1
|
Connection between MHC class II binding and aggregation propensity: The antigenic peptide 10 of Paracoccidioides brasiliensis as a benchmark study. Comput Struct Biotechnol J 2023; 21:1746-1758. [PMID: 36890879 PMCID: PMC9986244 DOI: 10.1016/j.csbj.2023.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The aggregation of epitopes that are also able to bind major histocompatibility complex (MHC) alleles raises questions around the potential connection between the formation of epitope aggregates and their affinities to MHC receptors. We first performed a general bioinformatic assessment over a public dataset of MHC class II epitopes, finding that higher experimental binding correlates with higher aggregation-propensity predictors. We then focused on the case of P10, an epitope used as a vaccine candidate against Paracoccidioides brasiliensis that aggregates into amyloid fibrils. We used a computational protocol to design variants of the P10 epitope to study the connection between the binding stabilities towards human MHC class II alleles and their aggregation propensities. The binding of the designed variants was tested experimentally, as well as their aggregation capacity. High-affinity MHC class II binders in vitro were more disposed to aggregate forming amyloid fibrils capable of binding Thioflavin T and congo red, while low affinity MHC class II binders remained soluble or formed rare amorphous aggregates. This study shows a possible connection between the aggregation propensity of an epitope and its affinity for the MHC class II cleft.
Collapse
|
2
|
Patarroyo ME, Bermudez A, Alba MP, Patarroyo MA, Suarez C, Aza-Conde J, Moreno-Vranich A, Vanegas M. Stereo electronic principles for selecting fully-protective, chemically-synthesised malaria vaccines. Front Immunol 2022; 13:926680. [DOI: 10.3389/fimmu.2022.926680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Major histocompatibility class II molecule-peptide-T-cell receptor (MHCII-p-TCR) complex-mediated antigen presentation for a minimal subunit-based, multi-epitope, multistage, chemically-synthesised antimalarial vaccine is essential for inducing an appropriate immune response. Deep understanding of this MHCII-p-TCR complex’s stereo-electronic characteristics is fundamental for vaccine development. This review encapsulates the main principles for achieving such epitopes’ perfect fit into MHC-II human (HLADRβ̞1*) or Aotus (Aona DR) molecules. The enormous relevance of several amino acids’ physico-chemical characteristics is analysed in-depth, as is data regarding a 26.5 ± 2.5Å distance between the farthest atoms fitting into HLA-DRβ1* structures’ Pockets 1 to 9, the role of polyproline II-like (PPIIL) structures having their O and N backbone atoms orientated for establishing H-bonds with specific HLA-DRβ1*-peptide binding region (PBR) residues. The importance of residues having specific charge and orientation towards the TCR for inducing appropriate immune activation, amino acids’ role and that of structures interfering with PPIIL formation and other principles are demonstrated which have to be taken into account when designing immune, protection-inducing peptide structures (IMPIPS) against diseases scourging humankind, malaria being one of them.
Collapse
|
3
|
Patarroyo ME, Patarroyo MA, Alba MP, Pabon L, Rugeles MT, Aguilar-Jimenez W, Florez L, Bermudez A, Rout AK, Griesinger C, Suarez CF, Aza-Conde J, Reyes C, Avendaño C, Samacá J, Camargo A, Silva Y, Forero M, Gonzalez E. The First Chemically-Synthesised, Highly Immunogenic Anti-SARS-CoV-2 Peptides in DNA Genotyped Aotus Monkeys for Human Use. Front Immunol 2021; 12:724060. [PMID: 34539660 PMCID: PMC8446425 DOI: 10.3389/fimmu.2021.724060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Thirty-five peptides selected from functionally-relevant SARS-CoV-2 spike (S), membrane (M), and envelope (E) proteins were suitably modified for immunising MHC class II (MHCII) DNA-genotyped Aotus monkeys and matched with HLA-DRβ1* molecules for use in humans. This was aimed at producing the first minimal subunit-based, chemically-synthesised, immunogenic molecules (COLSARSPROT) covering several HLA alleles. They were predicted to cover 48.25% of the world’s population for 6 weeks (short-term) and 33.65% for 15 weeks (long-lasting) as they induced very high immunofluorescent antibody (IFA) and ELISA titres against S, M and E parental native peptides, SARS-CoV-2 neutralising antibodies and host cell infection. The same immunological methods that led to identifying new peptides for inclusion in the COLSARSPROT mixture were used for antigenicity studies. Peptides were analysed with serum samples from patients suffering mild or severe SARS-CoV-2 infection, thereby increasing chemically-synthesised peptides’ potential coverage for the world populations up to 62.9%. These peptides’ 3D structural analysis (by 1H-NMR acquired at 600 to 900 MHz) suggested structural-functional immunological association. This first multi-protein, multi-epitope, minimal subunit-based, chemically-synthesised, highly immunogenic peptide mixture highlights such chemical synthesis methodology’s potential for rapidly obtaining very pure, highly reproducible, stable, cheap, easily-modifiable peptides for inducing immune protection against COVID-19, covering a substantial percentage of the human population.
