1
|
da Silveira BP, Cohen ND, Lawhon SD, Watson RO, Bordin AI. Protective immune response against Rhodococcus equi: An innate immunity-focused review. Equine Vet J 2024. [PMID: 39258739 DOI: 10.1111/evj.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Rhodococcus equi causes pyogranulomatous pneumonia in foals and immunocompromised people. Despite decades of research efforts, no vaccine is available against this common cause of disease and death in foals. The purpose of this narrative review is to summarise the current understanding of interactions between R. equi and the host innate immune system, to describe features of the immune response that are associated with resistance or susceptibility to R. equi infection, and help guide strategies for developing novel approaches for preventing R. equi infections. Virulence of R. equi in foals has been attributed to the virulence associated protein A which allows intracellular survival in macrophages by preventing acidification of R. equi-containing vacuole. Additionally, foal susceptibility to R. equi infection is associated with immaturity and naivety of innate and adaptive immune systems, while adult horses with fully functional immune system are resistant to pneumonia. Specific interaction between R. equi and innate immune cells can result in bacterial survival or death; learning how to manipulate these responses to control infection is critical to prevent pneumonia in foals. Administration of live vaccines and stimulation of innate immune responses appears to improve foals' immune response and has the potential to overcome the challenges of foal active vaccination and elicit protection against pneumonia.
Collapse
Affiliation(s)
- Bibiana Petri da Silveira
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, School of Medicine, College Station, Texas, USA
| | - Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| |
Collapse
|
2
|
Transcriptome analysis of immune genes in peripheral blood mononuclear cells of young foals and adult horses. PLoS One 2018; 13:e0202646. [PMID: 30183726 PMCID: PMC6124769 DOI: 10.1371/journal.pone.0202646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/07/2018] [Indexed: 12/14/2022] Open
Abstract
During the neonatal period, the ability to generate immune effector and memory responses to vaccines or pathogens is often questioned. This study was undertaken to obtain a global view of the natural differences in the expression of immune genes early in life. Our hypothesis was that transcriptome analyses of peripheral blood mononuclear cells (PBMCs) of foals (on day 1 and day 42 after birth) and adult horses would show differential gene expression profiles that characterize natural immune processes. Gene ontology enrichment analysis provided assessment of biological processes affected by age, and a list of 897 genes with ≥2 fold higher (p<0.01) expression in day 42 when compared to day 1 foal samples. Up-regulated genes included B cell and T cell receptor diversity genes; DNA replication enzymes; natural killer cell receptors; granzyme B and perforin; complement receptors; immunomodulatory receptors; cell adhesion molecules; and cytokines/chemokines and their receptors. The list of 1,383 genes that had higher (p<0.01) expression on day 1 when compared to day 42 foal samples was populated by genes with roles in innate immunity such as antimicrobial proteins; pathogen recognition receptors; cytokines/chemokines and their receptors; cell adhesion molecules; co-stimulatory molecules; and T cell receptor delta chain. Within the 742 genes with increased expression between day 42 foal and adult samples, B cell immunity was the main biological process (p = 2.4E-04). Novel data on markedly low (p<0.0001) TLR3 gene expression, and high (p≤0.01) expression of IL27, IL13RA1, IREM-1, SIRL-1, and SIRPα on day 1 compared to day 42 foal samples point out potential mechanisms of increased susceptibility to pathogens in early life. The results portray a progression from innate immune gene expression predominance early in life to adaptive immune gene expression increasing with age with a putative overlay of immune suppressing genes in the neonatal phase. These results provide insight to the unique attributes of the equine neonatal and young immune system, and offer many avenues of future investigation.
