteasome. The principles presented in this study will facilitate the design of recombinant vaccines to elicit CD8+ responses against pathogens and tumor antigens.
Collapse
|
4
|
Kozlowski PA, Aldovini A. Mucosal Vaccine Approaches for Prevention of HIV and SIV Transmission. CURRENT IMMUNOLOGY REVIEWS 2019; 15:102-122. [PMID: 31452652 PMCID: PMC6709706 DOI: 10.2174/1573395514666180605092054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/19/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Optimal protective immunity to HIV will likely require that plasma cells, memory B cells and memory T cells be stationed in mucosal tissues at portals of viral entry. Mucosal vaccine administration is more effective than parenteral vaccine delivery for this purpose. The challenge has been to achieve efficient vaccine uptake at mucosal surfaces, and to identify safe and effective adjuvants, especially for mucosally administered HIV envelope protein immunogens. Here, we discuss strategies used to deliver potential HIV vaccine candidates in the intestine, respiratory tract, and male and female genital tract of humans and nonhuman primates. We also review mucosal adjuvants, including Toll-like receptor agonists, which may adjuvant both mucosal humoral and cellular immune responses to HIV protein immunogens.
Collapse
Affiliation(s)
- Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Anna Aldovini
- Department of Medicine, and Harvard Medical School, Boston Children’s Hospital, Department of Pediatrics, Boston MA, 02115, USA
| |
Collapse
|
5
|
Abstract
The classic development of vaccines is lengthy, tedious, and may not necessarily be successful as demonstrated by the case of HIV. This is especially a problem for emerging pathogens that are newly introduced into the human population and carry the inherent risk of pandemic spread in a naïve population. For such situations, a considerable number of different platform technologies are under development. These are also under development for pathogens, where directly derived vaccines are regarded as too complicated or even dangerous due to the induction of inefficient or unwanted immune responses causing considerable side-effects as for dengue virus. Among platform technologies are plasmid-based DNA vaccines, RNA replicons, single-round infectious vector particles, or replicating vaccine-based vectors encoding (a) critical antigen(s) of the target pathogens. Among the latter, recombinant measles viruses derived from vaccine strains have been tested. Measles vaccines are among the most effective and safest life-attenuated vaccines known. Therefore, the development of Schwarz-, Moraten-, or AIK-C-strain derived recombinant vaccines against a wide range of mostly viral, but also bacterial pathogens was quite straightforward. These vaccines generally induce powerful humoral and cellular immune responses in appropriate animal models, i.e., transgenic mice or non-human primates. Also in the recent first clinical phase I trial, the results have been quite encouraging. The trial indicated the expected safety and efficacy also in human patients, interestingly independent from the level of prevalent anti-measles immunity before the trial. Thereby, recombinant measles vaccines expressing additional antigens are a promising platform for future vaccines.
Collapse
Affiliation(s)
- Michael D Mühlebach
- Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225, Langen, Germany.
| |
Collapse
|
6
|
Swett-Tapia C, Bogaert L, de Jong P, van Hoek V, Schouten T, Damen I, Spek D, Wanningen P, Radošević K, Widjojoatmodjo MN, Zahn R, Custers J, Roy S. Recombinant measles virus incorporating heterologous viral membrane proteins for use as vaccines. J Gen Virol 2016; 97:2117-2128. [PMID: 27311834 DOI: 10.1099/jgv.0.000523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Recombinant measles virus (rMV) vectors expressing heterologous viral membrane protein antigens are potentially useful as vaccines. Genes encoding the mumps virus haemagglutinin-neuraminidase (MuV-HN), the influenza virus haemagglutinin (Flu-HA) or the respiratory syncytial virus fusion (RSV-F) proteins were inserted into the genome of a live attenuated vaccine strain of measles virus. Additionally, in this case rMV with the MuV-HN or the influenza HA inserts, chimeric constructs were created that harboured the measles virus native haemagglutinin or fusion protein cytoplasmic domains. In all three cases, sucrose-gradient purified preparations of rMV were found to have incorporated the heterologous viral membrane protein on the viral membrane. The possible utility of rMV expressing RSV-F (rMV.RSV-F) as a vaccine was tested in a cotton rat challenge model. Vaccination with rMV.RSV-F efficiently induced neutralizing antibodies against RSV and protected animals from infection with RSV in the lungs.
Collapse
Affiliation(s)
- Cindy Swett-Tapia
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Lies Bogaert
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Pascal de Jong
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Vladimir van Hoek
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Theo Schouten
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Irma Damen
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Dirk Spek
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Patrick Wanningen
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Katarina Radošević
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Myra N Widjojoatmodjo
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Roland Zahn
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Jerome Custers
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Soumitra Roy
- Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| |
Collapse
|
7
|
Baldo A, Galanis E, Tangy F, Herman P. Biosafety considerations for attenuated measles virus vectors used in virotherapy and vaccination. Hum Vaccin Immunother 2015; 12:1102-16. [PMID: 26631840 PMCID: PMC4963060 DOI: 10.1080/21645515.2015.1122146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Attenuated measles virus (MV) is one of the most effective and safe vaccines available, making it attractive candidate vector to prevent infectious diseases. Attenuated MV have acquired the ability to use the complement regulator CD46 as a major receptor to mediate virus entry and intercellular fusion. Therefore, attenuated MV strains preferentially infect and destroy a wide variety of cancer cells making them also attractive oncolytic vectors. The use of recombinant MV vector has to comply with various regulatory requirements, particularly relating to the assessment of potential risks for human health and the environment. The present article highlights the main characteristics of MV and recombinant MV vectors used for vaccination and virotherapy and discusses these features from a biosafety point of view.