Collapse
Affiliation(s)
- Manuel E Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Universidad Santo Tomás, Bogotá, Colombia
| | - Manuel A Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Martha P Alba
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Laura Pabon
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - María T Rugeles
- Grupo Inmunovirología, Universidad de Antioquia, Medellín, Colombia
| | | | - Lizdany Florez
- Grupo Inmunovirología, Universidad de Antioquia, Medellín, Colombia
| | - Adriana Bermudez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Ashok K Rout
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Carlos F Suarez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Jorge Aza-Conde
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - César Reyes
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Catalina Avendaño
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Jhoan Samacá
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Anny Camargo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Yolanda Silva
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Martha Forero
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Edgardo Gonzalez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| |
Collapse
|
4
|
Ochoa R, Laskowski RA, Thornton JM, Cossio P. Impact of Structural Observables From Simulations to Predict the Effect of Single-Point Mutations in MHC Class II Peptide Binders. Front Mol Biosci 2021; 8:636562. [PMID: 34222328 PMCID: PMC8253603 DOI: 10.3389/fmolb.2021.636562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/15/2021] [Indexed: 11/23/2022] Open
Abstract
The prediction of peptide binders to Major Histocompatibility Complex (MHC) class II receptors is of great interest to study autoimmune diseases and for vaccine development. Most approaches predict the affinities using sequence-based models trained on experimental data and multiple alignments from known peptide substrates. However, detecting activity differences caused by single-point mutations is a challenging task. In this work, we used interactions calculated from simulations to build scoring matrices for quickly estimating binding differences by single-point mutations. We modelled a set of 837 peptides bound to an MHC class II allele, and optimized the sampling of the conformations using the Rosetta backrub method by comparing the results to molecular dynamics simulations. From the dynamic trajectories of each complex, we averaged and compared structural observables for each amino acid at each position of the 9°mer peptide core region. With this information, we generated the scoring-matrices to predict the sign of the binding differences. We then compared the performance of the best scoring-matrix to different computational methodologies that range in computational costs. Overall, the prediction of the activity differences caused by single mutated peptides was lower than 60% for all the methods. However, the developed scoring-matrix in combination with existing methods reports an increase in the performance, up to 86% with a scoring method that uses molecular dynamics.
Collapse
Affiliation(s)
- Rodrigo Ochoa
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Medellin, Colombia.,European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Roman A Laskowski
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Medellin, Colombia.,Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Aza-Conde J, Reyes C, Suárez CF, Patarroyo MA, Patarroyo ME. The molecular basis for peptide-based antimalarial vaccine development targeting erythrocyte invasion by P. falciparum. Biochem Biophys Res Commun 2020; 534:86-93. [PMID: 33316544 DOI: 10.1016/j.bbrc.2020.11.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/22/2020] [Indexed: 01/08/2023]
Abstract
This work describes a methodology for developing a minimal, subunit-based, multi-epitope, multi-stage, chemically-synthesised, anti-Plasmodium falciparum malaria vaccine. Some modified high activity binding peptides (mHABPs) derived from functionally relevant P. falciparum MSP, RH5 and AMA-1 conserved amino acid regions (cHABPs) for parasite binding to and invasion of red blood cells (RBC) were selected. They were highly immunogenic as assessed by indirect immunofluorescence (IFA) and Western blot (WB) assays and protective immune response-inducers against malarial challenge in the Aotus monkey experimental model. NetMHCIIpan 4.0 was used for predicting peptide-Aotus/human major histocompatibility class II (MHCII) binding affinity in silico due to the similarity between Aotus and human immune system molecules; ∼50% of Aotus MHCII allele molecules have a counterpart in the human immune system, being Aotus-specific, whilst others enabled recognition of their human counterparts. Some peptides' 1H-NMR-assessed structural conformation was determined to explain residue modifications in mHABPs inducing secondary structure changes. These directly influenced immunological behaviour, thereby highlighting the relationship with MHCII antigen presentation. The data obtained in such functional, immunological, structural and predictive approach suggested that some of these peptides could be excellent components of a fully-protective antimalarial vaccine.