Collapse
|
3
|
Cywes-Bentley C, Rocha JN, Bordin AI, Vinacur M, Rehman S, Zaidi TS, Meyer M, Anthony S, Lambert M, Vlock DR, Giguère S, Cohen ND, Pier GB. Antibody to Poly-N-acetyl glucosamine provides protection against intracellular pathogens: Mechanism of action and validation in horse foals challenged with Rhodococcus equi. PLoS Pathog 2018; 14:e1007160. [PMID: 30024986 PMCID: PMC6053243 DOI: 10.1371/journal.ppat.1007160] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/15/2018] [Indexed: 12/16/2022] Open
Abstract
Immune correlates of protection against intracellular bacterial pathogens are largely thought to be cell-mediated, although a reasonable amount of data supports a role for antibody-mediated protection. To define a role for antibody-mediated immunity against an intracellular pathogen, Rhodococcus equi, that causes granulomatous pneumonia in horse foals, we devised and tested an experimental system relying solely on antibody-mediated protection against this host-specific etiologic agent. Immunity was induced by vaccinating pregnant mares 6 and 3 weeks prior to predicted parturition with a conjugate vaccine targeting the highly conserved microbial surface polysaccharide, poly-N-acetyl glucosamine (PNAG). We ascertained antibody was transferred to foals via colostrum, the only means for foals to acquire maternal antibody. Horses lack transplacental antibody transfer. Next, a randomized, controlled, blinded challenge was conducted by inoculating at ~4 weeks of age ~106 cfu of R. equi via intrabronchial challenge. Eleven of 12 (91%) foals born to immune mares did not develop clinical R. equi pneumonia, whereas 6 of 7 (86%) foals born to unvaccinated controls developed pneumonia (P = 0.0017). In a confirmatory passive immunization study, infusion of PNAG-hyperimmune plasma protected 100% of 5 foals against R. equi pneumonia whereas all 4 recipients of normal horse plasma developed clinical disease (P = 0.0079). Antibodies to PNAG mediated killing of extracellular and intracellular R. equi and other intracellular pathogens. Killing of intracellular organisms depended on antibody recognition of surface expression of PNAG on infected cells, along with complement deposition and PMN-assisted lysis of infected macrophages. Peripheral blood mononuclear cells from immune and protected foals released higher levels of interferon-γ in response to PNAG compared to controls, indicating vaccination also induced an antibody-dependent cellular release of this critical immune cytokine. Overall, antibody-mediated opsonic killing and interferon-γ release in response to PNAG may protect against diseases caused by intracellular bacterial pathogens. Development of effective vaccines for diseases such as tuberculosis, brucellosis and others caused by intracellular pathogens has proved challenging, as data exist supporting both antibody and cellular immune effectors as mediators of protection. To address this problem against an important, and representative, equine intracellular pathogen, we chose to test a vaccine candidate for the ability to protect horse foals challenged at 4 weeks of age with Rhodococcus equi. To make these foals immune, their pregnant mares were immunized with a vaccine targeting the conserved surface antigen found on many microbes, termed PNAG. Antibody in the pregnant mares was transferred to their foals and, after the foals were challenged, 91% of those born to vaccinated mares were protected against R. equi pneumonia. Meanwhile, 86% of the non-vaccinated controls developed pneumonia. We also showed antibody to PNAG could kill various bacteria that produce this antigen when residing inside of human macrophage cells, a new mechanism for antibody-mediated immunity to intracellular bacteria. These results support the development of PNAG as a vaccine for intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Colette Cywes-Bentley
- Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, United States of America
| | - Joana N. Rocha
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - Angela I. Bordin
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - Mariana Vinacur
- Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, United States of America
| | - Safia Rehman
- Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, United States of America
| | - Tanweer S. Zaidi
- Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, United States of America
| | - Mark Meyer
- Mg Biologics, Ames, IA, United States of America
| | | | | | | | - Steeve Giguère
- College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Noah D. Cohen
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
- * E-mail: (NDC); (GBP)
| | - Gerald B. Pier
- Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, United States of America
- * E-mail: (NDC); (GBP)
| |
Collapse
|
4
|
Tallmadge RL, Miller SC, Parry SA, Felippe MJB. Antigen-specific immunoglobulin variable region sequencing measures humoral immune response to vaccination in the equine neonate. PLoS One 2017; 12:e0177831. [PMID: 28520789 PMCID: PMC5433778 DOI: 10.1371/journal.pone.0177831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022] Open
Abstract
The value of prophylactic neonatal vaccination is challenged by the interference of passively transferred maternal antibodies and immune competence at birth. Taken our previous studies on equine B cell ontogeny, we hypothesized that the equine neonate generates a diverse immunoglobulin repertoire in response to vaccination, independently of circulating maternal antibodies. In this study, equine neonates were vaccinated with 3 doses of keyhole limpet hemocyanin (KLH) or equine influenza vaccine, and humoral immune responses were assessed using antigen-specific serum antibodies and B cell Ig variable region sequencing. An increase (p<0.0001) in serum KLH-specific IgG level was measured between days 21 and days 28, 35 and 42 in vaccinated foals from non-vaccinated mares. In vaccinated foals from vaccinated mares, serum KLH-specific IgG levels tended to increase at day 42 (p = 0.07). In contrast, serum influenza-specific IgG levels rapidly decreased (p≤0.05) in vaccinated foals from vaccinated mares within the study period. Nevertheless, IGHM and IGHG sequences were detected in KLH- and influenza- sorted B cells of vaccinated foals, independently of maternal vaccination status. Immunoglobulin nucleotide germline identity, IGHV gene usage and CDR length of antigen-specific IGHG sequences in B cells of vaccinated foals revealed a diverse immunoglobulin repertoire with isotype switching that was comparable between groups and to vaccinated mares. The low expression of CD27 memory marker in antigen-specific B cells, and of cytokines in peripheral blood mononuclear cells upon in vitro immunogen stimulation indicated limited lymphocyte population expansion in response to vaccine during the study period.
