1
|
Wang H, Wang S, Fang R, Li X, Xing J, Li Z, Song N. Enhancing TB Vaccine Efficacy: Current Progress on Vaccines, Adjuvants and Immunization Strategies. Vaccines (Basel) 2023; 12:38. [PMID: 38250851 PMCID: PMC10820143 DOI: 10.3390/vaccines12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Tuberculosis (TB) remains a global infectious disease primarily transmitted via respiratory tract infection. Presently, vaccination stands as the primary method for TB prevention, predominantly reliant on the Bacillus Calmette-Guérin (BCG) vaccine. Although it is effective in preventing disseminated diseases in children, its impact on adults is limited. To broaden vaccine protection, efforts are underway to accelerate the development of new TB vaccines. However, challenges arise due to the limited immunogenicity and safety of these vaccines, necessitating adjuvants to bolster their ability to elicit a robust immune response for improved and safer immunization. These adjuvants function by augmenting cellular and humoral immunity against M. tuberculosis antigens via different delivery systems, ultimately enhancing vaccine efficacy. Therefore, this paper reviews and summarizes the current research progress on M. tuberculosis vaccines and their associated adjuvants, aiming to provide a valuable reference for the development of novel TB vaccines and the screening of adjuvants.
Collapse
Affiliation(s)
- Hui Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Shuxian Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Ren Fang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Xiaotian Li
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Jiayin Xing
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Zhaoli Li
- SAFE Pharmaceutical Technology Co., Ltd., Beijing 100000, China
| | - Ningning Song
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| |
Collapse
|
2
|
Zhang T, He P, Guo D, Chen K, Hu Z, Zou Y. Research Progress of Aluminum Phosphate Adjuvants and Their Action Mechanisms. Pharmaceutics 2023; 15:1756. [PMID: 37376204 DOI: 10.3390/pharmaceutics15061756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Although hundreds of different adjuvants have been tried, aluminum-containing adjuvants are by far the most widely used currently. It is worth mentioning that although aluminum-containing adjuvants have been commonly applied in vaccine production, their acting mechanism remains not completely clear. Thus far, researchers have proposed the following mechanisms: (1) depot effect, (2) phagocytosis, (3) activation of pro-inflammatory signaling pathway NLRP3, (4) host cell DNA release, and other mechanisms of action. Having an overview on recent studies to increase our comprehension on the mechanisms by which aluminum-containing adjuvants adsorb antigens and the effects of adsorption on antigen stability and immune response has become a mainstream research trend. Aluminum-containing adjuvants can enhance immune response through a variety of molecular pathways, but there are still significant challenges in designing effective immune-stimulating vaccine delivery systems with aluminum-containing adjuvants. At present, studies on the acting mechanism of aluminum-containing adjuvants mainly focus on aluminum hydroxide adjuvants. This review will take aluminum phosphate as a representative to discuss the immune stimulation mechanism of aluminum phosphate adjuvants and the differences between aluminum phosphate adjuvants and aluminum hydroxide adjuvants, as well as the research progress on the improvement of aluminum phosphate adjuvants (including the improvement of the adjuvant formula, nano-aluminum phosphate adjuvants and a first-grade composite adjuvant containing aluminum phosphate). Based on such related knowledge, determining optimal formulation to develop effective and safe aluminium-containing adjuvants for different vaccines will become more substantiated.