Collapse
Affiliation(s)
- Jorge Aza-Conde
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - César Reyes
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; Biomedical and Biological Sciences PhD Programme, Universidad del Rosario, Bogotá, Colombia
| | - Carlos F Suárez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel A Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel E Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia; Universidad Santo Tomás, Bogotá, Colombia.
| |
Collapse
|
6
|
Reyes C, Molina-Franky J, Aza-Conde J, Suárez CF, Pabón L, Moreno-Vranich A, Patarroyo MA, Patarroyo ME. Malaria: Paving the way to developing peptide-based vaccines against invasion in infectious diseases. Biochem Biophys Res Commun 2020; 527:1021-1026. [PMID: 32439169 DOI: 10.1016/j.bbrc.2020.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/03/2020] [Indexed: 02/04/2023]
Abstract
Malaria remains a large-scale public health problem, killing more than 400,000 people and infecting up to 230 million worldwide, every year. Unfortunately, despite numerous efforts and research concerning vaccine development, results to date have been low and/or strain-specific. This work describes a strategy involving Plasmodium falciparum Duffy binding-like (DBL) and reticulocyte-binding protein homologue (RH) family-derived minimum functional peptides, netMHCIIpan3.2 parental and modified peptides' in silico binding prediction and modeling some Aotus major histocompatibility class II (MHCII) molecules based on known human molecules' structure to understand their differences. These are used to explain peptides' immunological behaviour when used as vaccine components in the Aotus model. Despite the great similarity between human and Aotus immune system molecules, around 50% of Aotus allele molecules lack a counterpart in the human immune system which could lead to an Aotus-specific vaccine. It was also confirmed that functional Plasmodium falciparum' conserved proteins are immunologically silent (in both the animal model and in-silico prediction); they must therefore be modified to elicit an appropriate immune response. Some peptides studied here had the desired behaviour and can thus be considered components of a fully-protective antimalarial vaccine.
Collapse
Affiliation(s)
- César Reyes
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Jessica Molina-Franky
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia; Universidad de Boyacá, Tunja, Colombia
| | - Jorge Aza-Conde
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Carlos F Suárez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Laura Pabón
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Armando Moreno-Vranich
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Manuel A Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel E Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
7
|
Lambraño J, Curtidor H, Avendaño C, Díaz-Arévalo D, Roa L, Vanegas M, Patarroyo ME, Patarroyo MA. Preliminary Evaluation of the Safety and Immunogenicity of an Antimalarial Vaccine Candidate Modified Peptide (IMPIPS) Mixture in a Murine Model. J Immunol Res 2019; 2019:3832513. [PMID: 32083140 PMCID: PMC7012257 DOI: 10.1155/2019/3832513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/03/2019] [Indexed: 11/22/2022] Open
Abstract
Malaria continues being a high-impact disease regarding public health worldwide; the WHO report for malaria in 2018 estimated that ~219 million cases occurred in 2017, mostly caused by the parasite Plasmodium falciparum. The disease cost the lives of more than 400,000 people, mainly in Africa. In spite of great efforts aimed at developing better prevention (i.e., a highly effective vaccine), diagnosis, and treatment methods for malaria, no efficient solution to this disease has been advanced to date. The Fundación Instituto de Inmunología de Colombia (FIDIC) has been developing studies aimed at furthering the search for vaccine candidates for controlling P. falciparum malaria. However, vaccine development involves safety and immunogenicity studies regarding their formulation in animal models before proceeding to clinical studies. The present work has thus been aimed at evaluating the safety and immunogenicity of a mixture of 23 chemically synthesised, modified peptides (immune protection-inducing protein structure (IMPIPS)) derived from different P. falciparum proteins. Single and repeat dose assays were thus used with male and female BALB/c mice which were immunised with the IMPIPS mixture. It was found that single and repeat dose immunisation with the IMPIPS mixture was safe, both locally and systemically. It was observed that the antibodies so stimulated recognised the parasite's native proteins and inhibited merozoite invasion of red blood cells in vitro when evaluating the humoral immune response induced by the IMPIPS mixture. Such results suggested that the IMPIPS peptide mixture could be a safe candidate to be tested during the next stage involved in developing an antimalarial vaccine, evaluating local safety, immunogenicity, and protection in a nonhuman primate model.