Collapse
Affiliation(s)
- Rebecca L. Tallmadge
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Steven C. Miller
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Stephen A. Parry
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, New York, United States of America
| | - Maria Julia B. Felippe
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
Giles C, Ndi O, Barton MD, Vanniasinkam T. An Adenoviral Vector Based Vaccine for Rhodococcus equi. PLoS One 2016; 11:e0152149. [PMID: 27008624 PMCID: PMC4805240 DOI: 10.1371/journal.pone.0152149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/09/2016] [Indexed: 11/26/2022] Open
Abstract
Rhodococcus equi is a respiratory pathogen which primarily infects foals and is endemic on farms around the world with 50% mortality and 80% morbidity in affected foals. Unless detected early and treated appropriately the disease can be fatal. Currently, there is no vaccine available to prevent this disease. For decades researchers have endeavoured to develop an effective vaccine to no avail. In this study a novel human adenoviral vector vaccine for R. equi was developed and tested in the mouse model. This vaccine generated a strong antibody and cytokine response and clearance of R. equi was demonstrated following challenge. These results show that this vaccine could potentially be developed further for use as a vaccine to prevent R. equi disease in foals.
Collapse
Affiliation(s)
- Carla Giles
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Olasumbo Ndi
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mary D. Barton
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Thiru Vanniasinkam
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- * E-mail:
| |
Collapse
|
6
|
Rocha JN, Cohen ND, Bordin AI, Brake CN, Giguère S, Coleman MC, Alaniz RC, Lawhon SD, Mwangi W, Pillai SD. Oral Administration of Electron-Beam Inactivated Rhodococcus equi Failed to Protect Foals against Intrabronchial Infection with Live, Virulent R. equi. PLoS One 2016; 11:e0148111. [PMID: 26828865 PMCID: PMC4735123 DOI: 10.1371/journal.pone.0148111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
Abstract
There is currently no licensed vaccine that protects foals against Rhodococcus equi–induced pneumonia. Oral administration of live, virulent R. equi to neonatal foals has been demonstrated to protect against subsequent intrabronchial challenge with virulent R. equi. Electron beam (eBeam)-inactivated R. equi are structurally intact and have been demonstrated to be immunogenic when administered orally to neonatal foals. Thus, we investigated whether eBeam inactivated R. equi could protect foals against developing pneumonia after experimental infection with live, virulent R. equi. Foals (n = 8) were vaccinated by gavaging with eBeam-inactivated R. equi at ages 2, 7, and 14 days, or gavaged with equal volume of saline solution (n = 4), and subsequently infected intrabronchially with live, virulent R. equi at age 21 days. The proportion of vaccinated foals that developed pneumonia following challenge was similar among the vaccinated (7/8; 88%) and unvaccinated foals (3/4; 75%). This vaccination regimen did not appear to be strongly immunogenic in foals. Alternative dosing regimens or routes of administration need further investigation and may prove to be immunogenic and protective.
Collapse
Affiliation(s)
- Joana N. Rocha
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843–4475, United States of America
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843–4475, United States of America
- * E-mail: (NDC); (SDP)
| | - Angela I. Bordin
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843–4475, United States of America
| | - Courtney N. Brake
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843–4475, United States of America
| | - Steeve Giguère
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia, 30602–7385, United States of America
| | - Michelle C. Coleman
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843–4475, United States of America
| | - Robert C. Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, Texas, 77843, United States of America
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, 77843–4467, United States of America
| | - Waithaka Mwangi
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, 77843–4467, United States of America
| | - Suresh D. Pillai
- National Center for Electron Beam Research–IAEA Collaborative Centre for Electron Beam Technology, Texas A&M University, College Station, Texas, 77843, United States of America
- * E-mail: (NDC); (SDP)
| |
Collapse
|
7
|
|