Collapse
Affiliation(s)
- Ting Zhang
- Sinovac Biotech Sciences Co., Ltd., Beijing 102601, China
| | - Peng He
- Division of Hepatitis Virus & Enterovirus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 102619, China
| | - Dejia Guo
- Sinovac Life Sciences Co., Ltd., Beijing 102601, China
| | - Kaixi Chen
- Sinovac Life Sciences Co., Ltd., Beijing 102601, China
| | - Zhongyu Hu
- Division of Hepatitis Virus & Enterovirus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 102619, China
| | - Yening Zou
- Sinovac Life Sciences Co., Ltd., Beijing 102601, China
| |
Collapse
|
3
|
Han Y, Yu C, Yu Y. Astragalus polysaccharide alleviates alveolar bone destruction by regulating local osteoclastogenesis during periodontitis. J Appl Biomed 2021; 19:97-104. [PMID: 34907709 DOI: 10.32725/jab.2021.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/23/2021] [Indexed: 01/14/2023] Open
Abstract
Inflammatory imbalance of bone formation/resorption leads to alveolar bone destruction. Astragalus polysaccharide has been confirmed to have anti-inflammatory effects. We sought to disclose the protective effect and its potential mechanisms of astragalus polysaccharide in the periodontitis model. Experimental periodontitis was induced by cotton ligatures for this study. We measured the alveolar bone damage rate, periodontal osteoclasts, proportion of CD4+Foxp3+, CD4+IL-10+, CD4+TGF-β+ subsets in the gingiva, and RANKL, OPG, TGF-β+, and IL-10+ level in the gingiva. We also cultured osteoclast precursor cells in the presence of RANKL and astragalus polysaccharide. Osteoclasto-like cells were identified by TRAP staining, mRNA of RANK, TRAP, and TRAF6 were evaluated by real time PCR. We found that astragalus polysaccharide caused significant protection of the alveolar bone via reducing local osteoclasts. It also decreased the proportion of CD4+Foxp3+ cells and upregulated the level of CD4+IL-10+ cells, reduced RANKL, and remedied IL-10 levels. In cell culture experiments, astragalus polysaccharide prohibited the RANKL mediated osteoclast differentiation. The findings of this study disclose the functions and possible mechanisms of astragalus polysaccharide engaged in local osteoclastogenesis, and reveal the considerable effect of astragalus polysaccharide in alveolar bone homeostasis and its likely contribution to host immuno-regulation in periodontitis.
Collapse
Affiliation(s)
- Yakun Han
- Affiliated Hospital of Jilin Medical University, Department of Stomatology, Jilin, China
| | - Chengcheng Yu
- Affiliated Hospital of Jilin Medical University, Department of Stomatology, Jilin, China
| | - Yan Yu
- Affiliated Hospital of Jilin Medical University, Department of Stomatology, Jilin, China
| |
Collapse
|
4
|
Chen Z, Wang M, Yang S, Shi J, Ji T, Ding W, Jiang L, Fan Z, Chen J, Lu Y. Butyric Acid Protects Against Renal Ischemia-Reperfusion Injury by Adjusting the Treg/Th17 Balance via HO-1/p-STAT3 Signaling. Front Cell Dev Biol 2021; 9:733308. [PMID: 34796171 PMCID: PMC8593469 DOI: 10.3389/fcell.2021.733308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Immune regulation plays a vital role in ischemia-reperfusion injury (IRI). Butyric acid (BA) has immunomodulatory effects in many diseases, but its immunomodulatory effects during renal IRI are still unclear. Our research shows that BA protected against IRI and significantly improved renal IRI in vivo. In vitro studies showed that BA inhibits Th17 cell differentiation and induces Treg cell differentiation. Mechanism studies have shown that heme oxygenase 1 (HO-1)/STAT3 signaling pathway was involved in the inhibitory effect of BA on Th17 cell differentiation. HO-1 inhibitors can significantly rescue the BA-mediated inhibition of Th17 cell differentiation. We confirmed that BA promotes the differentiation of Th17 cells into Treg cells by regulating the pathway and reduces renal IRI.
Collapse
Affiliation(s)
- Zhen Chen
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Miaomiao Wang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shikun Yang
- Key Laboratory of Liver Transplantation, Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jian Shi
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Tianhao Ji
- Key Laboratory of Liver Transplantation, Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, Nanjing, China
| | - Wei Ding
- The Third Affiliated Hospital of Soochow University, Changzhou, China.,Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | | | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Jing Chen
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yunjie Lu
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
5
|
Shi S, Zhu H, Xia X, Liang Z, Ma X, Sun B. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine 2019; 37:3167-3178. [PMID: 31047671 DOI: 10.1016/j.vaccine.2019.04.055] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/02/2019] [Accepted: 04/18/2019] [Indexed: 12/16/2022]
Abstract
In conjugate, inactivated, recombinant, and toxoid vaccines, adjuvants are extensively and essentially used for enhanced and long-lasting protective immune responses. Depending on the type of diseases and immune responses required, adjuvants with different design strategies are developed. With aluminum salt-based adjuvants as the most used ones in commercial vaccines, other limited adjuvants, e.g., AS01, AS03, AS04, CpG ODN, and MF59, are used in FDA-approved vaccines for human use. In this paper, we review the uses of different adjuvants in vaccines including the ones used in FDA-approved vaccines and vaccines under clinical investigations. We discuss how adjuvants with different formulations could affect the magnitude and quality of adaptive immune response for optimized protection against specific pathogens. We emphasize the molecular mechanisms of various adjuvants, with the aim to establish structure-activity relationships (SARs) for designing more effective and safer adjuvants for both preventative and therapeutic vaccines.