Collapse
Affiliation(s)
- Jennifer Lambraño
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Master's Programme in Biochemistry, Medical School, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Catalina Avendaño
- Faculty of Animal Science, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Diana Díaz-Arévalo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Leonardo Roa
- Faculty of Animal Science, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Magnolia Vanegas
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Manuel E. Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Pathology Department, Medical School, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuel A. Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
8
|
Synthetic Evaluation of Standard and Microwave-Assisted Solid Phase Peptide Synthesis of a Long Chimeric Peptide Derived from Four Plasmodium falciparum Proteins. Molecules 2018; 23:molecules23112877. [PMID: 30400576 PMCID: PMC6278645 DOI: 10.3390/molecules23112877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 11/17/2022] Open
Abstract
An 82-residue-long chimeric peptide was synthesised by solid phase peptide synthesis (SPPS), following the Fmoc protocol. Microwave (MW) radiation-assisted synthesis was compared to standard synthesis using low loading (0.20 mmol/g) of polyethylene glycol (PEG) resin. Similar synthetic difficulties were found when the chimeric peptide was obtained via these two reaction conditions, indicating that such difficulties were inherent to the sequence and could not be resolved using MW; by contrast, the number of coupling cycles and total reaction time became reduced whilst crude yield and percentage recovery after purification were higher for MW radiation-assisted synthesis.
Collapse
|
9
|
Bermudez A, Alba MP, Vanegas M, Patarroyo MA, Patarroyo ME. Specific β-Turns Precede PPII L Structures Binding to Allele-Specific HLA-DRβ1 * PBRs in Fully-Protective Malaria Vaccine Components. Front Chem 2018; 6:106. [PMID: 29682500 PMCID: PMC5898157 DOI: 10.3389/fchem.2018.00106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/22/2018] [Indexed: 01/18/2023] Open
Abstract
The 3D structural analysis of 62 peptides derived from highly pathogenic Plasmodium falciparum malaria parasite proteins involved in host cell invasion led to finding a striking association between particular β-turn types located in the N-terminal peripheral flanking residue region (preceding the polyproline II left-handed structures fitting into the HLA-DRβ* allele family) and modified immune protection-inducing protein structure induced long-lasting protective immunity. This is the first time association between two different secondary structures associated with a specific immunological function has been described: full, long-lasting protective immunity.
Collapse
Affiliation(s)
- Adriana Bermudez
- 3D Structure Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,School of Medicine and Health Sciences Faculty, Universidad del Rosario, Bogotá, Colombia
| | - Martha P Alba
- 3D Structure Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Medicine Faculty, Universidad de Ciencias Aplicadas y Ambientales, Bogotá, Colombia
| | - Magnolia Vanegas
- 3D Structure Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,School of Medicine and Health Sciences Faculty, Universidad del Rosario, Bogotá, Colombia
| | - Manuel A Patarroyo
- 3D Structure Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,School of Medicine and Health Sciences Faculty, Universidad del Rosario, Bogotá, Colombia
| | - Manuel E Patarroyo
- 3D Structure Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Medicine Faculty, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
10
|
Curtidor H, Reyes C, Bermúdez A, Vanegas M, Varela Y, Patarroyo ME. Conserved Binding Regions Provide the Clue for Peptide-Based Vaccine Development: A Chemical Perspective. Molecules 2017; 22:molecules22122199. [PMID: 29231862 PMCID: PMC6149789 DOI: 10.3390/molecules22122199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
Synthetic peptides have become invaluable biomedical research and medicinal chemistry tools for studying functional roles, i.e., binding or proteolytic activity, naturally-occurring regions’ immunogenicity in proteins and developing therapeutic agents and vaccines. Synthetic peptides can mimic protein sites; their structure and function can be easily modulated by specific amino acid replacement. They have major advantages, i.e., they are cheap, easily-produced and chemically stable, lack infectious and secondary adverse reactions and can induce immune responses via T- and B-cell epitopes. Our group has previously shown that using synthetic peptides and adopting a functional approach has led to identifying Plasmodium falciparumconserved regions binding to host cells. Conserved high activity binding peptides’ (cHABPs) physicochemical, structural and immunological characteristics have been taken into account for properly modifying and converting them into highly immunogenic, protection-inducing peptides (mHABPs) in the experimental Aotus monkey model. This article describes stereo–electron and topochemical characteristics regarding major histocompatibility complex (MHC)-mHABP-T-cell receptor (TCR) complex formation. Some mHABPs in this complex inducing long-lasting, protective immunity have been named immune protection-inducing protein structures (IMPIPS), forming the subunit components in chemically synthesized vaccines. This manuscript summarizes this particular field and adds our recent findings concerning intramolecular interactions (H-bonds or π-interactions) enabling proper IMPIPS structure as well as the peripheral flanking residues (PFR) to stabilize the MHCII-IMPIPS-TCR interaction, aimed at inducing long-lasting, protective immunological memory.