Collapse
Affiliation(s)
- Aline Baldo
- a Scientific Institute of Public Health (WIV-ISP), Biosafety and Biotechnology Unit , Brussels , Belgium
| | - Evanthia Galanis
- b Division of Medical Oncology , Mayo Clinic , Rochester , MN , USA
| | - Frédéric Tangy
- c Institut Pasteur, Viral Genomics and Vaccination Unit, CNRS UMR 3569 , Paris , France
| | - Philippe Herman
- a Scientific Institute of Public Health (WIV-ISP), Biosafety and Biotechnology Unit , Brussels , Belgium
| |
Collapse
|
8
|
Rosati M, Alicea C, Kulkarni V, Virnik K, Hockenbury M, Sardesai NY, Pavlakis GN, Valentin A, Berkower I, Felber BK. Recombinant rubella vectors elicit SIV Gag-specific T cell responses with cytotoxic potential in rhesus macaques. Vaccine 2015; 33:2167-74. [PMID: 25802183 DOI: 10.1016/j.vaccine.2015.02.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/19/2015] [Accepted: 02/25/2015] [Indexed: 11/25/2022]
Abstract
Live-attenuated rubella vaccine strain RA27/3 has been demonstrated to be safe and immunogenic in millions of children. The vaccine strain was used to insert SIV gag sequences and the resulting rubella vectors were tested in rhesus macaques alone and together with SIV gag DNA in different vaccine prime-boost combinations. We previously reported that such rubella vectors induce robust and durable SIV-specific humoral immune responses in macaques. Here, we report that recombinant rubella vectors elicit robust de novo SIV-specific cellular immune responses detectable for >10 months even after a single vaccination. The antigen-specific responses induced by the rubella vector include central and effector memory CD4(+) and CD8(+) T cells with cytotoxic potential. Rubella vectors can be administered repeatedly even after vaccination with the rubella vaccine strain RA27/3. Vaccine regimens including rubella vector and SIV gag DNA in different prime-boost combinations resulted in robust long-lasting cellular responses with significant increase of cellular responses upon boost. Rubella vectors provide a potent platform for inducing HIV-specific immunity that can be combined with DNA in a prime-boost regimen to elicit durable cellular immunity.
Collapse
Affiliation(s)
- Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Konstantin Virnik
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, FDA, Silver Spring, MD, USA
| | - Max Hockenbury
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, FDA, Silver Spring, MD, USA
| | | | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Ira Berkower
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, FDA, Silver Spring, MD, USA.
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| |
Collapse
|
9
|
Naim HY. Applications and challenges of multivalent recombinant vaccines. Hum Vaccin Immunother 2012; 9:457-61. [PMID: 23249651 DOI: 10.4161/hv.23220] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The exceptional discoveries of antigen/gene delivery systems have allowed the development of novel prophylactic and therapeutic vaccine candidates. The vaccine candidates employ various antigen-delivery systems, particularly recombinant viral vectors. Recombinant viral vectors are experimental vaccines similar to DNA vaccines, but they use attenuated viruses or bacterium as a carrier "vector" to introduce microbial DNA to cells of the body. They closely mimic a natural infection and therefore can efficiently stimulate the immune system. Although such recombinant vectors may face extensive preclinical testing and will possibly have to meet stringent regulatory requirements, some of these vectors (e.g. measles virus vectors) may benefit from the profound industrial and clinical experience of the parent vaccine. Most notably, novel vaccines based on live attenuated viruses combine the induction of broad, strong and persistent immune responses with acceptable safety profiles. We assess certain technologies in light of their use against human immunodeficiency virus (HIV).
Collapse
Affiliation(s)
- Hussein Y Naim
- Institute of Molecular Biology; University of Zürich-Irchel; Zürich, Switzerland; Current affiliation: Consultant; Life Sciences and Vaccines; Bern, Switzerland
| |
Collapse
|
10
|
Immunogenicity of a recombinant measles-HIV-1 clade B candidate vaccine. PLoS One 2012; 7:e50397. [PMID: 23226275 PMCID: PMC3511521 DOI: 10.1371/journal.pone.0050397] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/19/2012] [Indexed: 01/08/2023] Open
Abstract
Live attenuated measles virus is one of the most efficient and safest vaccines available, making it an attractive candidate vector for a HIV/AIDS vaccine aimed at eliciting cell-mediated immune responses (CMI). Here we have characterized the potency of CMI responses generated in mice and non-human primates after intramuscular immunisation with a candidate recombinant measles vaccine carrying an HIV-1 insert encoding Clade B Gag, RT and Nef (MV1-F4). Eight Mauritian derived, MHC-typed cynomolgus macaques were immunised with 105 TCID50 of MV1-F4, four of which were boosted 28 days later with the same vaccine. F4 and measles virus (MV)-specific cytokine producing T cell responses were detected in 6 and 7 out of 8 vaccinees, respectively. Vaccinees with either M6 or recombinant MHC haplotypes demonstrated the strongest cytokine responses to F4 peptides. Polyfunctional analysis revealed a pattern of TNFα and IL-2 responses by CD4+ T cells and TNFα and IFNγ responses by CD8+ T cells to F4 peptides. HIV-specific CD4+ and CD8+ T cells expressing cytokines waned in peripheral blood lymphocytes by day 84, but CD8+ T cell responses to F4 peptides could still be detected in lymphoid tissues more than 3 months after vaccination. Anti-F4 and anti-MV antibody responses were detected in 6 and 8 out of 8 vaccinees, respectively. Titres of anti-F4 and MV antibodies were boosted in vaccinees that received a second immunisation. MV1-F4 carrying HIV-1 Clade B inserts induces robust boostable immunity in non-human primates. These results support further exploration of the MV1-F4 vector modality in vaccination strategies that may limit HIV-1 infectivity.
Collapse
|