Collapse
Affiliation(s)
- Shuting Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Haoru Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Xinyu Xia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Zhihui Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Xuehu Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| |
Collapse
|
6
|
Guan L, Yu D, Wu GH, Ning HJ, He SD, Li SS, Hu TY, Yang G, Liu ZQ, Yu HQ, Sun XZ, Liu ZG, Yang PC. Vasoactive intestinal peptide is required in the maintenance of immune regulatory competency of immune regulatory monocytes. Clin Exp Immunol 2019; 196:276-286. [PMID: 30636174 DOI: 10.1111/cei.13259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2019] [Indexed: 11/27/2022] Open
Abstract
Dysfunction of the immune regulatory system plays an important role in the pathogenesis of rheumatoid arthritis (RA). Vasoactive intestinal peptide (VIP) has multiple bioactivities. This study aims to investigate the role of VIP in the maintenance of the immune regulatory capacity of monocytes (Mos). Human peripheral blood samples were collected from RA patients and healthy control (HC) subjects. Mos and CD14+ CD71- CD73+ CD25+ regulatory Mos (RegMos) were isolated from the blood samples and characterized by flow cytometry. A rat RA model was developed to test the role of VIP in the maintenance of the immune regulatory function of Mos. The results showed that RegMos of HC subjects had immune suppressive functions. RegMos of RA patients expressed less interleukin (IL)-10 and showed an incompetent immune regulatory capacity. Serum levels of VIP were lower in RA patients, which were positively correlated with the expression of IL-10 in RegMos. In-vitro experiments showed that the IL-10 mRNA decayed spontaneously in RegMos, which could be prevented by the presence of VIP in the culture. VIP suppressed the effects of tristetraprolin (TTP) on inducing IL-10 mRNA decay in RegMos. Administration of VIP inhibited experimental RA in rats through restoring the IL-10 expression in RegMos. RegMos have immune suppressive functions. VIP is required in maintaining IL-10 expression in RegMos. The data suggest that VIP has translational potential in the treatment of immune disorders such as RA.
Collapse
Affiliation(s)
- L Guan
- Department of Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - D Yu
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - G-H Wu
- Department of Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - H-J Ning
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - S-D He
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - S-S Li
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - T-Y Hu
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - G Yang
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Z-Q Liu
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - H-Q Yu
- Department of Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - X-Z Sun
- Department of Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Z-G Liu
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - P-C Yang
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
7
|
Cauchi S, Locht C. Non-specific Effects of Live Attenuated Pertussis Vaccine Against Heterologous Infectious and Inflammatory Diseases. Front Immunol 2018; 9:2872. [PMID: 30581436 PMCID: PMC6292865 DOI: 10.3389/fimmu.2018.02872] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/21/2018] [Indexed: 12/16/2022] Open
Abstract
Bordetella pertussis is the agent of pertussis, also referred to as whooping cough, a disease that remains an important public health issue. Vaccine-induced immunity to pertussis wanes over time. In industrialized countries, high vaccine coverage has not prevented infection and transmission of B. pertussis, leading to periodic outbreaks in people of all ages. The consequence is the formation of a large source for transmission to children, who show the highest susceptibility of developing severe whooping cough and mortality. With the aim of providing protection against both disease and infection, a live attenuated pertussis vaccine, in which three toxins have been genetically inactivated or removed, is now in clinical development. This vaccine, named BPZE1, offers strong protection in mice and non-human primates. It has completed a phase I clinical trial in which safety, transient colonization of the human airway and immunogenicity could be demonstrated. In mice, BPZE1 was also found to protect against inflammation resulting from heterologous airway infections, including those caused by other Bordetella species, influenza virus and respiratory syncytial virus. Furthermore, the heterologous protection conferred by BPZE1 was also observed for non-infectious inflammatory diseases, such as allergic asthma, as well as for inflammatory disorders outside of the respiratory tract, such as contact dermatitis. Current studies focus on the mechanisms underlying the anti-inflammatory effects associated with nasal BPZE1 administration. Given the increasing importance of inflammatory disorders, novel preventive and therapeutic approaches are urgently needed. Therefore, live vaccines, such as BPZE1, may offer attractive solutions. It is now essential to understand the cellular and molecular mechanisms of action before translating these biological findings into new healthcare solutions.