Collapse
Affiliation(s)
- Hernando Curtidor
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - César Reyes
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
| | - Adriana Bermúdez
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - Magnolia Vanegas
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - Yahson Varela
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- Faculty of Health Sciences, Applied and Environmental Sciences University (UDCA), Bogotá 111321, Colombia.
| | - Manuel E Patarroyo
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- Faculty of Medicine, National University of Colombia, Bogotá 111321, Colombia.
| |
Collapse
|
11
|
Suárez CF, Pabón L, Barrera A, Aza-Conde J, Patarroyo MA, Patarroyo ME. Structural analysis of owl monkey MHC-DR shows that fully-protective malaria vaccine components can be readily used in humans. Biochem Biophys Res Commun 2017; 491:1062-1069. [DOI: 10.1016/j.bbrc.2017.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 11/29/2022]
|
12
|
Critical role of HLA-DRβ* binding peptides' peripheral flanking residues in fully-protective malaria vaccine development. Biochem Biophys Res Commun 2017; 489:339-345. [DOI: 10.1016/j.bbrc.2017.05.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
|
13
|
Reyes C, Moreno-Vranich A, Patarroyo ME. The role of pi-interactions and hydrogen bonds in fully protective synthetic malaria vaccine development. Biochem Biophys Res Commun 2017; 484:501-507. [DOI: 10.1016/j.bbrc.2017.01.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023]
|
14
|
Sedegah M, Peters B, Hollingdale MR, Ganeshan HD, Huang J, Farooq F, Belmonte MN, Belmonte AD, Limbach KJ, Diggs C, Soisson L, Chuang I, Villasante ED. Vaccine Strain-Specificity of Protective HLA-Restricted Class 1 P. falciparum Epitopes. PLoS One 2016; 11:e0163026. [PMID: 27695088 PMCID: PMC5047630 DOI: 10.1371/journal.pone.0163026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
A DNA prime/adenovirus boost malaria vaccine encoding Plasmodium falciparum strain 3D7 CSP and AMA1 elicited sterile clinical protection associated with CD8+ T cell interferon-gamma (IFN-γ) cells responses directed to HLA class 1-restricted AMA1 epitopes of the vaccine strain 3D7. Since a highly effective malaria vaccine must be broadly protective against multiple P. falciparum strains, we compared these AMA1 epitopes of two P. falciparum strains (7G8 and 3D7), which differ by single amino acid substitutions, in their ability to recall CD8+ T cell activities using ELISpot and flow cytometry/intracellular staining assays. The 7G8 variant peptides did not recall 3D7 vaccine-induced CD8+ T IFN-γ cell responses in these assays, suggesting that protection may be limited to the vaccine strain. The predicted MHC binding affinities of the 7G8 variant epitopes were similar to the 3D7 epitopes, suggesting that the amino acid substitutions of the 7G8 variants may have interfered with TCR recognition of the MHC:peptide complex or that the 7G8 variant may have acted as an altered peptide ligand. These results stress the importance of functional assays in defining protective epitopes. Clinical Trials Registrations: NCT00870987, NCT00392015
Collapse
Affiliation(s)
- Martha Sedegah
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, United States of America
| | - Michael R. Hollingdale
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
- * E-mail:
| | - Harini D. Ganeshan
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Jun Huang
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Fouzia Farooq
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Maria N. Belmonte
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Arnel D. Belmonte
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Keith J. Limbach
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Carter Diggs
- USAID, Washington, DC, 20523, United States of America
| | | | - Ilin Chuang
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Eileen D. Villasante
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| |
Collapse
|
15
|
Alba MP, Suarez CF, Varela Y, Patarroyo MA, Bermudez A, Patarroyo ME. TCR-contacting residues orientation and HLA-DRβ* binding preference determine long-lasting protective immunity against malaria. Biochem Biophys Res Commun 2016; 477:654-660. [DOI: 10.1016/j.bbrc.2016.06.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 02/06/2023]