Collapse
Affiliation(s)
- Stéphane Cauchi
- Univ. Lille, U1019, UMR 8204, CIIL-Centre for Infection and Immunity of Lille, Lille, France.,CNRS UMR8204, Lille, France.,Inserm U1019, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - Camille Locht
- Univ. Lille, U1019, UMR 8204, CIIL-Centre for Infection and Immunity of Lille, Lille, France.,CNRS UMR8204, Lille, France.,Inserm U1019, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| |
Collapse
|
8
|
Swartz J, Aronsson B, Lindblad F, Järnbert-Pettersson H, Scheynius A, Pershagen G, Alm J. Vaccination and Allergic Sensitization in Early Childhood - The ALADDIN Birth Cohort. EClinicalMedicine 2018; 4-5:92-98. [PMID: 31193660 PMCID: PMC6537579 DOI: 10.1016/j.eclinm.2018.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/24/2018] [Accepted: 10/15/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The increasing incidence of allergic diseases highlights the importance of finding underlying mechanisms. Early vaccination has been suggested as one influential factor. However, it is difficult to find a study group with a large variation between subjects concerning compliance to the official vaccination program. The anthroposophic lifestyle is of interest in this context. Moreover, cohort studies show that children of families with this lifestyle run a lower risk of allergic sensitization and allergy-related disease. METHODS From the prospective birth cohort ALADDIN we included one group from the anthroposophic community, with restrictive attitudes concerning vaccinations, and two other groups of age-matched children with more conventional parental lifestyles. In all, 466 children were followed from birth to five years of age. Detailed vaccination data and blood samples were collected at six months, one, two, and five years. Information was also obtained on risk factors for allergy. The outcome variable, allergic sensitization was defined as allergen-specific serum IgE levels ≥ 0.35 kUA/L. FINDINGS In a logistic regression model adjusted for socio-demographics and established allergy risk factors, vaccination at later age or having a lower number of injections or vaccines were associated with low OR for allergic sensitization during the first year of life. However, after adjustment for anthroposophic lifestyle, no statistically significant associations remained. The adjusted OR for sensitization at five years of age in children not receiving any vaccinations (n = 54) was 0.98 [95% CI 0.38-2.57]. INTERPRETATION We found no support for an association between early childhood vaccination and subsequent allergic sensitization. Our findings do not support scepticism towards early childhood vaccination motivated by allergy risk.
Collapse
Key Words
- ALADDIN
- ALADDIN, Assessment of Lifestyle and Allergic Diseases During INfancy
- Allergic sensitization
- Anthroposophic lifestyle
- DPPT, Diphtheria, Pertussis, Polio, Tetanus
- DTP, Diphtheria, Tetanus, Pertussis
- DTaP, Diphtheria, Tetanus, acellular Pertussis
- Early childhood
- MCHC, Maternal and Child Healthcare Centres
- MMR, Measles, Mumps, Rubella
- NIP, the National Swedish Immunization Program
- OR, odds ratio
- Pentavac™, Diphtheria, Tetanus, Pertussis, Polio, Haemophilus influenzae type b
- Tetravac™, Diphtheria, Tetanus, Pertussis, Polio
- Vaccination
Collapse
Affiliation(s)
- Jackie Swartz
- Vidarkliniken, Järna, Sweden
- Corresponding author at: Child and Adolescent Psychiatrist, GP, Vidarkliniken, SE-15391 Järna, Sweden.