|
16
|
Immune protection-inducing protein structures (IMPIPS) against malaria: the weapons needed for beating Odysseus. Vaccine 2015; 33:7525-37. [DOI: 10.1016/j.vaccine.2015.09.109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 08/04/2015] [Accepted: 09/28/2015] [Indexed: 11/19/2022]
|
17
|
Curtidor H, Patarroyo ME, Patarroyo MA. Recent advances in the development of a chemically synthesised anti-malarial vaccine. Expert Opin Biol Ther 2015; 15:1567-81. [DOI: 10.1517/14712598.2015.1075505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Patarroyo ME, Bermúdez A, Alba MP, Vanegas M, Moreno-Vranich A, Poloche LA, Patarroyo MA. IMPIPS: the immune protection-inducing protein structure concept in the search for steric-electron and topochemical principles for complete fully-protective chemically synthesised vaccine development. PLoS One 2015; 10:e0123249. [PMID: 25879751 PMCID: PMC4400017 DOI: 10.1371/journal.pone.0123249] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/28/2015] [Indexed: 01/14/2023] Open
Abstract
Determining immune protection-inducing protein structures (IMPIPS) involves defining the stereo-electron and topochemical characteristics which are essential in MHC-p-TCR complex formation. Modified high activity binding peptides (mHABP) were thus synthesised to produce a large panel of IMPIPS measuring 26.5 ±3.5Å between the farthest atoms fitting into Pockets 1 to 9 of HLA-DRβ1* structures. They displayed a polyproline II-like (PPIIL) structure with their backbone O and N atoms orientated to establish H-bonds with specific residues from HLA-DRβ1*-peptide binding regions (PBR). Residues having specific charge and gauche+ orientation regarding p3χ1, p5χ2, and p7χ1 angles determined appropriate rotamer orientation for perfectly fitting into the TCR to induce an appropriate immune response. Immunological assays in Aotus monkeys involving IMPIPS mixtures led to promising results; taken together with the aforementioned physicochemical principles, non-interfering, long-lasting, protection-inducing, multi-epitope, multistage, minimal subunit-based chemically-synthesised peptides can be designed against diseases scourging humankind.
Collapse
Affiliation(s)
- Manuel Elkin Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail:
| | - Adriana Bermúdez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Universidad del Rosario, Bogotá, Colombia
| | - Martha Patricia Alba
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Universidad del Rosario, Bogotá, Colombia
| | - Magnolia Vanegas
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Universidad del Rosario, Bogotá, Colombia
| | | | | | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
19
|
Chebrek R, Leonard S, de Brevern AG, Gelly JC. PolyprOnline: polyproline helix II and secondary structure assignment database. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau102. [PMID: 25380779 PMCID: PMC4224144 DOI: 10.1093/database/bau102] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The polyproline helix type II (PPII) is a regular protein secondary structure with remarkable features. Many studies have highlighted different crucial biological roles supported by this local conformation, e.g. in the interactions between biological macromolecules. Although PPII is less frequently present than regular secondary structures such as canonical alpha helices and beta strands, it corresponds to 3–10% of residues. Up to now, PPII is not assigned by most popular assignment tools, and therefore, remains insufficiently studied. PolyprOnline database is, therefore, dedicated to PPII structure assignment and analysis to facilitate the study of PPII structure and functional roles. This database is freely accessible from www.dsimb.inserm.fr/dsimb_tools/polyproline.
Collapse
Affiliation(s)
- Romain Chebrek
- Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France
| | - Sylvain Leonard
- Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France
| | - Alexandre G de Brevern
- Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France
| | - Jean-Christophe Gelly
- Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France Inserm U1134, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France, Institut National de la Transfusion Sanguine, Paris, France and Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|