| | - Bernice Aronsson
- Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Frank Lindblad
- Department of Neuroscience, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden
| | - Hans Järnbert-Pettersson
- Karolinska Institutet, Department of Clinical Science and Education Södersjukhuset, Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Annika Scheynius
- Karolinska Institutet, Department of Clinical Science and Education Södersjukhuset, Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
- Clinical Genomics, SciLifeLab, Stockholm, Sweden
| | - Göran Pershagen
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden
| | - Johan Alm
- Karolinska Institutet, Department of Clinical Science and Education Södersjukhuset, Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| |
Collapse
|
9
|
Terhune TD, Deth RC. Aluminum Adjuvant-Containing Vaccines in the Context of the Hygiene Hypothesis: A Risk Factor for Eosinophilia and Allergy in a Genetically Susceptible Subpopulation? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E901. [PMID: 29751492 PMCID: PMC5981940 DOI: 10.3390/ijerph15050901] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/19/2018] [Accepted: 04/29/2018] [Indexed: 12/17/2022]
Abstract
There are similarities between the immune response following immunization with aluminum adjuvants and the immune response elicited by some helminthic parasites, including stimulation of immunoglobulin E (IgE) and eosinophilia. Immunization with aluminum adjuvants, as with helminth infection, induces a Th2 type cell mediated immune response, including eosinophilia, but does not induce an environment conducive to the induction of regulatory mechanisms. Helminths play a role in what is known as the hygiene hypothesis, which proposes that decreased exposure to microbes during a critical time in early life has resulted in the increased prevalence and morbidity of asthma and atopic disorders over the past few decades, especially in Western countries. In addition, gut and lung microbiome composition and their interaction with the immune system plays an important role in a properly regulated immune system. Disturbances in microbiome composition are a risk factor for asthma and allergies. We propose that immunization with aluminum adjuvants in general is not favorable for induction of regulatory mechanisms and, in the context of the hygiene hypothesis and microbiome theory, can be viewed as an amplifying factor and significant contributing risk factor for allergic diseases, especially in a genetically susceptible subpopulation.
Collapse
Affiliation(s)
- Todd D Terhune
- College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, 1382 Terry Bldg, 3200 South University Drive, Fort Lauderdale, FL 33328, USA.
| | - Richard C Deth
- College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, 1382 Terry Bldg, 3200 South University Drive, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
10
|
Govea-Alonso DO, Beltrán-López J, Salazar-González JA, Vargas-Morales J, Rosales-Mendoza S. Progress and future opportunities in the development of vaccines against atherosclerosis. Expert Rev Vaccines 2016; 16:337-350. [DOI: 10.1080/14760584.2017.1258309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dania O. Govea-Alonso
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, SLP, México
| | - Josué Beltrán-López
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, SLP, México
| | - Jorge A. Salazar-González
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, SLP, México
| | - Juan Vargas-Morales
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, SLP, México
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, SLP, México
| |
Collapse
|
11
|
Dórea JG. Exposure to mercury and aluminum in early life: developmental vulnerability as a modifying factor in neurologic and immunologic effects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:1295-313. [PMID: 25625408 PMCID: PMC4344667 DOI: 10.3390/ijerph120201295] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/20/2015] [Indexed: 01/15/2023]
Abstract
Currently, ethylmercury (EtHg) and adjuvant-Al are the dominating interventional exposures encountered by fetuses, newborns, and infants due to immunization with Thimerosal-containing vaccines (TCVs). Despite their long use as active agents of medicines and fungicides, the safety levels of these substances have never been determined, either for animals or for adult humans—much less for fetuses, newborns, infants, and children. I reviewed the literature for papers reporting on outcomes associated with (a) multiple exposures and metabolism of EtHg and Al during early life; (b) physiological and metabolic characteristics of newborns, neonates, and infants relevant to xenobiotic exposure and effects; (c) neurobehavioral, immunological, and inflammatory reactions to Thimerosal and Al-adjuvants resulting from TCV exposure in infancy. Immunological and neurobehavioral effects of Thimerosal-EtHg and Al-adjuvants are not extraordinary; rather, these effects are easily detected in high and low income countries, with co-exposure to methylmercury (MeHg) or other neurotoxicants. Rigorous and replicable studies (in different animal species) have shown evidence of EtHg and Al toxicities. More research attention has been given to EtHg and findings have showed a solid link with neurotoxic effects in humans; however, the potential synergic effect of both toxic agents has not been properly studied. Therefore, early life exposure to both EtHg and Al deserves due consideration.
Collapse
Affiliation(s)
- José G Dórea
- Department of Nutrition, Faculty of Health Sciences, Universidade de Brasilia, 70919-970 DF Brasilia, Brazil.
| |
Collapse
|